RNNLM - Recurrent Neural Network
Language Modeling Toolkit

Tomas Mikolov#!, Stefan Kombrink*?, Anoop Deoras?, Lukas Burget**, Jan “Honza”(vternocky#5

Speech@FIT, Brno University of Technology, Brno, Czech Republic
Yimkolov@it.vutbr.cz, 2konbrink@it.vutbr.cz, *burget@it.vutbr.cz, ®cernocky@it.vutbr.cz

* Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA
3adeoras@ hu. edu

Abstract—We present a freely available open-source toolkit for several setups in [7]. The implementation is simple and easy
training recurrent neural network based language models.ican tg understand.
be easily used to improve existing speech recognition and rolaine Most importantly, recurrent neural networks are very inter

translation systems. Also, it can be used as a baseline fortfure ting f th h point of Vi th llow eftecti
research of advanced language modeling techniques. In theper, esting from the research point of view, as they a

we discuss optimal parameter selection and different modesf ~Processing of sequences and patterns with arbitrary length
functionality. The toolkit, example scripts and basic setps are these models can learn to store past information in the hidde

freely available athttp://rnnl m sourceforge. net/. layer. Recurrent neural networks can have memory, and are

thus an important step forward to overcome the most painful

and often criticized drawback of n-gram models - statistica
Statistical language modeling attracts a lot of attent&s, dependence on only a few previous words.

models of natural languages are an important part of manyin this paper we present an open source and freely available

practical systems. Moreover, it can be estimated that witbolkit for training statistical language models basedemur-

further research progress, language models will beconseclorent neural networks and hash-based maximum entropy mod-

to the human understanding of languages [1] [2], and comls. The toolkit includes techniques for reducing compaiet

pletely new applications will become practically realilmab complexity (classes in the output layer and direct conoesti

Immediately, any significant progress in language modelifgtween input and output layer). It has been designed to

can be utilized in the existing speech recognition andstiesil provide comparable results to the popular toolkit for tiagn

machine translation systems. n-gram models, SRILM [8]. The main goals for the RNNLM
However, the whole research field is struggling for decadésolkit are these:

to overcome very simple, but also effective models based on, promotion of research of advanced language modeling

n-gram frequencies [3] [4]. Many techniques were developed techniques

to beat n-grams, but the improvements came at the cost of easy usage

computational complexity. Moreover, the improvementsever , simple portable code without any dependencies on exter-

often reported for very basic systems, and after applioatio nal libraries

to state-of-the-art setups with n-gram models trained ogehu computational efficiency

data sets, the improvements provided by many techniques V@ this paper we describe how to easily apply RNNLM to

ished. 'I;]his has lead to skepticism among speech recognitigpost any speech recognition or machine translation syste
researchers.

In our previous work, we have compared many well-known Il. RECURRENTNEURAL NETWORK
advanced language modeling techniques, and we found thaThe recurrent neural network architecture used in the ibolk
neural network based language models (NNLM) perform the shown at Figure 1 (it is usually called EIman network, or
best on several standard setups [5]. Models of this type wesienple RNN). The input layer uses the 1-of-N representation
introduced by Bengio [6] about ten years ago. Their maiof the previous wordw(¢) concatenated with the previous state
weaknesses were huge computational complexity, and nafithe hidden layes(t — 1). The neurons in the hidden layer
trivial implementation. Successful training of neuralwetk s(¢) use a sigmoid activation function. The output layegr)
language models require a good choice of hyper-parametéras the same dimensionality &s(t), and after the network
such as learning rate and size of a hidden layer. is trained, it represents the probability distribution bétnext

To help to overcome these basic obstacles, we have decidetdd given the previous word and the state of the hidden layer
to release our toolkit for training recurrent neural networin the previous time step [9]. The class layeft) can be
based language models (RNNLM). We have shown that tbptionally used to reduce the computational complexityhef t
recurrent architecture outperforms the feed-forward ome anodel, at a small cost of accuracy [7]. Training is performed

I. INTRODUCTION, MOTIVATION AND GOALS

on the word error rate or the BLEU score. Additionally, we
support option to generate random sequences of words from
next the model, which can be useful for approximating the RNN
word models by n-gram models, at a cost of memory complex-
ity [15].

last
word

A. Training phase

The input data are expected to be in a simple ASCII text
format, with a space between words and end of line character
at the end of each sentence. After specifying the training
L data set, a vocabulary is automatically constructed, arisl it
. c(t) saved as part of the RNN model file. Note that if one wants
s(t-1) to use limited vocabulary (for example for open-vocabulary
experiments), the text data should be modified outside the
toolkit, by first rewriting all words outside the vocabulatty
<unk> or similar special token.

