
Malware Defense:
New Trends and Approaches

Dawn Song

UC Berkeley

Worms
Viruses

Botnets

Trojan Horses

Spyware
Rootkits

Malicious Code: Critical Threat

Growth of New Malicious Code Threats

(source: Symantec)
Period

N
u

m
b

er
 o

f
n

ew
 t

h
re

at
s

Worms
Viruses

Botnets

Trojan Horses

Spyware
Rootkits

Malicious Code: Critical Threat

Outline

•  Malware: Emerging Threats

•  Defense: New Approaches

Malware enters new
landscape as more parts of

the world get connected

Changing Medical Device Landscape

•  More medical devices are
becoming networked

•  Increased software complexity
–  Software plays an increasing role in

device failure
»  2005-2009 (18%) due to software

failure, compared to (6%) in 1980s
•  Medical device hardware and

software is usually a monoculture
within device model

Health Data Connected
Devices

Medical
Device

Smart Insulin Pump

Case Study: AED

The Population of AEDs Has
Increased Significantly Over

the Past 5 Years

Automated External Defibrillator Deployment

A
ED

s
W

or
ld

w
id

e
1,582,691

1996 1998 2000 2002 2004 2006 2008

28,000 adverse event reports in 14 Models recalled 2005-2010.

The case for Software Security Evaluations of Medical Devices [HealthSec’11]

Case Study

•  Cardiac Science G3 Plus model 9390A
•  Analysis

– Manual reverse engineering using IDA Pro
»  MDLink, AEDUpdate and device firmware

– Automatic binary analysis
»  BitBlaze binary analysis infrastructure
»  BitFuzz, the dynamic symbolic execution tool

•  Vulnerabilities discovered
1. AED Firmware - Replacement
2. AEDUpdate - Buffer overflow
3. AEDUpdate - Plain text user credentials
4. MDLink - Weak password scheme

The case for Software Security Evaluations of Medical Devices [HealthSec’11]

Firmware Replacement

•  Firmware update uses
custom CRC to verify
firmware

•  Modified firmware, with
proper CRC, is accepted
by AED and update
software

•  Impact: Arbitrary firmware

DEVICE COMPROMISED
The case for Software Security Evaluations of Medical Devices [HealthSec’11]

AEDUpdate Buffer Overflow

•  During update device
handshake, device
version number
exchanged

•  AEDUpdate improperly
assumes valid input

•  Enables arbitrary code
execution

– Data sent from AED can
be executed as code on
the host PC

The case for Software Security Evaluations of Medical Devices [HealthSec’11]

Malicious Update
Computer

Initial Malicious Firmware Update

AED Infecting Security Officer's Laptop

Malicious Firmware

Safety Officer's
Laptop

 00000000 0442 WORM
WORM

AED
 Software Update

Infected
Device 0

Infected
Device N

(Recalculated)

Malicious Firmware

Request for AED system status check

AED

AED AED AED

AED

Packet corruption
leads to exploit

Firmware
Checksum

Version
Number

Version
String

Maliciously
corrupted data

AED
 Software Update

The case for Software Security Evaluations of Medical Devices [HealthSec’11]

Consumer-grade BCI Devices

•  Price: ≈ 300 USD

What if an EEG gaming app is malicious?

Secretly reading your mind?

BCI as Side-Channel to the Brain
•  Experiment objective:

– Can the signal captured by a consumer-grade EEG device be
used to extract potentially sensitive information from the user?

•  Experiment setup:
–  30 EECS students (28)

»  18 male and 10 female
– Minimal information: did not provide experiment objective
–  Experiments lasted about 45 minutes per participant

»  Each experiment lasted about 90 seconds
•  Flashing of multiple images on the screen

On the Feasibility of Side−Channel Attacks with Brain−Computer Interfaces
[USENIX Security’12]

Experiment Methodology

Signal
Processing/

Classifier

Stimuli Ranking

On the Feasibility of Side−Channel Attacks with Brain−Computer Interfaces
[USENIX Security’12]

Attack Stimuli

Information tested:
•  First digit of PIN
•  Do you know this person?
•  Do you have an account at this bank?
•  What month were you born in?
•  Where do you live?

