

Faculty Summit 2012

Riviera Maya, Mexico | May 23-25 | In partnership with CONACYT

Teaching A Robot How To Perform New Tasks

Eduardo F. Morales Instituto Nacional de Astrofísica, Óptica y Electrónica May 24th, 2012

Outline

Motivation

Learning framework

Teaching options:

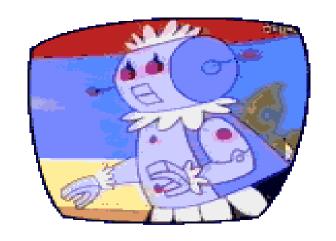
The user controls the robot

The user tells the robot

The user shows the robot

Experimental results

Conclusions and future work



Service Robots

Guides – museums, exhibitions, ...

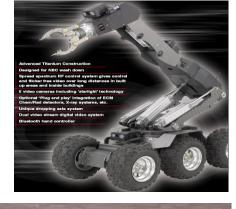
Home – lawn, vacuum cleaner, eldely people, ...

Rescue – locate survivals in natural disaste

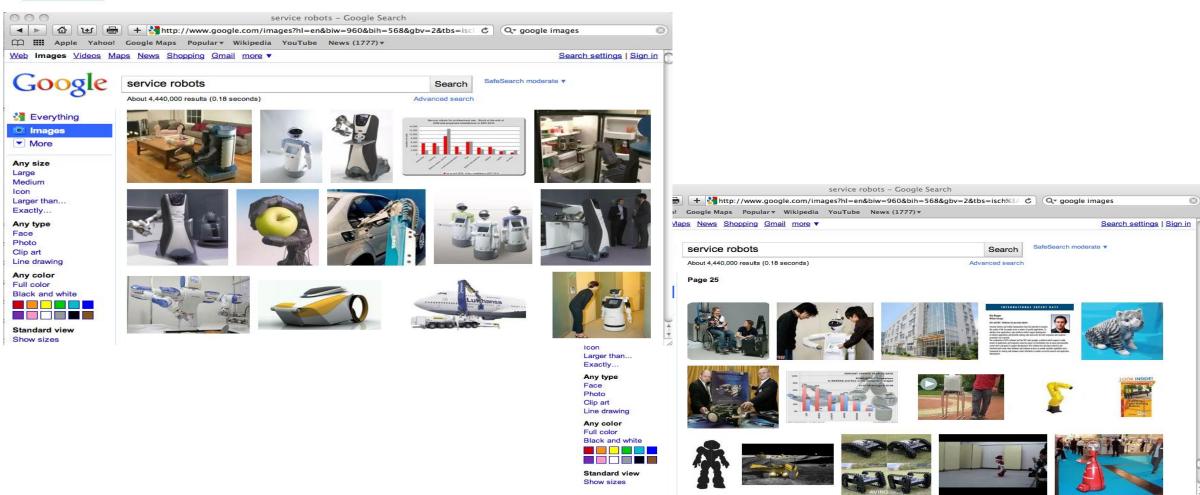
...

Exploration – volcanoes, sea reefs, planets,

Some Examples



More Examples



Why Teach A Robot New Tasks?

To prevail robots will have:

To adapt to their environment

To satisfy user's needs

Extend their capabilities to tasks for which they were not programmed

Users will have to teach them in a natural way

General Learning Scheme

The user provides traces (state-action sequences) of how to perform a task The traces may be noisy, sub-optimal, represent different strategies, diff. users,... A reinforcement learning algorithm (with some adjustments) is used to find a suitable policy in a reasonable time

We are considering three teaching options:

The user controls the robot (joystick) [Julio]

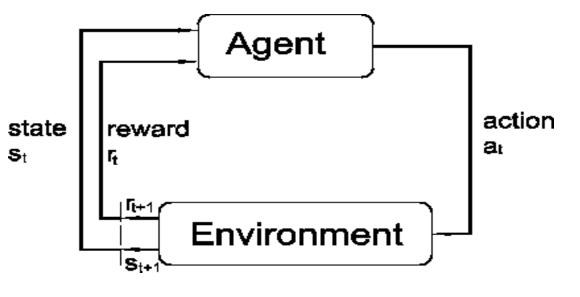
The user commands the robot (voice) [Ana]

The user performs the task (vision) [Luis Adrián]

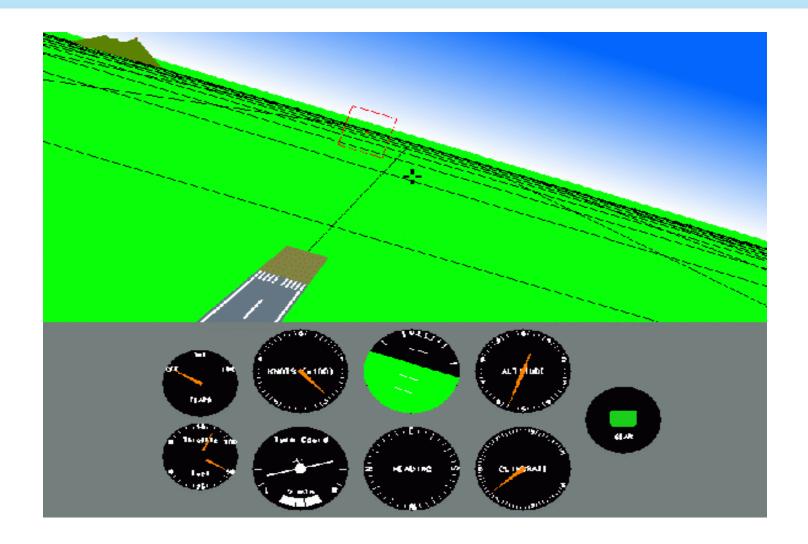
Reinforcement Learning

States (*S*), actions (*A*), immediate rewards (R), discounted infinite horizon, ...