After the vocabulary is learned, the training phase starts
h(gptionally, the progress can be shown-iflebug 2 option

Fig. 1. Recurrent neural network based language model with classes.

by the standard stochastic gradient descent algorithmtland

malrix W that represents recurrent weights is trained by t IS used). Implicitly, it is expected that some validatiortada

backpropagation through time algorithm (BPTT) [10] are provided using the optiorval i d, to control the number

In the toolkit, we use truncated BPTT - the network is o . .
L o . of the training epochs and the learning rate. However, it is
unfolded in time for a specified amount of time steps. Far

faster training, it is possible to unfold the recurrent parthe also possible to train models without having any validation

network after processing several time steps, which Ieads.cllata; the optior one-i ter can be used for that purpose.

o ;) . i Re model is saved after each completed epoch (or also after
significantly lower computational complexity during traig. : o i N
processing specified amount of words); the training process
Recurrent neural networks seem to be a very good choice . o
: . : can be continued if interrupted.
for modeling sequential data. However, RNNs received muc

skepticism after it was shown that conventional training aB. Test phase
gorithms based on gradient descent suffer from vanishingA]cter the model is trained. it can be evaluated on some
and exploding gradients [11]. This has been the reason w@é '

. . - t data, and perplexity anldgiy probability is displayed
RNNs have been sometimes considered to be difficult to traallg the result. The RNNLM toolkit was designed to provide

sulc c]?sstfutltl]y JUStb?y gr?dlenttdefS(ient_t?]ased mﬁthozs. K results that can be compared to the results given by the
h 1act, the problematic part of algorithms such as bac proEpular SRILM toolkit. We also support an option to linearly

ag"’?“‘_’” through time [10] can be the actual '"_“p'e'“f_‘e”ta“o terpolate the word probabilities given by various models
as it is easy to make a mistake and the algorithm is hard

debua. A dd i f BPTT imol tati o r both RNNLM and SRILM, the optiondebug 2 can be
€bug. A good description ot B 1 1 Implementation can Qgqy g gptain verbose output during the test phase, and usin
found in [12]. Moreover, the training might diverge in som

The stability of the traini be i d by- She- 1 m pr ob switch, the probabilities given by two models
cases. The stability of the training can be Improved by: o pe interpolated. We provide further details in the eXamp

» using double instead of single precision of floating poinicripts at the RNNLM webpage.

r_1ur_n_bers for Weights _ _ For n-best list rescoring, we are usually interested in the
« limiting the maximum gradient to prevent explosion ofropapilities of whole sentences, that are used as a score
grqd|ents o during the re-ranking. The expected input for the RNNLM
« using regularization is a list of sentences to be scored, with a unique identifier

« Updating the recurrent weights in one big update [12] 45 the first token in each hypothesis. The output is a list of
Once the network is trained, the exact values of weights are scores for all sentences. This mode is specified by using the
longer important - we have recently shown that the values ofhbest switch. Example of n-best list input file:
weights can be quantized to several bits without any sigaific 1 WE KNOW

loss of performance [13]. 1 WE DO KNOW
1 VE DONT KNOW
I11. BASIC FUNCTIONALITY 2 1 AM

The toolkit supports several functions, mostly for the bask | SAY
language modeling operations: training RNN LM, training
hash-based maximum entropy model (ME LM) and RNNME
LM (jointly trained RNN and ME models [14]). For evalua- IV. TYPICAL CHOICE OF HYPERPARAMETERS
tion, either perplexity can be computed on some test data, oDue to huge computational complexity of neural network
n-best lists can be rescored to evaluate impact of the mode#&sed language models, successful training of models in

a reasonable time can require some experience, as cerfainthe hash by using the di rect switch (this option
parameter combinations are too expensive to explore. Th@uet increases the memory complexity, not the computationa
exist several possible scenarios, depending on if one wantamplexity) and the order of n-gram features for the ME
to optimize the accuracy of the final model, the speed of tmeodel is specified by di r ect - or der . The computational
training, the speed of the rescoring or the size of the modet®mplexity increases linearly with the order of the ME model
We will briefly mention some useful parameter configurationand for model with order N it is about the same as for RNN
A. Options for the best accuracy model with N hiddgn neurons. Typically, using ME with up
) ; o to 4-gram features is sufficient. Due to the hash-based eatur
To achieve the best possible accuracy, it is recommended;{oe implementation, higher orders might actually degrad
turn off the classes bycl ass 1, and to perform training for e performance if the size of the hash is insufficient. The

as long as any improvement on the validation data is observgh,qvantage of the RNNME architecture is in its high memory
using the switch- mi n-i nprovement 1. Next, the BPTT complexity.

