
RNNLM - Recurrent Neural Network
Language Modeling Toolkit

Tomáš Mikolov#1, Stefan Kombrink#2, Anoop Deoras∗3, Lukáš Burget#4, Jan “Honza”Černocký#5

Speech@FIT, Brno University of Technology, Brno, Czech Republic
1 imikolov@fit.vutbr.cz, 2 kombrink@fit.vutbr.cz, 4 burget@fit.vutbr.cz, 5 cernocky@fit.vutbr.cz

∗ Center for Language and Speech Processing, Johns Hopkins University, Baltimore, MD, USA
3 adeoras@jhu.edu

Abstract—We present a freely available open-source toolkit for
training recurrent neural network based language models. It can
be easily used to improve existing speech recognition and machine
translation systems. Also, it can be used as a baseline for future
research of advanced language modeling techniques. In the paper,
we discuss optimal parameter selection and different modesof
functionality. The toolkit, example scripts and basic setups are
freely available at http://rnnlm.sourceforge.net/.

I. I NTRODUCTION, MOTIVATION AND GOALS

Statistical language modeling attracts a lot of attention,as
models of natural languages are an important part of many
practical systems. Moreover, it can be estimated that with
further research progress, language models will become closer
to the human understanding of languages [1] [2], and com-
pletely new applications will become practically realizable.
Immediately, any significant progress in language modeling
can be utilized in the existing speech recognition and statistical
machine translation systems.

However, the whole research field is struggling for decades
to overcome very simple, but also effective models based on
n-gram frequencies [3] [4]. Many techniques were developed
to beat n-grams, but the improvements came at the cost of
computational complexity. Moreover, the improvements were
often reported for very basic systems, and after application
to state-of-the-art setups with n-gram models trained on huge
data sets, the improvements provided by many techniques van-
ished. This has lead to skepticism among speech recognition
researchers.

In our previous work, we have compared many well-known
advanced language modeling techniques, and we found that
neural network based language models (NNLM) perform the
best on several standard setups [5]. Models of this type were
introduced by Bengio [6] about ten years ago. Their main
weaknesses were huge computational complexity, and non-
trivial implementation. Successful training of neural network
language models require a good choice of hyper-parameters,
such as learning rate and size of a hidden layer.

To help to overcome these basic obstacles, we have decided
to release our toolkit for training recurrent neural network
based language models (RNNLM). We have shown that the
recurrent architecture outperforms the feed-forward one on

several setups in [7]. The implementation is simple and easy
to understand.

Most importantly, recurrent neural networks are very inter-
esting from the research point of view, as they allow effective
processing of sequences and patterns with arbitrary length-
these models can learn to store past information in the hidden
layer. Recurrent neural networks can have memory, and are
thus an important step forward to overcome the most painful
and often criticized drawback of n-gram models - statistical
dependence on only a few previous words.

In this paper we present an open source and freely available
toolkit for training statistical language models based or recur-
rent neural networks and hash-based maximum entropy mod-
els. The toolkit includes techniques for reducing computational
complexity (classes in the output layer and direct connections
between input and output layer). It has been designed to
provide comparable results to the popular toolkit for training
n-gram models, SRILM [8]. The main goals for the RNNLM
toolkit are these:

• promotion of research of advanced language modeling
techniques

• easy usage
• simple portable code without any dependencies on exter-

nal libraries
• computational efficiency

In this paper we describe how to easily apply RNNLM to
almost any speech recognition or machine translation system.

II. RECURRENTNEURAL NETWORK

The recurrent neural network architecture used in the toolkit
is shown at Figure 1 (it is usually called Elman network, or
simple RNN). The input layer uses the 1-of-N representation
of the previous wordw(t) concatenated with the previous state
of the hidden layers(t− 1). The neurons in the hidden layer
s(t) use a sigmoid activation function. The output layery(t)
has the same dimensionality asw(t), and after the network
is trained, it represents the probability distribution of the next
word given the previous word and the state of the hidden layer
in the previous time step [9]. The class layerc(t) can be
optionally used to reduce the computational complexity of the
model, at a small cost of accuracy [7]. Training is performed

s(t-1)

w(t)

s(t)

y(t)

c(t)

last

word
U V

C

W

next

word

Fig. 1. Recurrent neural network based language model with classes.

by the standard stochastic gradient descent algorithm, andthe
matrix W that represents recurrent weights is trained by the
backpropagation through time algorithm (BPTT) [10].

In the toolkit, we use truncated BPTT - the network is
unfolded in time for a specified amount of time steps. For
faster training, it is possible to unfold the recurrent partof the
network after processing several time steps, which leads to
significantly lower computational complexity during training.