On the Feasibility of Side−Channel Attacks with Brain−Computer Interfaces
[USENIX Security’12]

Experimental Results

2 4 6 8 10
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
bLogReg passive user
random guess

(a) 1st digit PIN

2 4 6 8 10
20

30

40

50

60

70

80

90

100

position of correct answer
fra

ct
io

n
of

 e
xp

er
im

en
ts

 [%
]

SWLDA
bLogReg
bLogReg passive user
random guess

(b) Debit card

2 4 6 8 10 12 14
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
bLogReg passive user
random guess

(c) Location

2 4 6 8 10 12
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
bLogReg passive user
random guess

(d) Month of birth

2 4 6 8 10
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
random guess

(e) People

2 4 6 8 10
20

30

40

50

60

70

80

90

100

position of correct answer

fra
ct

io
n

of
 e

xp
er

im
en

ts
 [%

]

SWLDA
bLogReg
bLogReg passive user
random guess

(f) ATM machine

Figure 9: Cumulative statistics of the ranking of the correct answer according to the classification result. The faster this
measure converges towards 100%, the better the classifier. One can directly read the confidence intervals as follows:
In more than 20% of the experiments the bLogReg classifier ranked the correct face at the first position. In more than
40% it had the correct face among the first three guesses. Please note that for the passive user, the classifier was trained
on the people experiment and the corresponding curve in Fig. 9(e) would depict the training error.

answer as estimated by the respective classifier. For in-
stance, if the correct answer in the month of birth exper-
iment is ‘April’ and the classifier ranks this month at the
third position in the classification output, then x is 3. The
y-axis is the fraction (in %) of the users having the cor-
rect answer in at most ranking position x. In our exam-
ple with the month of birth, the point (x; y) = (3; 80%)
of the SWLDA classifier means that for 80% of the users
the correct bank was among the first three guesses of
SWLDA. Please note that we truncated the y-axis at 20%
to get a better resolution of the dynamic range.

Overall, one can observe that the attack does not al-
ways reveal the correct information on the first guess.
However, the classifiers perform significantly better than
the random attack. The SWLDA classifier provided the
most accurate estimates, except for the experiment on the
PIN and the debit card.

The correct answer was found by the first guess in
20% of the cases for the experiment with the PIN, the
debit cards, people, and the ATM machine. The location
was exactly guessed for 30% of users, month of birth for
almost 60% and the bank based on the ATM machines
for almost 30%. All classifiers performed consistently
good on the location experiment where the users actively

concentrated by counting the occurrence of the correct
answer. SWLDA performed exceptionally good on the
month of birth experiment, even though this experiment
was carried out without counting.

Relative reduction of entropy In order to quantify the
information leak that the BCI attack provides, we com-
pare the Shannon entropies of guessing the correct an-
swer for the classifiers against the entropy of the random
guess attack.

This measure models the guessing attack as a random
experiment with the random variable X . Depending of
the displayed stimuli, X can take different values. For in-
stance, in the PIN experiment, the set of hypotheses con-
sists of the numbers 0 to 9 and the attack guess would
then take one out of these numbers. Now, let’s assume
we have no other information than the set of hypotheses.
Then we would guess each answer with equal probabil-
ity. This is the random attack. Let the number of possible
answers (the cardinality of the set of hypotheses) be K,
then the entropy of the random attack is log2(K).

More formally, let the ranking of a classifier clf be
a(clf) =

�
a(clf)
1 , ..., a(clf)

K

⇥
, where the first-ranked answer

is a(clf)
1 , the second-ranked answer is a(clf)

2 , and so on. Let

10

On the Feasibility of Side−Channel Attacks with Brain−Computer Interfaces
[USENIX Security’12]

Outline

•  Malware: Emerging Threats

•  Defense: New Approaches

Defenses

Reactive
Approaches

BitBlaze Binary Analysis Infrastructure

Renovo Panorama Minesweeper HookFinder/
HookScout

Detecting:
•  Hidden code
•  Privacy/sensitive data leakage
•  Trigger-based behavior
•  Hooking behavior

DroidBlaze Analysis Infrastructure

Juxtapp IAB-Vul
Detector

Permission-
misuse

Detector

Detecting:
•  Code reuse/repackage
•  In-App Billing Vulnerability
•  Permission misuse
•  Security spec violation

Defenses

Proactive
Approaches

Offensive
Approaches

Reactive
Approaches

Finding Vulnerabilities in Malware

•  Attackers exploit vulnerabilities in benign software

•  Does malware have vulnerabilities?

•  Can we find vulnerabilities in malware?