algorithm should run for at least 6 stepdbfptt 6). The size

of the hidden layer should be as large as possible. It is Usefu V. APPLICATION TOASR/MT SYSTEMS

train several models with different random initializatiohthe The toolkit can be easily used for rescoring n-best lists
weights (by using the r and- seed switch) and interpolate from any system that can produce lattices. The n-best lists
the resulting probabilities given by all models together [5 can be extracted from the lattices for example by using the
| attice-tool from SRILM. A typical usage of RNNLM

B. Parameters for average-sized tasks) ’
. . .in an ASR system consists of these steps:
The above parameter choice would be very time consuming)
« train RNN language model(s)

even for small data sets. With 20-50 million of training werd decode utt d \atii
it is better to sacrifice a bit of accuracy for lower compudatl + decode utterances, produce attices
« extract n-best lists from lattices

complexity. The most useful option is to use the classes _ .
(- ¢l ass), with aboutsgrt(|V']) classes, wherd/| is the size ~ ° compute sentence-level scores given by the baseline n-
' ' gram model and RNN model(s)

of the untruncated vocabulary (typically, the amount osts
should be around 300-500). It should be noted that the usef perfo”T‘ weighted linear mterpolanon of log-scores given
of the toolkit is required to specify just the amount of the by various LMs (the weights should be tuned on the
classes, and these are found automatically based on unigram development data) : .
frequencies of words. The BPTT algorithm should run in a * re-rank the n-best lists u;mg the.new LM sc_:ores
block mode, for example by usingbpt t - bl ock 10. One_should_ ensure that the |r_1put lattices are wide enough to
The size of the hidden layer should be set to around 30@Rtain any improvements - this can be verified by measuring
1000 units, using thehi dden switch. With more data, larger the oracle word error rate. Usually, even 20-best list resco
hidden layers are needed. Also, the smaller the vocabusaryNd can provide majority of the achievable improvement, at
the larger the hidden layer should be to ensure that the mo8ggligible computational complexity. On the other hand, fu
has sufficient capacity. The size of the hidden layer affébas 'attice rescoring can be performed by constructing fullest
performance severely; it can be useful to train several risoddiSts, as each lattice contains a finite amount of uniquespath
in parallel, with different sizes of the hidden layers, satth However, such approach is computationally complex, and a
it can be estimated how much performance can be gainedB§re effective approach for lattice rescoring with RNNLM is

using larger hidden layer. presented in [16], together with a freely available tool
A self-contained example demonstrating RNN rescoring on
C. Parameters for very large data sets an average-sized Wall Street Journal ASR task using a Kaldi

For data sets with 100-1000 million of words, it is stillspeech recognition toolkit is provided in the download isect
possible to train RNN models with a small hidden layer ianderhtt p: // r nnl m sour cef or ge. net ..
a reasonable time. However, this choice severely degradeg\lternatively, one can approximate the RNN language
the final performance, as networks trained on large amoumt®del by an n-gram model. This can be accomplished by
of data with small hidden layers have insufficient capacitpllowing these steps:
to store information. In our previous work, it proved to be , train RNN language model

very beneficial to train RNN model jointly with a maximum , generate large amount of random sentences from the
entropy model (which can be seen as a weight matrix between RNN model

the input and the output layers in the original RNN model). , puild n-gram model based on the random sentences
We denote this architecture as RNNME [14] and it should be . interpo|ate the approximated n-gram model with the
noted that it performs very differently than just interpida baseline n-gram model

of RNN and ME models - the main difference is that both « decode utterances with the new n-gram model

models are trained jointly, so that the RNN model can focys,ig approach has the advantage that we do not need any

on discovering complementary information to the ME model\N (M rescoring code in the system. This comes at a cost of
A hash-based implementation of ME can be enabled by

specifying the amount of parameters that will be reservedthttp:/iwww.clsp.jhu.edutadeoras/HomePage/CodRelease.htm|

additional memory complexity (it is needed to generatedarg(3]
amount of random sentences) and by using the approximatio4]
in the usual cases it is possible to achieve only about 20%-
40% of the improvement that can be achieved by the full
RNNLM rescoring. We describe this technique more closely®!
in [15] [17].

