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ABSTRACT

We consider the setting of a Semantic Web database, containing
both explicit data encoded in RDF triples, and implicit data, im-
plied by the RDF semantics. Based on a query workload, we ad-
dress the problem of selecting a set of views to be materialized in
the database, minimizing a combination of query processing, view
storage, and view maintenance costs. Starting from an existing rela-
tional view selection method, we devise new algorithms for recom-
mending view sets, and show that they scale significantly beyond
the existing relational ones when adapted to the RDF context. To
account for implicit triples in query answers, we propose a novel
RDF query reformulation algorithm and an innovative way of in-
corporating it into view selection in order to avoid a combinatorial
explosion in the complexity of the selection process. The interest
of our techniques is demonstrated through a set of experiments.

1. INTRODUCTION
A key ingredient for the Semantic Web vision [4] is a data format

for describing items from the real and digital world in a machine-
exploitable way. The W3C’s resource description framework (RDF,
in short [26]) is a leading candidate for this role.

At a first look, querying RDF resembles querying relational data.
Indeed, at the core of the W3C’s SPARQL query language for
RDF [27] lies conjunctive relational-style querying. There are,
however, several important differences in the data model. First, an
RDF data set is a single large set of triples, in contrast with the typ-
ical relational database featuring many relations with varying num-
bers of attributes. Second, RDF triples may feature blank nodes,
standing for unknown constants or URIs; an RDF database may,
for instance, state that the author of X is Jane while the date of X
is 4/1/2011, for a given, unknown resource X . This contrasts with
standard relational databases where all attribute values are either
constants or null. Finally, in typical relational databases, all data
is explicit, whereas the semantics of RDF entails a set of implicit

triples which must be reflected in query answers. One important
source of implicit triples follows from the use of an (optional) RDF
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Schema (or RDFS, in short [26]), to enhance the descriptive power
of an RDF data set. For instance, assume the RDF database con-
tains the fact that the driverLicenseNo of John is 12345, whereas an
RDF Schema states that only a person can have a driverLicenseNo.
Then, the fact that John is a person is implicitly present in the
database, and a query asking for all person instances in the database
must return John.

The complex, graph-structured RDF model is suitable for de-
scribing heterogeneous, irregular data. However, it is clearly not a
good model for storing the data. Existing RDF platforms therefore
assume a simple (application-independent) storage model, comple-
mented by indexes and efficient query evaluation techniques [1, 15,
16, 17, 20, 23], or by RDF materialized views [6, 9]. While indexes
or views speed up the evaluation of the fragments of queries match-
ing them, the query processor may still need to access the main
RDF database to evaluate the remaining fragments of the queries.

We consider the problem of choosing a (relational) storage model

for an RDF application. Based on the application workload, we
seek a set of views to materialize over the RDF database, such that
all workload queries can be answered based solely on the recom-

mended views, with no need to access the database. Our goal is
to enable three-tier deployment of RDF applications, where clients
do not connect directly to the database, but to an application server,
which could store only the relevant views; alternatively, if the views
are stored at the client, no connection is needed and the application
can run off-line, independently from the database server.

RDF datasets can be very different: data may be more or less
structured, schemas may be complex, simple, or absent, updates
may be rare or frequent. Moreover, RDF applications may differ
in the shape, size and similarity of queries, costs of propagating
updates to the views etc. To capture this variety, we characterize
candidate view sets by a cost function, which combines (i) query
evaluation costs, (ii) view maintenance costs and (iii) view storage
space. Our contributions are the following:
1. This is the first study of RDF materialized view selection sup-
porting the rewriting of all workload queries. We show how to
model this as a search problem in a space of states, inspired from a
previous work in relational data warehousing [21].
2. Implicit triples entailed by the RDF semantics [26] must be re-
flected in the recommended materialized views, since they may par-
ticipate to query results. Two methods are currently used to include
implicit tuples in query results. Database saturation adds them to
the database, while query reformulation leaves the database intact
and modifies queries in order to also capture implicit triples. Our
approach requires no special adaptation if applied on a saturated
database. For the reformulation scenario, we propose a novel RDF
query reformulation algorithm. This algorithm extends the state of
the art in query processing in the presence of RDF Schemas [3,
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5], and is a contribution applying beyond the context of this work.
Moreover, we propose an innovative method of using reformulation
(called post-reformulation) which enables us to efficiently take into
account implicit triples in our view selection approach.
3. We consider heuristic search strategies, since the complexity
of complete search is extremely high. Existing strategies for rela-
tional view selection [21] grow out of memory and fail to produce
a solution when the number of atoms in the query workload grows.
Since RDF atoms are short (just three attributes), RDF queries are
syntactically more complex (they have more atoms) than relational
queries retrieving the same information, making this scale problem
particularly acute for RDF. We propose a set of new strategies and
heuristics which greatly improve the scalability of the search.
4. We study the efficiency and effectiveness of the above algo-
rithms, and their improvement over existing similar approaches,
through a set of experiments.