•  New arsenal to combat malware
– Cleaning hosts
– Malware genealogy
– Botnet infiltration & take-down
– Cyber warfare

Offensive
Approaches

Finding Implementation Vulnerabilities in Malware

•  Decomposition-&-restitching dynamic symbolic execution [BitBlaze]
•  Compare Stitched vs. Vanilla explorations

–  Run both on same malware for 10 hours and find bugs

Name Vulnerability
Type

Encoding
function

Search Time
(Stitched)

Search Time
(Vanilla)

Zbot Null
dereference

checksum 17.8 sec >600 min

Zbot Infinite loop checksum 129.2 sec >600 min
MegaD Process Exit decryption 8.5 sec >600 min
Gheg Null

dereference
weak
decryption

16.6 sec 144.5 sec

Cutwail Heap
Corruption

none 39.4 sec 39.4 sec

Offensive
Approaches

Input Generation via Decomposition and Re-Stitching: Finding Bugs in Malware [CCS’10]

Experimental Results: Bug Persistency

•  Each malware family comprises many binaries over time
–  Packing, functionality changes …

•  Bugs have been present in malware families for long time

Name Number of
Binaries

Bug
reproducibility

Newest Oldest

MegaD 4 ~2 years Feb. 24,
2010

Feb. 22,
2008

Gheg 5 ~9.5 months Nov. 28,
2008

Feb. 6, 2008

Zbot 3 ~6 months Dec. 14,
2009

Jun. 23,
2009

Cutwail 2 ~3 months Nov. 5,
2009

Aug. 3, 2008

Offensive
Approaches

Input Generation via Decomposition and Re-Stitching: Finding Bugs in Malware [CCS’10]

Protocol Model Inference & Finding
Vulnerabilities in Botnet C&C Protocols

(Master)
Server

(Template)
Server

(Botnet
SMTP)
Server

Send
Inputs

?
Botnet Command and Control

Distributed System

Bot
Emulator

Observe
 Outputs

Inference
Engine

Offensive
Approaches

Inference and Analysis of Formal Models of Botnet Command and Control Protocols [CCS’10]

Automatic Protocol Model Inference for MegaD

L*
C&C

Server Response
Prediction

Bot Emulator
Bot Emulator
Bot Emulator
Bot Emulator
Bot Emulator
Bot Emulator
Bot Emulator
Bot Emulator

Tor

Response
Prediction

Inference and Analysis of Formal Models of Botnet Command and Control Protocols [CCS’10]

App 1: Disabling Botnets

Botnet Command & Control
(C&C) Servers

Disable Botnets through Critical Links?

Inference and Analysis of Formal Models of Botnet Command and Control Protocols [CCS’10]