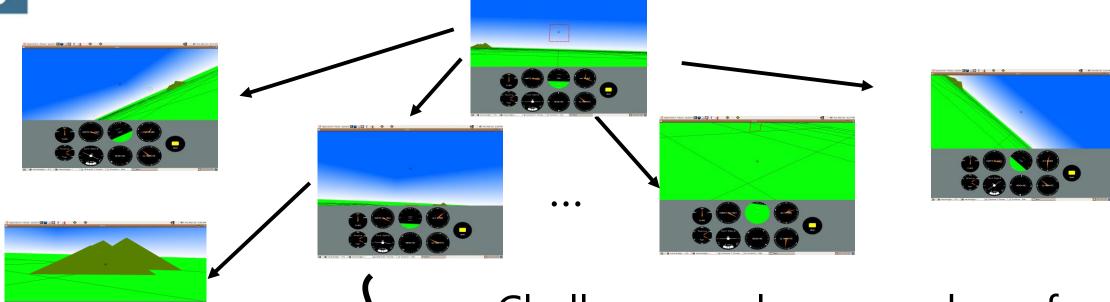
Learn from interactions with the environment how to map states to actions to maximize the total expected accumulated reward

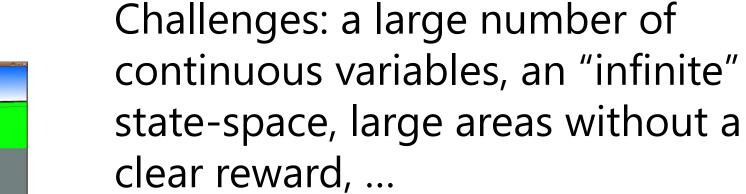


Can We Use It To Learn How To Fly?



Learning To Fly With RL



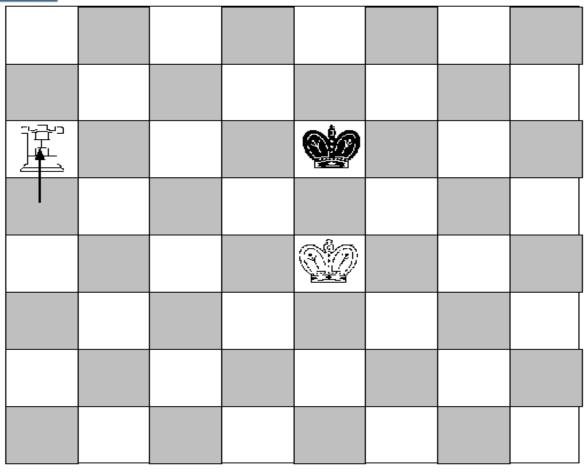


Use a relational representation:

Easy to express powerful abstractions
Can incorporate background knowledge
The learned policies can be re-used in similar problems

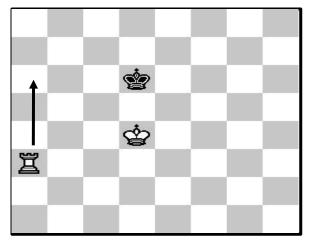
Learn/consider a subset of relevant actions from user-provided traces

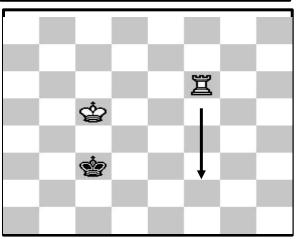
Relational Representation

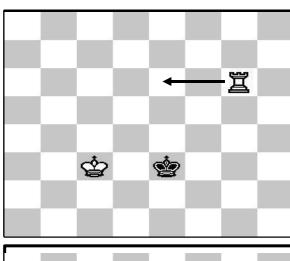


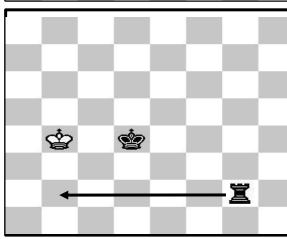
> 150,000 (positions) states & up to 22 actions per state

Equivalent State-Action Pairs









STATE:

kings_in_oppos(S) and
not threatened(S) and ...

ACTION:

IF kings_in_oppos(S1) and not threatened(S1) and ...

THEN *move*(rook, *S1, S2*)

Induce Actions from Traces

Learn a subset of relevant actions per state from human traces

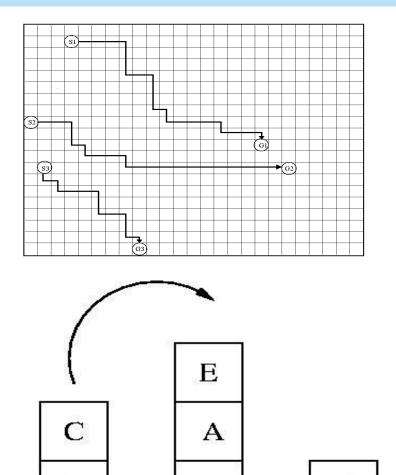
For each frame of a trace-log:

Transform the information of the frame into a relational representation (rS)
Construct, if new, an action with the conjunction of the predicates (rS) and a predicate-action (rA)

rQ-Learning Algorithm

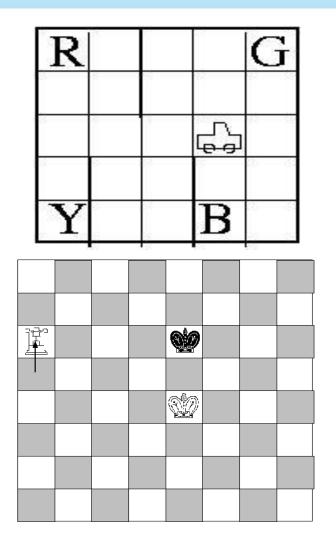
```
Initialize Q(s_n a_r) arbitrarily
repeat (for each episode)
   Initialize s, s_r \leftarrow \text{rels}(s)
   repeat (for each step in episode)
     Choose a_r from s_r using policy derived from Q
     Randomly take a from a_r; observe r, s', s_r' \leftarrow rels(s')
    Q(s_n a_r) \leftarrow Q(s_n a_r) + \alpha[r + \gamma \max_{\alpha r'} Q(s_r', a_r') - Q(s_n a_r)]
     s \leftarrow s', s_r \leftarrow s_r'
   Until s is terminal
```