6
VI. CONCLUSION AND FUTURE WORK el

The presented toolkit for training RNN language models calﬁ]
be used to improve existing systems for speech recognitidn a
machine translation. We have designed the toolkit to belgimp
to use and to install - it is written in simple C/C++ code and®!
does not depend on any external libraries (such as BLAS)
The main motivation for releasing the toolkit is to promote
research of advanced language modeling techniques - desHié]
significant research effort during the last three decadhesnt
grams are still considered to be the state of the art tecleniqu
and we hope to change this in the future. (11]

We have previously shown that the RNN models are signifi-
cantly better than n-grams for speech recognition, andttieat [12]
improvements are increasing with more training data. Thl[lﬁ]
from the practical point of view, the main problem is to
perform fast training of these models on very large corpora.
Despite its simple design, the RNNLM toolkit can be useld?!
to train very good RNN language models in a few days on
corpora with hundreds of million of words. [15]

Future work might focus on incremental improvements, ie.
parallelization of the training algorithm [18], trainind BNN 14
on a GPU [19], optimized rescoring [16], decreasing memory
complexity of the RNNME architecture [20], compression o
RNNLMs [13]. However, we also hope that the toolkit will
boost research of language models, and will bring into attejas]
tion some very interesting research problems and questi
- whether the language can be learned unsupervisedly from
raw textual data, the need for memory in models that procegg]
sequential data, questionable usefulness of linguistmmkn
edge in statistical language modeling, training of advdnce
RNN architectures that can discover long-range reguéariti
etc. The strategy 'more data is better’ has been dominant in
the statistical language modeling (and in the automatiecpe
recognition and machine translation in general) for quitee
time; however, by following it, we do not seem to get any
closer to human-level performance.

ACKNOWLEDGMENT

This work was partly supported by Technology Agency of
the Czech Republic grant No. TA01011328, Czech Ministry
of Education project No. MSM0021630528, Grant Agency
of Czech Republic project No. 102/08/0707, and by Czech
Ministry of Trade and Commerce project No. FR-TI1/034.
Anoop Deoras was partly funded by HLT-COE Johns Hopkins
University.

REFERENCES

[1] J. T. Goodman, “A Bit of Progress in Language Modeling éixted
Version,” Microsoft Research, Tech. Rep. MSR-TR-2001-2@01.
[2] M. Hutter, “The Human knowledge compression prize,” @00

F. Jelinek, “Up From Trigrams! The struggle for improvéahguage
models,” inProceedings of Eurospeech, 1991.

R. Rosenfeld, “Two decades of statistical language riogewhere do
we go from here?Proceedings of the IEEE, vol. 88, pp. 1270-1278,
2000.

T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and Lernocky,
“Empirical evaluation and combination of advanced languawdeling
techniques,” inProceedings of Interspeech, 2011.

Y. Bengio, R. Ducharme, P. Vincerdgt al., “A neural probabilistic
language model,Journal of Machine Learning Research, vol. 3, pp.
1137-1155, 2003. .

T. Mikolov, S. Kombrink, L. Burget, JCernocky, and S. Khudanpur,
“Extensions of recurrent neural network language model,Pioceed-
ings of ICASSP, 2011.

A. Stolcke, “SRILM — an extensible language modeling lk@tg§ in
Proceedings of ICSLP, 2002. .

T. Mikolov, M. Karafiat, L. Burget, J.Cernocky, and S. Khudanpur,
“Recurrent neural network based language model,Pioceedings of
Interspeech, 2010.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Les internal
representations by error propagatioiVit Press Computational Models
Of Cognition And Perception Series, pp. 318-362, 1986.

Y. Bengio, P. Simard, and P. Frasconi, “Learning loag¥t dependencies
with gradient descent is difficult [EEE transactions on neural networks,
vol. 5, pp. 157-166, 1994.

M. Bodén, “A guide to recurrent neural networks and kgropagation,”
in In the Dallas project, SCS Technical Report T2002:03, SICS, 2002.
T. Mikolov, I. Sutskever, A. Deoras, H. S. Le, S. Komikinand
J. Cernocky, “Compression of Language Models Using Subwoedrill
Networks,” in Submitted to ICASSP, 2012. .

T. Mikolov, A. Deoras, D. Povey, L. Burget, and Gernocky, “Strate-
gies for Training Large Scale Neural Network Language Msflaéh
Accepted to ASRU, 2011.

A. Deoras, T. Mikolov, S. Kombrink, M. Karafiat, and S.hidan-
pur, “Variational Approximation of Long-Span Language Mtsl for
LVCSR,” in Proceedings of ICASSP, 2011.

A. Deoras, T. Mikolov, and K. Church, “Fast Rescoringatgy to
Capture Long Distance Dependencies,Pitoceedings of EMNLP, 2011.

7] S. Kombrink, T. Mikolov, M. Karafiat, and L. Burget, “Rarrent

Neural Network based Language Modeling in Meeting Recagnit
in Proceedings of Interspeech, 2011.

H. Schwenk, “Continuous space language modeBximput. Speech
Lang., vol. 21, pp. 492-518, July 2007.

I. Sutskever, J. Martens, and G. Hinton, “Generatingt Tath Recurrent
Neural Networks,” inProceedings of ICML, 2011.

P. Xu, S. Khudanpur, and A. Gunawardana, “Randomizeckiiam
Entropy Language Models,” iAccepted to ASRU, 2011.