Recurrent neural networks seem to be a very good choice
for modeling sequential data. However, RNNs received much
skepticism after it was shown that conventional training al-
gorithms based on gradient descent suffer from vanishing
and exploding gradients [11]. This has been the reason why
RNNs have been sometimes considered to be difficult to train
successfully just by gradient descent based methods.

In fact, the problematic part of algorithms such as backprop-
agation through time [10] can be the actual implementation,
as it is easy to make a mistake and the algorithm is hard to
debug. A good description of BPTT implementation can be
found in [12]. Moreover, the training might diverge in some
cases. The stability of the training can be improved by:

• using double instead of single precision of floating point
numbers for weights

• limiting the maximum gradient to prevent explosion of
gradients

• using regularization
• updating the recurrent weights in one big update [12]

Once the network is trained, the exact values of weights are no
longer important - we have recently shown that the values of
weights can be quantized to several bits without any significant
loss of performance [13].

III. B ASIC FUNCTIONALITY

The toolkit supports several functions, mostly for the basic
language modeling operations: training RNN LM, training
hash-based maximum entropy model (ME LM) and RNNME
LM (jointly trained RNN and ME models [14]). For evalua-
tion, either perplexity can be computed on some test data, or
n-best lists can be rescored to evaluate impact of the models

on the word error rate or the BLEU score. Additionally, we
support option to generate random sequences of words from
the model, which can be useful for approximating the RNN
models by n-gram models, at a cost of memory complex-
ity [15].

A. Training phase

The input data are expected to be in a simple ASCII text
format, with a space between words and end of line character
at the end of each sentence. After specifying the training
data set, a vocabulary is automatically constructed, and itis
saved as part of the RNN model file. Note that if one wants
to use limited vocabulary (for example for open-vocabulary
experiments), the text data should be modified outside the
toolkit, by first rewriting all words outside the vocabularyto
<unk> or similar special token.

After the vocabulary is learned, the training phase starts
(optionally, the progress can be shown if-debug 2 option
is used). Implicitly, it is expected that some validation data
are provided using the option-valid, to control the number
of the training epochs and the learning rate. However, it is
also possible to train models without having any validation
data; the option-one-iter can be used for that purpose.
The model is saved after each completed epoch (or also after
processing specified amount of words); the training process
can be continued if interrupted.

B. Test phase

After the model is trained, it can be evaluated on some
test data, and perplexity andlog10 probability is displayed
as the result. The RNNLM toolkit was designed to provide
results that can be compared to the results given by the
popular SRILM toolkit. We also support an option to linearly
interpolate the word probabilities given by various models.
For both RNNLM and SRILM, the option-debug 2 can be
used to obtain verbose output during the test phase, and using
the-lm-prob switch, the probabilities given by two models
can be interpolated. We provide further details in the example
scripts at the RNNLM webpage.

For n-best list rescoring, we are usually interested in the
probabilities of whole sentences, that are used as a score
during the re-ranking. The expected input for the RNNLM
is a list of sentences to be scored, with a unique identifier
as the first token in each hypothesis. The output is a list of
scores for all sentences. This mode is specified by using the
-nbest switch. Example of n-best list input file:
1 WE KNOW
1 WE DO KNOW
1 WE DONT KNOW
2 I AM
2 I SAY

IV. T YPICAL CHOICE OF HYPER-PARAMETERS

Due to huge computational complexity of neural network
based language models, successful training of models in

a reasonable time can require some experience, as certain
parameter combinations are too expensive to explore. There
exist several possible scenarios, depending on if one wants
to optimize the accuracy of the final model, the speed of the
training, the speed of the rescoring or the size of the models.
We will briefly mention some useful parameter configurations.

A. Options for the best accuracy

To achieve the best possible accuracy, it is recommended to
turn off the classes by-class 1, and to perform training for
as long as any improvement on the validation data is observed,
using the switch-min-improvement 1. Next, the BPTT
algorithm should run for at least 6 steps (-bptt 6). The size
of the hidden layer should be as large as possible. It is useful to
train several models with different random initializationof the
weights (by using the-rand-seed switch) and interpolate
the resulting probabilities given by all models together [5].

B. Parameters for average-sized tasks

The above parameter choice would be very time consuming
even for small data sets. With 20-50 million of training words,
it is better to sacrifice a bit of accuracy for lower computational
complexity. The most useful option is to use the classes
(-class), with aboutsqrt(|V |) classes, where|V | is the size
of the untruncated vocabulary (typically, the amount of classes
should be around 300-500). It should be noted that the user
of the toolkit is required to specify just the amount of the
classes, and these are found automatically based on unigram
frequencies of words. The BPTT algorithm should run in a
block mode, for example by using-bptt-block 10.