Previous Experiments



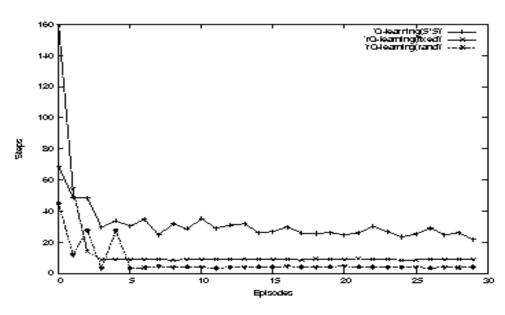
D

 \mathbf{B}

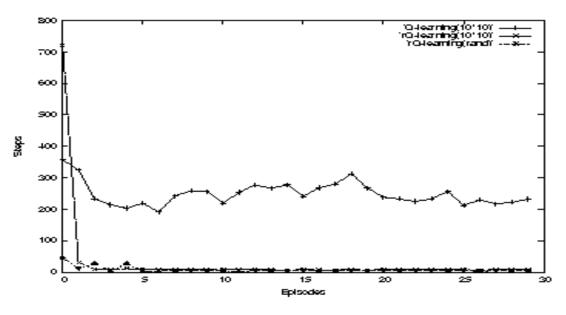


F

Faster Convergence

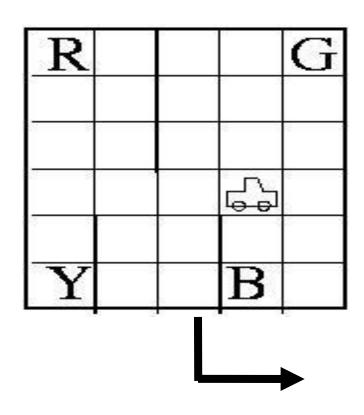


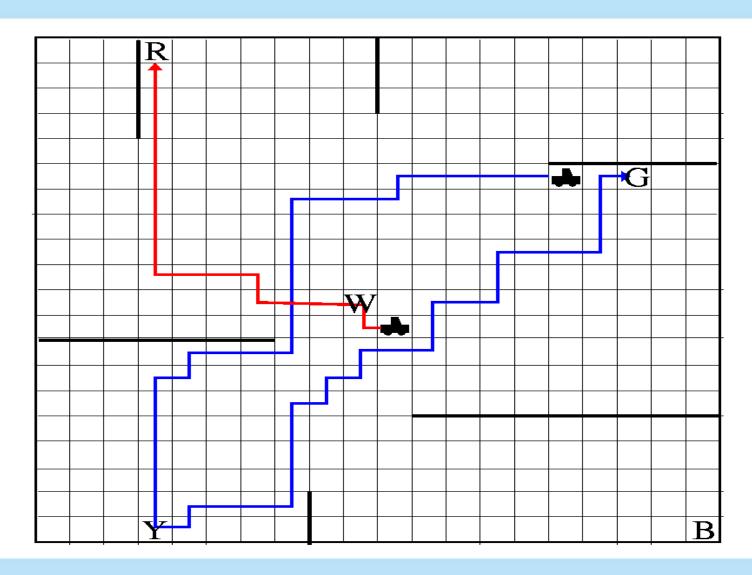
5 x 5 grid



10 x 10 grid

Re-Usability Of Policies





Learning To Fly

Assume the aircraft is in the air, with constant throttle, flat flaps and retracted gear

Two stages:

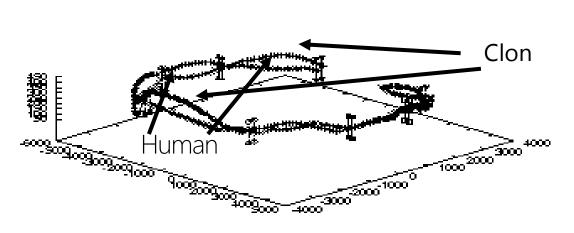
Induce actions from traces of flights (5)

Use the learned actions to explore and learn new actions until (almost) no more learning (20 trials)

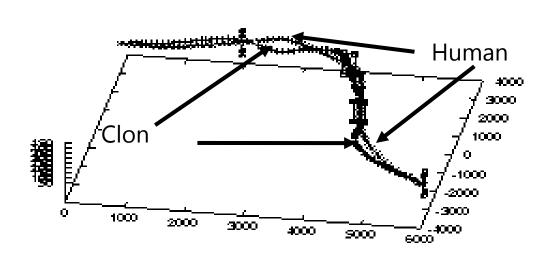
32% (359) aileron 1.6 (of 5) per state

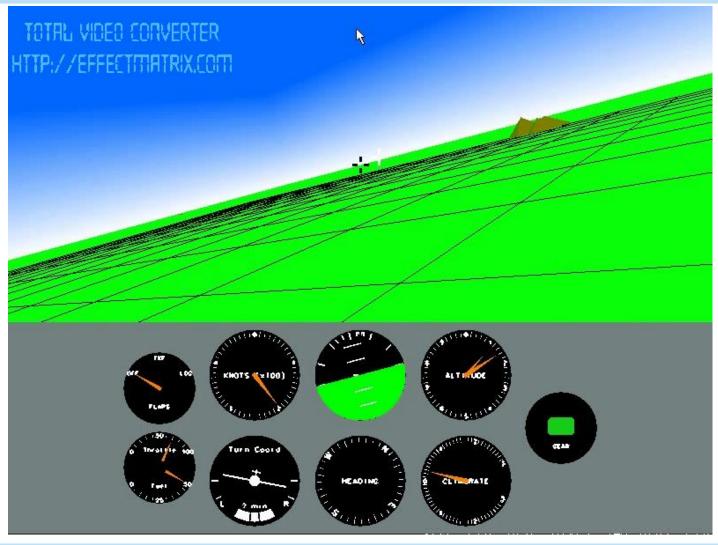
64% (180) elevation 3.2 (of 5) per state

Results With High Turbulence



Results On Different Flight Plans





(1) The User Controls (Joystick/Keyword)

Steps:

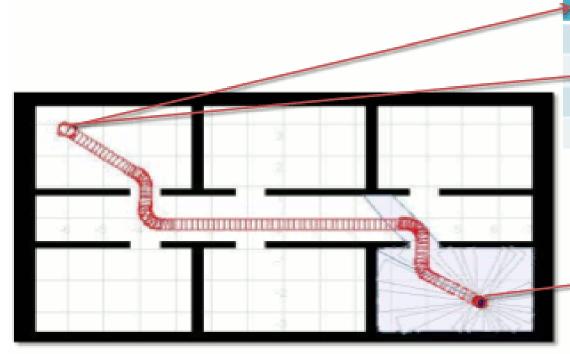
The user provides traces

Transform the low-level sensor information into a relational representation

Learn a policy

Transform on-line the discrete-actions policy into a continuous-actions policy

Original Traces



Ejemplo de traza y correspondientes frames.

frame 1

Laser 1 = 0.29, Laser 2 = 0.32, Laser 3 = 0.31...