App 1: Disabling Botnets

•  Identify Critical Links

•  Significance
–  Taking down 1 MegaD SMTP

Server

–  Stops bots spam across
multiple MegaD C&C server
groups

–  Validated through
experiment

0 1

12/ 11

2

1/ 6

16

7/ -­‐9/ -­‐

4

1/ 6

17

7/ -­‐9/ -­‐

3

1/ 7

12/ 1 1

1
4

7/ -­‐ 9/ -­‐

5

12/1 1

6

1/ 5

8

7/ -­‐9/ -­‐

1/ 7

1
5

7/ -­‐ 9/ -­‐

7

1/ 5

9

7/ -­‐ 9/ -­‐
12/ 1 1

1

0

7/ -­‐ 9/ -­‐

11

7/ -­‐9/ -­‐

8/ -­‐

12/ 1 1

1

2

1/ 5

8/ -­‐

1

3

1/ 5

8/ -­‐

12/ 1 1

1/ 9

8/ -­‐

1/ 9

8/ -­‐

1/ 10
12/ 1 1

8/ -­‐

8/ -­‐

1/ 7

12/ 11

8/ -­‐

1/ 7

8/ -­‐

1/ 6

12/ 11

8/ -­‐

1/ 6

0 1

12/ 11

2

1/ 6

16

7/ -­‐9/ -­‐

4

1/ 6

17

7/ -­‐9/ -­‐

3

1/ 7

12/ 1 1

1
4

7/ -­‐ 9/ -­‐

5

12/1 1

6

1/ 5

8

7/ -­‐9/ -­‐

1/ 7

1
5

7/ -­‐ 9/ -­‐

7

1/ 5

9

7/ -­‐ 9/ -­‐
12/ 1 1

1

0

7/ -­‐ 9/ -­‐

11

7/ -­‐9/ -­‐

8/ -­‐

12/ 1 1

1

2

1/ 5

8/ -­‐

1

3

1/ 5

8/ -­‐

12/ 1 1

1/ 9

8/ -­‐

1/ 9

8/ -­‐

1/ 10
12/ 1 1

8/ -­‐

8/ -­‐

1/ 7

12/ 1 1

8/ -­‐

1/ 7

8/ -­‐

1/ 6

12/ 1 1

8/ -­‐

1/ 6

0' T E S T :S S 	
 /
	
 S S :T E S T PA S S

NOT IF Y :S S 	
 /
	
 S S :NOT IF Y _R E C V E D

Inference and Analysis of Formal Models of Botnet Command and Control Protocols [CCS’10]

App 2: Identify MegaD SMTP Servers

MegaD’s Fake SMTP Server

Inference and Analysis of Formal Models of Botnet Command and Control Protocols [CCS’10]

31

App 2: Implementation Differences

Fingerprint & Identify MegaD SMTPs in the wild

 Postfix SMTP 2.5.5 MegaD SMTP

Inference and Analysis of Formal Models of Botnet Command and Control Protocols [CCS’10]

32

App 3: Identify Design Flaws

l  Real bot goes through long
red path to obtain spam
templates

l  Fake bot may use shortcut:
0 -> 1, bypassing Master
Server to loot spam
templates

l  Application [Botnet Judo]:

Update spam filtering rules
before spam is sent out

Start

Spamming
State

Inference and Analysis of Formal Models of Botnet Command and Control Protocols [CCS’10]

Defenses

Proactive
Approaches

Offensive
Approaches

Reactive
Approaches

New Security Primitives

•  For building secure systems even when the machine may
be compromised

– Cloud Terminal [USENIX Annual Technical Conf’12]

•  For building secure applications by design
– Context-sensitive auto-sanitization in web templating languages

using type qualifiers [CCS’11]

•  For better security architecture & auditability
–  Privilege separation in HTML5 [USENIX Security’12]

Proactive
Approaches

Goal: Trusted Path into the Cloud
•  How to securely access & interact with cloud applications?

–  E.g., online banking, enterprise apps
•  Quickly switch your PC to a secure operation mode
•  Application provides a normal GUI
•  But, information security does not depend on primary OS

or its software
–  Even if commodity OS is compromised by malware

Cloud Terminal: Secure Access to Sensitive Applications from Untrusted Systems [USENIX ATC’12]

Cloud
Applications

?

Cloud Terminal Architecture

Untrusted OS
Cloud Rendering Engine (CRE)

Application
VM

Application
VM

VNC server

Cloud Terminal protocol
Mutual authentication

Display and input
Remote attestation
Transport security

Hardware and TPM

Microvisor

Untrusted
helper

Dispatcher

VNC server

Cloud
Terminal

client

Secure Thin Terminal (STT)

Encrypted tunnel

Cloud Terminal: Secure Access to Sensitive Applications from Untrusted Systems [USENIX ATC’12]

Advantages over Existing Approaches
Property Red/

Green
VMs

Per-App
VMs

Browser
OS
(Chrome)

VDI & Thin
Client

Flicker Cloud
Terminal

Installable
w/existing
OS

O O O P P P
Attestation O O O O P P
Generic
Apps P P O P O P
Fine-
grained
isolation

O P P O P P
No trust in
host OS P P O O P P
User
interface

any any browser any O any

Mgmt. effort med. high low low low low
TCB size
(LOC)

>1M >1M >1M >1M 250 +
app logic

22K

Cloud Terminal: Secure Access to Sensitive Applications from Untrusted Systems [USENIX ATC’12]

Evaluation: client TCB

Component Lines of code
Microvisor 7.7K
Terminal client 3.0K
Crypto (PolarSSL) 5.5K

Attestation (Flicker) 5.7K
Total 21.9K

Cloud Terminal: Secure Access to Sensitive Applications from Untrusted Systems [USENIX ATC’12]

Evaluation: performance
•  16 core, 64GB server, 670 mi from client
•  Simultaneous clients replay recorded usage

App. Activity Baseline
(ms)