The size of the hidden layer should be set to around 300-
1000 units, using the-hidden switch. With more data, larger
hidden layers are needed. Also, the smaller the vocabulary is,
the larger the hidden layer should be to ensure that the model
has sufficient capacity. The size of the hidden layer affectsthe
performance severely; it can be useful to train several models
in parallel, with different sizes of the hidden layers, so that
it can be estimated how much performance can be gained by
using larger hidden layer.

C. Parameters for very large data sets

For data sets with 100-1000 million of words, it is still
possible to train RNN models with a small hidden layer in
a reasonable time. However, this choice severely degrades
the final performance, as networks trained on large amounts
of data with small hidden layers have insufficient capacity
to store information. In our previous work, it proved to be
very beneficial to train RNN model jointly with a maximum
entropy model (which can be seen as a weight matrix between
the input and the output layers in the original RNN model).
We denote this architecture as RNNME [14] and it should be
noted that it performs very differently than just interpolation
of RNN and ME models - the main difference is that both
models are trained jointly, so that the RNN model can focus
on discovering complementary information to the ME model.

A hash-based implementation of ME can be enabled by
specifying the amount of parameters that will be reserved

for the hash by using the-direct switch (this option
just increases the memory complexity, not the computational
complexity) and the order of n-gram features for the ME
model is specified by-direct-order. The computational
complexity increases linearly with the order of the ME model,
and for model with order N it is about the same as for RNN
model with N hidden neurons. Typically, using ME with up
to 4-gram features is sufficient. Due to the hash-based nature
of the implementation, higher orders might actually degrade
the performance if the size of the hash is insufficient. The
disadvantage of the RNNME architecture is in its high memory
complexity.

V. A PPLICATION TO ASR/MT SYSTEMS

The toolkit can be easily used for rescoring n-best lists
from any system that can produce lattices. The n-best lists
can be extracted from the lattices for example by using the
lattice-tool from SRILM. A typical usage of RNNLM
in an ASR system consists of these steps:

• train RNN language model(s)
• decode utterances, produce lattices
• extract n-best lists from lattices
• compute sentence-level scores given by the baseline n-

gram model and RNN model(s)
• perform weighted linear interpolation of log-scores given

by various LMs (the weights should be tuned on the
development data)

• re-rank the n-best lists using the new LM scores
One should ensure that the input lattices are wide enough to
obtain any improvements - this can be verified by measuring
the oracle word error rate. Usually, even 20-best list rescor-
ing can provide majority of the achievable improvement, at
negligible computational complexity. On the other hand, full
lattice rescoring can be performed by constructing full n-best
lists, as each lattice contains a finite amount of unique paths.
However, such approach is computationally complex, and a
more effective approach for lattice rescoring with RNNLM is
presented in [16], together with a freely available tool1.

A self-contained example demonstrating RNN rescoring on
an average-sized Wall Street Journal ASR task using a Kaldi
speech recognition toolkit is provided in the download section
underhttp://rnnlm.sourceforge.net.

Alternatively, one can approximate the RNN language
model by an n-gram model. This can be accomplished by
following these steps:

• train RNN language model
• generate large amount of random sentences from the

RNN model
• build n-gram model based on the random sentences
• interpolate the approximated n-gram model with the

baseline n-gram model
• decode utterances with the new n-gram model

This approach has the advantage that we do not need any
RNNLM rescoring code in the system. This comes at a cost of

1http://www.clsp.jhu.edu/∼adeoras/HomePage/CodeRelease.html

additional memory complexity (it is needed to generate large
amount of random sentences) and by using the approximation,
in the usual cases it is possible to achieve only about 20%-
40% of the improvement that can be achieved by the full
RNNLM rescoring. We describe this technique more closely
in [15] [17].

VI. CONCLUSION AND FUTURE WORK

The presented toolkit for training RNN language models can
be used to improve existing systems for speech recognition and
machine translation. We have designed the toolkit to be simple
to use and to install - it is written in simple C/C++ code and
does not depend on any external libraries (such as BLAS).
The main motivation for releasing the toolkit is to promote
research of advanced language modeling techniques - despite
significant research effort during the last three decades, the n-
grams are still considered to be the state of the art technique,
and we hope to change this in the future.