See frame 2

Speed = $_1$ = 0.32, Laser₂ = 0.35, Laser₃ = 0.36...

An Sonar1 = 0.29, Sonar2 = 0.41, Sonar3 = ...

Speed = 0.0

Angle = -60.0

....

🏘 frame i

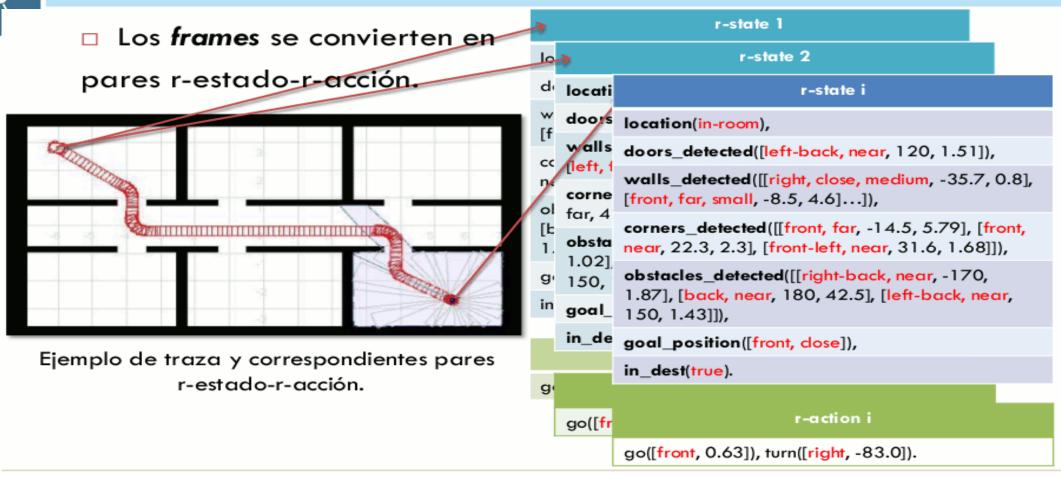
Laser 1 = 2.64, Laser 2 = 2.65, Laser 3 = 2.65...

Sonar1 = 2.18, Sonar2 = 2.29, Sonar3 = ...

Speed = 0.5

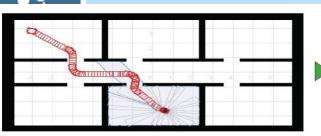
Angle = 0.0

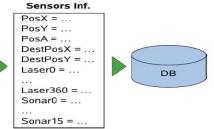
Transformed Traces

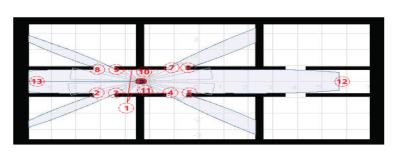


Learn a policy with this representation (as in the flight simulator)

Learning From Traces ...



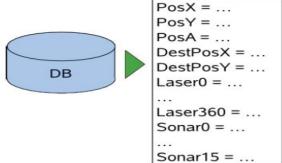




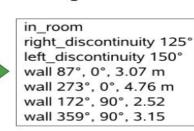
High level inf.

- 1.- in passage
- 2.- right_discontinuity 30°
- 3.- left discontinuity 50°
- 4.- right_discontinuity 125°
- 5.- left_discontinuity 150°
- 6.- right discontinuity 230°
- 7.- left discontinuity 250°
- 8.- right discontinuity 315°
- 9.- left discontinuity 335°
- 10.- right wall 0°, 0.81 m
- 11.- left wall 0°, 0.76 m
- 12.- all clear 172° 196°
- 13.- rear_obstacle

Transform sensor's information into a more "natural" and transferible representation



Sensors Inf.



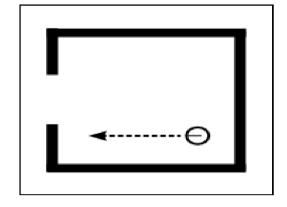
High level inf.

First Order Predicates

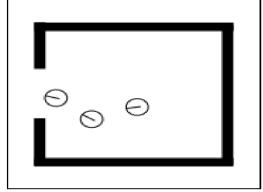
place(in_room), door(front_right, close), wall(back_right, near), wall(front_left, near), wall(back_left, near),

On-line Transformation To A Continuous-Actions Policy

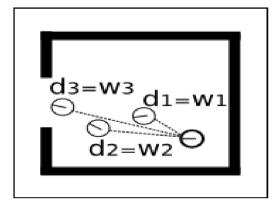
Discrete-actions policy



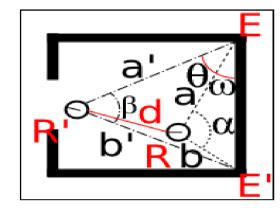
St-Ac pairs from traces



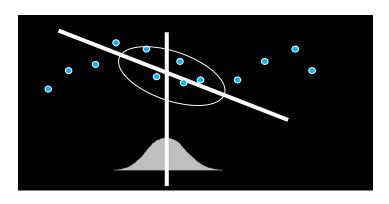
Relate similar States-Actions



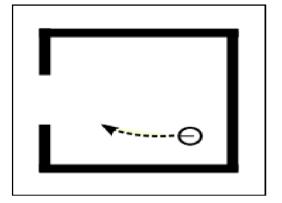
Consider natural landmarks



Weighted with a Gaussian (LWR)