Latency (ms) with # of clients =
150 200 300

Network usage (bytes)
 inbound outbound

Edit Launch 2,844 2,208 2,441 2,553 487,047 3,888

Type a key 30 53 50 54 1,607 346

Move mouse 32 49 59 51 480 138

PDF Launch 1,699 2,093 2,147 2,493 483,219 2,040

Scroll 114 1,270 1,380 1,704 352,358 5,497

Bank Launch 6,911 2,319 2,563

490,149 4,680

New page 1,183 2,610 2,661 415,732 10,939
Gmail Launch 6,936 2,254

--- ---
488,367 3,954

Display msg. 992 2,254 318,300 8,416

Cloud Terminal: Secure Access to Sensitive Applications from Untrusted Systems [USENIX ATC’12]

New Security Primitives

•  For building secure systems even when the machine may
be compromised

– Cloud Terminal [USENIX Annual Technical Conf’12]

•  For building secure applications by design
– Context-sensitive auto-sanitization in web templating languages

using type qualifiers [CCS’11]

•  For better security architecture & auditability
–  Privilege separation in HTML5 [USENIX Security’12]

Proactive
Approaches

Web Vulnerabilities: A Growing Threat

0

1000

2000

3000

4000

5000

6000

7000

2005 2006 2007 2008 2009 2010 2011 2012

N
o.

 o
f

Vu
ln

er
ab

ili
tie

s

Year
Source: Database 2012

Web
Application

Low-level
Code

Can never find & fix all XSS vulnerabilities L

How to build web apps free of XSS vulnerabilities?

An Attack Example (XSS)
http://twitter.com#!alice

http://twitter.com#!alice

n.innerHTML = x;

 x = “”;

	

XSS

An Attack Example (XSS)

http://twitter.com#!

n.innerHTML = x;

 x = “”;

<img src=‘	 ’onerror=bad()..	

XSS

’ onerror=bad()..	

.gif	 ’/>	
JavaScrip

t
Attribute

http://twitter.com#!' onerror=bad()

Key Property: Structure Integrity

<HTML>

<BODY>

<DIV>

src

=

’ onerror=
bad()

	’ onerror=bad()…	
Intended
Structur

e

Actual
Structure

<HTML>

<BODY>

<DIV>

src

=

onerror

bad()

‘’

Structure Integrity Attacks

•  SQL
•  JS & HTML
•  HTTP URLs
•  CSS
•  SVG
•  MIME Types

SQL Injection
XSS
HTTP Parameter Pollution
CSS-based XSS
SVG-based XSS
Content-Sniffing

Web Languages Structure Integrity Attacks

Solution: Templates & Holes

<HTML>

<BODY>

<DIV>

src

=

’ onerror=
bad()

Template
Structure

Hole

	’ onerror=bad()…	

Today’s Predominant Enforcement:
Sanitization

print(“<img	
 src=‘”);	

print(userimg);	

print(“‘>”);	

print(“<img	
 src=‘”);	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

print(Sanitize(userimg));	

print(“‘>”);	

	’ onerror=alert(“XSS”);…	

%E2%80%99%20onerror
%3Dalert(%E2%80%9CXSS%E2%80%9D)

%3B%E2%80%A6%0A	

URL Encode

Example

Challenges:
Getting Sanitization Right

print(“<img	
 src=‘”);	

print(userimg);	

print(“‘>”);	

print(“<img	
 src=‘”);	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

print(Sanitize(userimg));	

print(“‘>”);	

Missing
Sanitization

Buggy
Sanitizers

Incorrect
Sanitizer Choice

Sanitizer
Library

Incorrect Sanitizer Choice

Html Encode URL Encode

 $name $imgLink $name

HTML
Tag

Context

URL
Context

URL PATH
Context

URL
Parameter

Context

HTML
Tag

Context

Attacks Vary By Parsing Contexts!

Incorrect Sanitizer Choice

Does manual sanitization really fail?

6% •  Microsoft shipping .NET
applications
–  400,000 LOC
–  [Saxena et al. CCS’11]

Context-Mismatch
Sanitization 25,209

Our Solution

template ImgRender($imgLink, $name)
{……………}

 $name $imgLink $name

How To Auto-Sanitize Existing
Code?