We have previously shown that the RNN models are signifi-
cantly better than n-grams for speech recognition, and thatthe
improvements are increasing with more training data. Thus
from the practical point of view, the main problem is to
perform fast training of these models on very large corpora.
Despite its simple design, the RNNLM toolkit can be used
to train very good RNN language models in a few days on
corpora with hundreds of million of words.

Future work might focus on incremental improvements, ie.
parallelization of the training algorithm [18], training of RNN
on a GPU [19], optimized rescoring [16], decreasing memory
complexity of the RNNME architecture [20], compression of
RNNLMs [13]. However, we also hope that the toolkit will
boost research of language models, and will bring into atten-
tion some very interesting research problems and questions
- whether the language can be learned unsupervisedly from
raw textual data, the need for memory in models that process
sequential data, questionable usefulness of linguistic knowl-
edge in statistical language modeling, training of advanced
RNN architectures that can discover long-range regularities
etc. The strategy ’more data is better’ has been dominant in
the statistical language modeling (and in the automatic speech
recognition and machine translation in general) for quite some
time; however, by following it, we do not seem to get any
closer to human-level performance.

ACKNOWLEDGMENT

This work was partly supported by Technology Agency of
the Czech Republic grant No. TA01011328, Czech Ministry
of Education project No. MSM0021630528, Grant Agency
of Czech Republic project No. 102/08/0707, and by Czech
Ministry of Trade and Commerce project No. FR-TI1/034.
Anoop Deoras was partly funded by HLT-COE Johns Hopkins
University.

REFERENCES

[1] J. T. Goodman, “A Bit of Progress in Language Modeling Extended
Version,” Microsoft Research, Tech. Rep. MSR-TR-2001-72,2001.

[2] M. Hutter, “The Human knowledge compression prize,” 2006.

[3] F. Jelinek, “Up From Trigrams! The struggle for improvedlanguage
models,” inProceedings of Eurospeech, 1991.

[4] R. Rosenfeld, “Two decades of statistical language modeling: where do
we go from here?”Proceedings of the IEEE, vol. 88, pp. 1270–1278,
2000.

[5] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J.̌Cernocký,
“Empirical evaluation and combination of advanced language modeling
techniques,” inProceedings of Interspeech, 2011.

[6] Y. Bengio, R. Ducharme, P. Vincentet al., “A neural probabilistic
language model,”Journal of Machine Learning Research, vol. 3, pp.
1137–1155, 2003.

[7] T. Mikolov, S. Kombrink, L. Burget, J.Černocký, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in Proceed-
ings of ICASSP, 2011.

[8] A. Stolcke, “SRILM – an extensible language modeling toolkit,” in
Proceedings of ICSLP, 2002.

[9] T. Mikolov, M. Karafiát, L. Burget, J.Černocký, and S. Khudanpur,
“Recurrent neural network based language model,” inProceedings of
Interspeech, 2010.

[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,”Mit Press Computational Models
Of Cognition And Perception Series, pp. 318–362, 1986.

[11] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult.”IEEE transactions on neural networks,
vol. 5, pp. 157–166, 1994.

[12] M. Bodén, “A guide to recurrent neural networks and backpropagation,”
in In the Dallas project, SICS Technical Report T2002:03, SICS, 2002.

[13] T. Mikolov, I. Sutskever, A. Deoras, H. S. Le, S. Kombrink, and
J. Černocký, “Compression of Language Models Using Subword Neural
Networks,” in Submitted to ICASSP, 2012.

[14] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J.Černocký, “Strate-
gies for Training Large Scale Neural Network Language Models,” in
Accepted to ASRU, 2011.

[15] A. Deoras, T. Mikolov, S. Kombrink, M. Karafiát, and S. Khudan-
pur, “Variational Approximation of Long-Span Language Models for
LVCSR,” in Proceedings of ICASSP, 2011.

[16] A. Deoras, T. Mikolov, and K. Church, “Fast Rescoring Strategy to
Capture Long Distance Dependencies,” inProceedings of EMNLP, 2011.

[17] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, “Recurrent
Neural Network based Language Modeling in Meeting Recognition,”
in Proceedings of Interspeech, 2011.

[18] H. Schwenk, “Continuous space language models,”Comput. Speech
Lang., vol. 21, pp. 492–518, July 2007.

[19] I. Sutskever, J. Martens, and G. Hinton, “Generating Text with Recurrent
Neural Networks,” inProceedings of ICML, 2011.

[20] P. Xu, S. Khudanpur, and A. Gunawardana, “Randomized Maximum
Entropy Language Models,” inAccepted to ASRU, 2011.