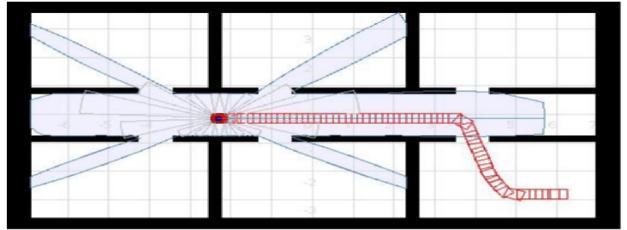


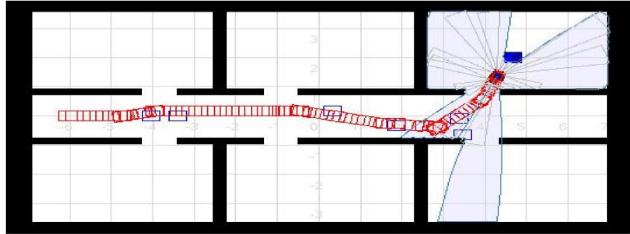
Combined weighted action



Experiments (Training)

20 navigation traces and 20 following traces



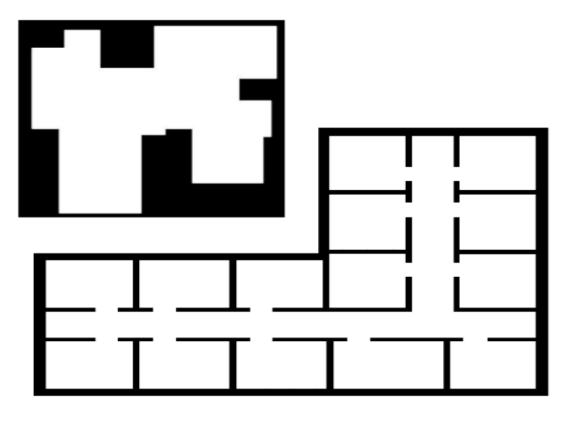


Experiments (Testing)

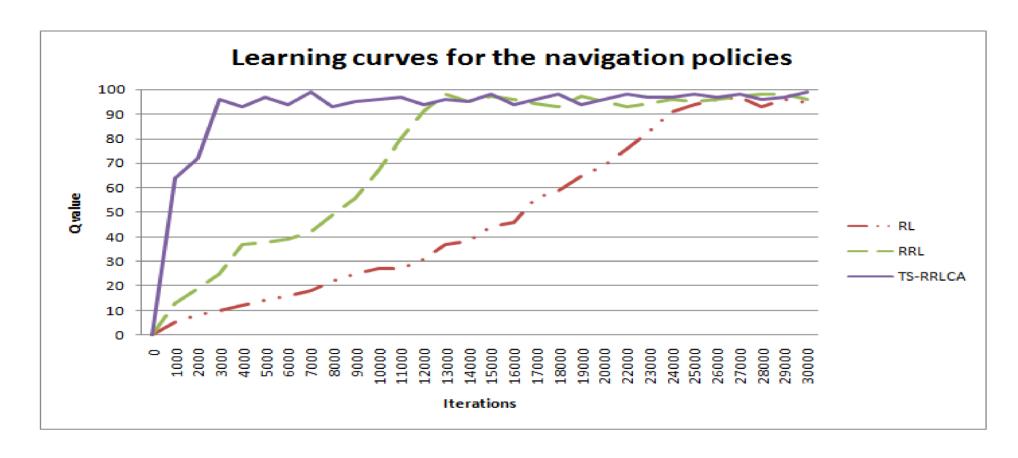
10 navigation and 10 following tasks with different

maps and goals



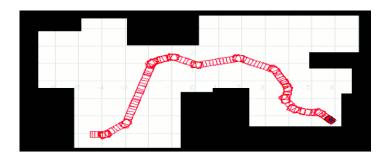


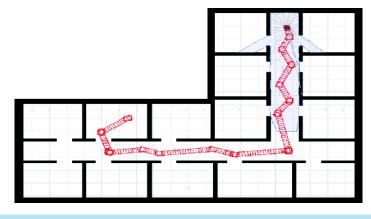
Learning Curves

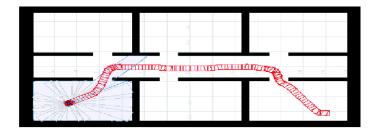


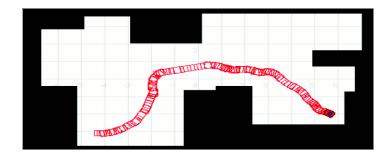
Discrete vs. Continous Policies

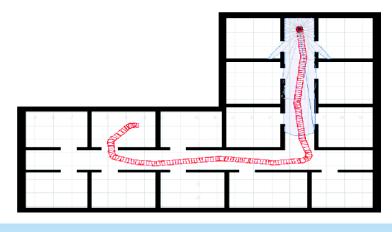






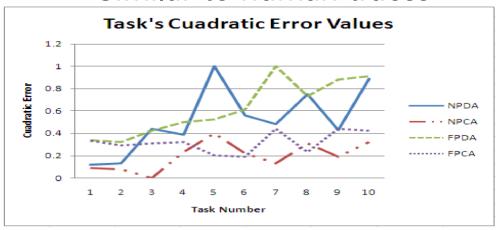




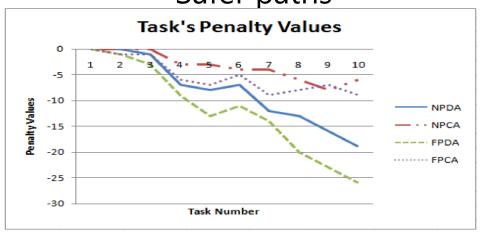


Discrete vs. Continous Policies

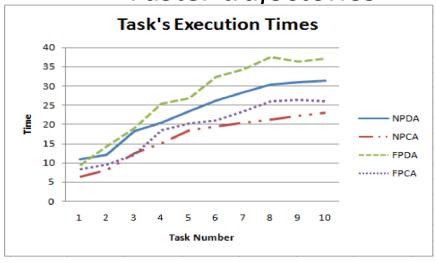
Similar to human traces



Safer paths



Faster trajectories



..... Discrete Navig.