Html Encode URL Encode Param
Encode

Context-Sensitive
Auto-Sanitization

Fast Auditable Compatible Secure

Context-sensitive auto-sanitization in web templating languages using type qualifiers [CCS’11]

Key Ideas: Context Type Qualifier

•  Context Type Qualifier:
–  "Which contexts is a string safe to be rendered in"

 x:=“<img src='” . $imgLink;

<img src='

$imgLink

y:= UrlEncode ($imgLink)

 x:=“<img src='” . y;

TERMS TYPES

Type Inference To Decide Sanitizer Placement

Context-sensitive auto-sanitization in web templating languages using type qualifiers [CCS’11]

Implementation

•  Implemented in Google Closure Templates

•  Handles Flow-sensitivity
•  Much faster than Runtime Parsing

Adoption

0 1000 2000 3000 4000 5000 6000
of Auto-sanitized Templates in Google production code

Oct’11

Jul’11

In Other Frameworks…

New Security Primitives

•  For building secure systems even when the machine may
be compromised

– Cloud Terminal [USENIX Annual Technical Conf’12]

•  For building secure applications by design
– Context-sensitive auto-sanitization in web templating languages

using type qualifiers [CCS’11]

•  For better security architecture & auditability
–  Privilege separation in HTML5 [USENIX Security’12]

Proactive
Approaches

Entire Web
Application Code

One security principal with
ambient authority(privileges)

awesome screenshot

chrome.tabs.captureVisibleTab	

580KB of code

all data on all websites

580KB of code TCB
(javascript)

The Problem
•  #1: bundling

–  one origin, two applications

Screenshot Component
can save files

(doesn’t need to)

Image Editor
can take screenshots

(doesn’t need to)

Not the exception
19 out of top 20 extensions

exhibited this behavior

The Problem
•  #1: Bundling

– One origin, two applications

•  #2: TCB inflation
– All code runs with full privileges
– Only core application needs to

580KB of TCB
500KB generic libraries

(jquery, jquery-ui, …)

Not the exception
We measured the fraction of

functions requiring privileges

For ~50% of extensions
< 5% of functions
require privileges

Data collected from the Top 50 Chrome Extensions

Data collected from the Top 50 Chrome Extensions

For ~80% of extensions
< 20% of functions
require privileges

Our Solution:
privilege separation

Screenshot
Component Image Editor

Privileged
Parent

Parent proxies
privileged calls
based on a policy.

For example, Image
Editor not allowed
to capture
screenshots. Unbundled

Only the parent
runs privileged

TCB Reduction

Screenshot
Component

Privileged
Parent

User clicked menu
button

Create sandboxed iframe

call captureVisibleTab

TypeError:	
 Cannot	
 read	

property	

'captureVisibleTab'	
 of	

undefined

Forward	
 to	
 SHIM	
 code

Download Application Code

Screenshot
Component

Privileged
Parent

chrome.tabs.
captureVisibleTab

sendToParent
(‘captureVisibleTab’)

Message Listener
chrome.tab.

captureVisibleTab

sendToChild(returnValu
e) Message Listener

Application gets return
value

Seamless Proxying

Policy Code

Shim Code

Image Editor
Component

Privileged
Parent

chrome.tabs.
captureVisibleTab

sendToParent
(‘captureVisibleTab’)

Message Listener

sendToChild(
‘denied’) Message Listener

Application gets
‘denied’

Policy Code

parent invariants

the parent can’t convert
string to code

the parent can’t execute
arbitrary code from the web

the parent is the
only entry point into the

privileged origin

only primitive
data types cross the

privilege boundary

Application Number of
Users

Initial TCB
(KB)

New TCB
(KB)

Lines
Changed

Awesome
Screenshot 802,526 580 16.4 0

SourceKit 14,344 15,000 5.38 13

SQL Buddy 45,419 100 2.67 11

Privilege separation in HTML5
applications shows how applications
can cheaply create arbitrary number of
components.

Our approach utilizes standardized
abstractions already implemented in
modern browsers.

We retrofit applications to demonstrate
TCB reductions.

New Security Primitives

•  For building secure systems even when the machine may
be compromised

– Cloud Terminal [USENIX Annual Technical Conf’12]

•  For building secure applications by design
– Context-sensitive auto-sanitization in web templating languages

using type qualifiers [CCS’11]

•  For better security architecture & auditability
–  Privilege separation in HTML5 [USENIX Security’12]

Proactive
Approaches

Conclusion

Proactive
Approaches

Offensive
Approaches

Reactive
Approaches

Malware enters new landscape as more parts of the world get connected

http://bitblaze.cs.berkeley.edu

http://webblaze.cs.berkeley.edu

dawnsong@cs.berkeley.edu