- - – Continuous Navig.

____ Discrete Follow.

Continuous Follow.

(2) The User Instructs (Voice)

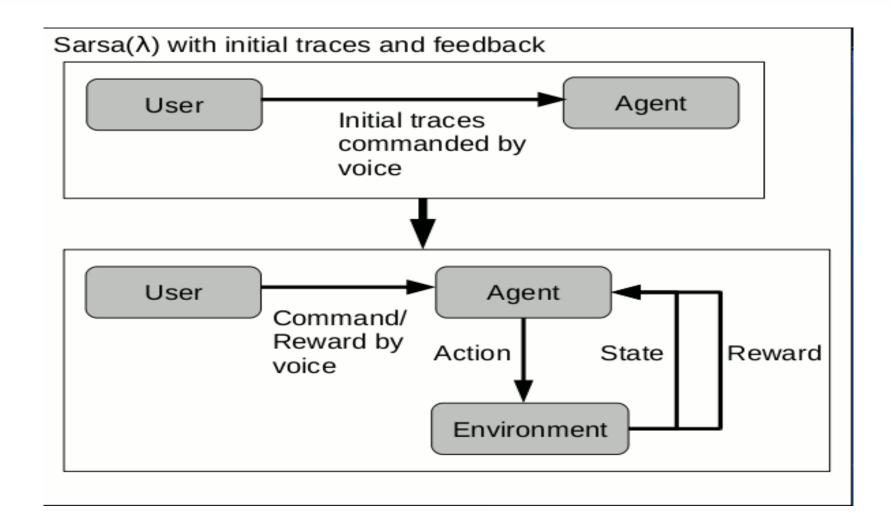
Generate traces with voice commands

New issues:

Errors in the speech-recognition system

Try current policy and provide voice feedback during the learning process (a.k.o. dynamic/on-line reward shaping)

The User Instructs (Voice)



Dynamic Reward Shaping

Feedback can directly change temporarily the reward ($R = R_{rl} + R_{u}$) and the actions suggested by the policy

Other issues:

Delayed feedback

Inconsistent feedback over time

Dynamic Reward Shaping

Some feedback cases:

Continuous (can change policy and create new subgoals)

Sporadic (how can it affect the result?)

Noisy (how robust is the strategy to noise?)

Vocabulary

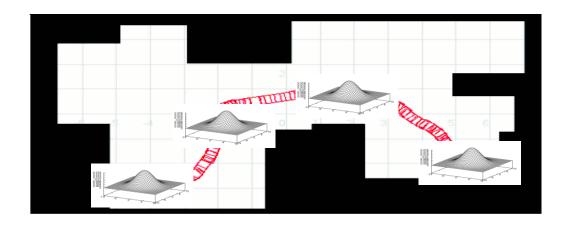
Izquierda	Derecha		
Gira a la izquierda / derecha	Es para el otro lado		
Gira hacia la izquierda / derecha	Avanza		
Hacia tu izquierda / derecha	Adelante		
A tu izquierda / derecha	Sigue avanzando		
A la izquierda / derecha	Sigue caminando		
Hacia la izquierda / derecha	Sigue derecho		
Da vuelta a la izquierda / derecha	Camina derecho		
Ve a la izquierda / derecha	Ve todo derecho		
A mano izquierda / derecha	Ve derecho		
Vuelta a la izquierda / derecha	Ahí derecho		
Ve hacia la izquierda / derecha	Todo derecho		
Dobla a la izquierda / derecha	Síguele		
Dobla hacia la izquierda / derecha	Atrás		
Hacia atrás	Hacia adelante		
Para atrás	Para adelante		
Hey regresa	Mejor regresa		
Regresa			

Hasta ahí	Ya hasta ahí		
Hasta ahí nada mas	Para ahí		
Excelente	Bien		
Así como vas	Como vas		
Tu síguele	Así sigue		
Sigue así	Sí así		
Muy bien	Bien hecho		
Buen trabajo	Vas bien		
Mal	Terrible		
Así no	Muy mal		
Estás mal	Hey para allá no		
Hacia allá no	Para allá no		
Allá no	Ya no hagas eso		
Que no	Que eso no		
Que ahí no	Que así no		
Por ahí no	Ya te equivocaste		
Ya la regaste	No te vayas por ahí		
No era por ahí	hí Por ahí no era		

We used Sphinx3 and Dimex (UNAM) ≈ 250 words

States and Actions

States are incrementally generated from the traces

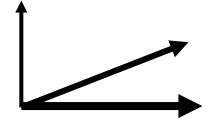


Highly correlated states (Pearson) are considered equal

$$r = \frac{N\Sigma xy - \Sigma x \Sigma y}{(\sqrt{N\Sigma}x^2 - (\Sigma x)^2)(\sqrt{N\Sigma}y^2 - (\Sigma y)^2)}$$

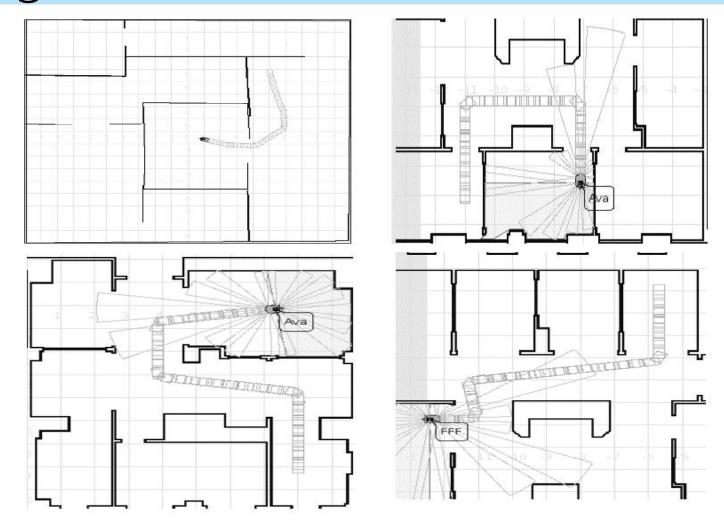
Continuous Actions

We used Sarsa(λ) with discrete actions however the resulting action is a combination of the dominated actions

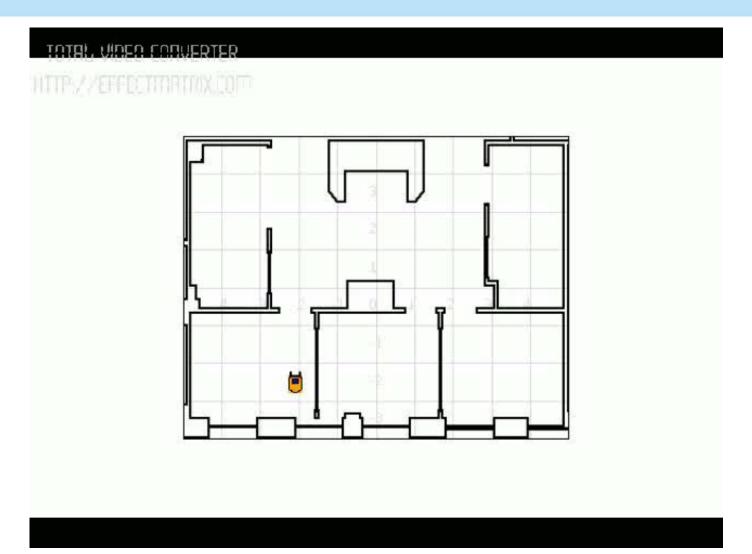


Update Q-values proportionally to the Q values of the used actions

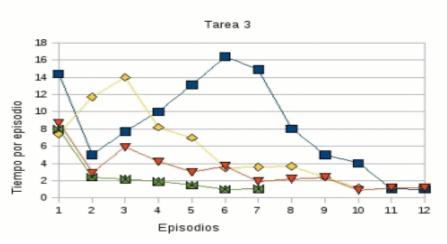
Navigation Tasks

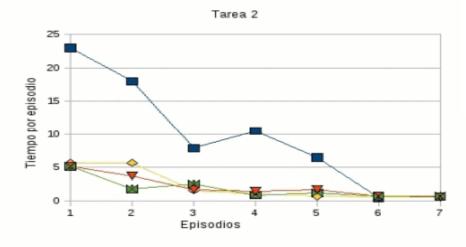


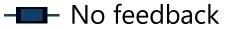
Example Of Initial Trial

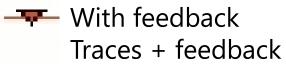












Number of Episodes						Time (min)			
Task	RL	RL+T	RL+ F	RL+T+F	Task	RL R	RL+T	RL+ F	RL+T+F
T1	13	9	9	6	T1	103.93	41.8	19.59	12.856
T2	6	7	7	7	T2	66.4	16.07	15.1	13
T3	12	10	12	7	T3	100.65	62.66	38.2	18.09
T4	7	10	12	11	T4	99.1	31.9	23.43	24.61
Aver.	9.5	9	10	7.75	Aver.	92.54	38.11	24.08	17.13

	Time	Interventions
T2 "nomal feedback"	13	34
T2 Perfect feedback	7.6	39
T2 No feedback	20.51	N/A
T2 50% errors in feedback	66.4	187

(3) The User Shows (Vision)

Generate traces by showing how to do it Transform them to possible robot traces

Learn and adjust with exploration (RL) and online feedback (voice)

New Issues:

Estimate 3D positions from cameras Generate corresponding traces

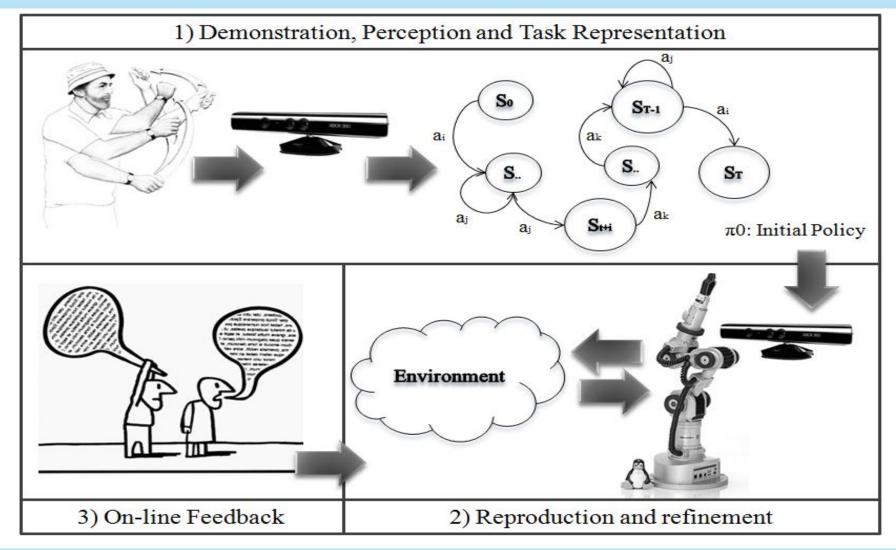
The User Performs The Task

Estimate and track the position of the hand and objects

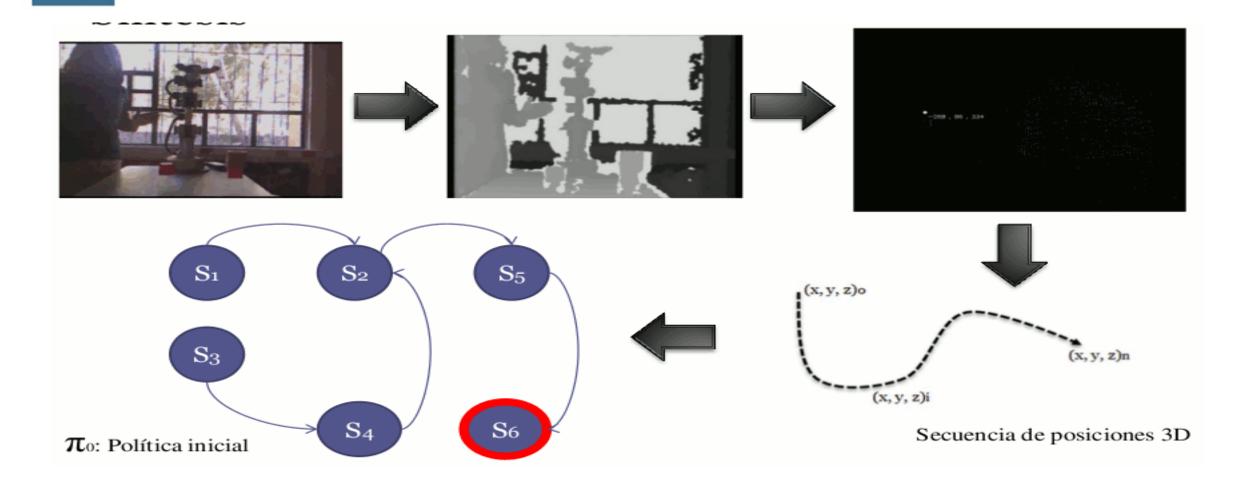
Use a *Kinect*

Representation: relative position and distance between the hand/manipulator and the target object/place

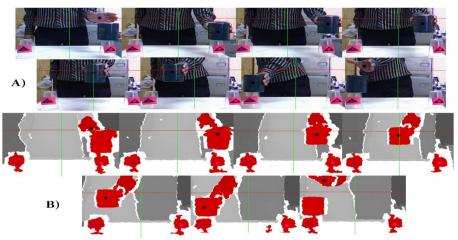
General Learning Framework

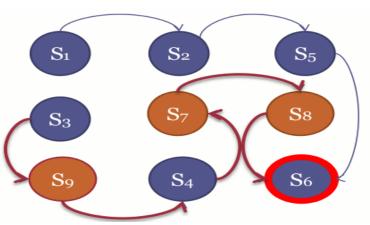


Initial Policy

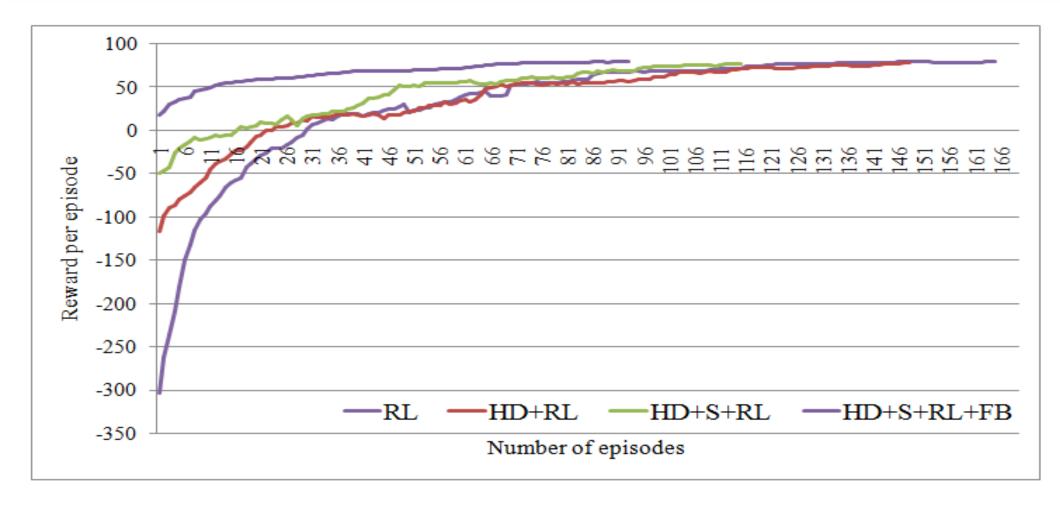


Experimental Setup

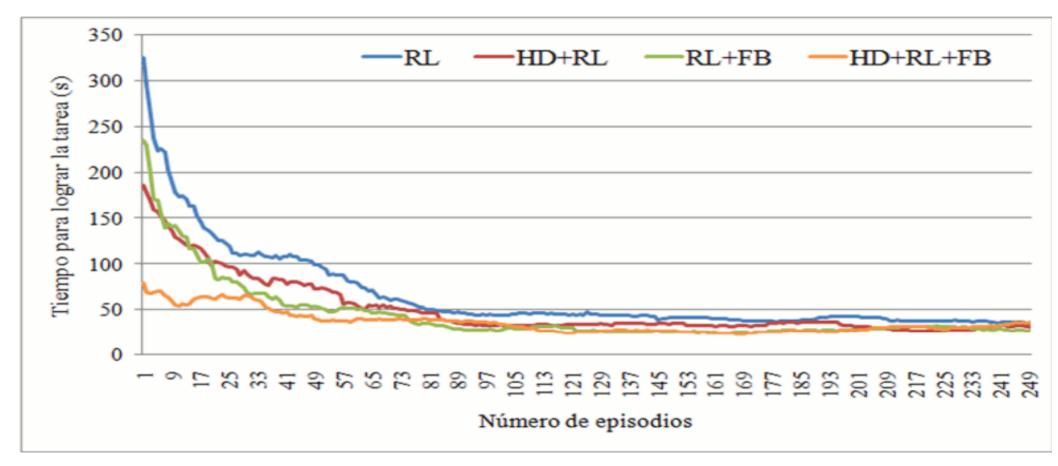




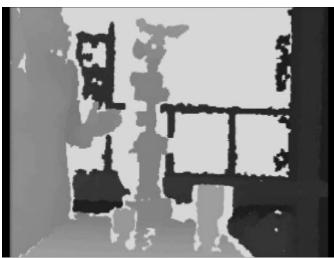
Convergence Results



Convergence Results



Example



Discussion

A relational representation offers more abstracted and natural representation and re-usability of the learned policies

User's traces focus the search space in potentially relevant actions

We loose optimality and completeness (know what to do in every state)

Exploration and voice feedback can help

The inclusion of service robots into society requires flexibility/adaptability from the robots Teaching tasks in a "natural" (manipulate, command or show) way can offer such flexibility

Future Work

Better exploration strategy

Additional user's feedback

More study, tests and formal analysis on feedback during the learning process

Partially observable states

Identify when/how to change the representation

Thanks!

emorales@inaoep.mx