This paper is organized as follows. Section 2 formalizes the
problem we consider. Section 3 presents the view selection prob-
lem as a search problem in a space of candidate states, whereas
Section 4 discusses the inclusion of implicit RDF triples in our ap-
proach. Section 5 describes the search strategies and heuristics used
to navigate in the search space. Section 6 presents our experimental
evaluation. Section 7 discusses related works, then we conclude.

2. PROBLEM STATEMENT
In accordance with the RDF specification [26], we view an RDF

database as a set of (s, p, o) triples, where s is the subject, p the
property, and o the object. RDF triples are well-formed, that is:
subjects can be URIs or blank nodes, properties are URIs, while
objects can be URIs, blank nodes, or literals (i.e., values). Blank
nodes are placeholders for unknown constants (URIs or literals);
from a database perspective, they can be seen as existential vari-
ables in the data. While relational tuples including the null token,
commonly used to represent missing information, do not join (null
does not satisfy any predicate), RDF triples referring to the same

blank node may be joined to construct complex results, as exempli-
fied in the Introduction. Due to blank nodes, an RDF database can
be seen as an incomplete relational database consisting of a single
triple table t(s, p, o), under the open-world assumption [2].

To express RDF queries (and views), we consider the basic graph
pattern queries of SPARQL [27], represented wlog as a special case
of conjunctive queries: conjunctions of atoms, the terms of which
are either free variables (a.k.a. head variables), existential variables,
or constants. We do not use a specific representation for blank
nodes in queries, although SPARQL does, because they behave ex-
actly like existential variables.

DEFINITION 2.1 (RDF QUERIES/VIEWS). An RDF query

(or view) is a conjunctive query over the triple table t(s, p, o).

We consider wlog queries without Cartesian products, i.e., each
triple shares at least one variable (joins at least) with another triple.
We represent a query with a Cartesian product by the set of its in-
dependent sub-queries. Finally, we assume queries and views are
minimal, i.e., the only containment mapping from a query (or view)
to itself is the identity [7].

As a running example, we use the following query q1, which asks
for painters that have painted “Starry Night” and having a child that
is also a painter, as well as the paintings of their children:

q1(X,Z):−t(X,hasPainted, starryNight), t(X, isParentOf, Y ),
t(Y, hasPainted, Z)

Based on views, one can rewrite the workload queries:

DEFINITION 2.2 (REWRITING). Let q be an RDF query and

V = {v1, v2, . . . , vk} be a set of RDF views. A rewriting of q

based on V is a conjunctive query (i) equivalent to q (i.e., on any

data set, it yields the same answers as q), (ii) involving only rela-

tions from V and (iii) minimal, in the sense mentioned above.

We are now ready to define our view selection problem, which
relies on candidate view sets:

DEFINITION 2.3 (CANDIDATE VIEW SET). Let Q be a set of

RDF queries. A candidate view set for Q is a pair 〈V,R〉 such that:

• V is a set of RDF views,

• R is a set of rewritings such that: (i) for every query q ∈ Q
there exists exactly one rewriting r ∈ R of q using the views

in V ; (ii) all V views are useful, i.e., every view v ∈ V
participates to at least one rewriting r ∈ R.

We consider a cost estimation function cǫ which returns a quan-
titative measure of the costs associated to a view set. The lower
the cost, the better the candidate view set is. Our cost components
include the effort to evaluate the view-based query rewritings, the
total space occupancy of the views and the view maintenance costs
as data changes. More details about cǫ are provided in Section 3.3.

DEFINITION 2.4 (VIEW SELECTION PROBLEM). Let Q =
{q1, q2, . . . , qn} be a set of RDF queries and cǫ be a cost esti-

mation function. The view selection problem consists in finding a

candidate view set 〈V,R〉 for Q such that, for any other candidate

view set 〈V ′, R′〉 for Q: cǫ(〈V,R〉) ≤ cǫ(〈V ′, R′〉).

3. THE SPACE OF CANDIDATE VIEW SETS
This Section describes our approach for modeling the space of

possible candidate view sets. Section 3.1 introduces the notion of a
state to model one such set, while Section 3.2 presents a set of tran-
sitions that can be used to transform one state to another. Finally,
Section 3.3 shows how to assign a cost estimation to each state.

3.1 States
We use the notion of state to model a candidate view set together

with the rewritings of the workload queries based on these views.
The set of all possible candidate view sets, then, is modeled as a
set of states, which we adapt from the previous work on material-
ized view selection in a relational data warehouse [21]. From here
forward, given a workload Q, we may use S(Q) (possibly with
subscripts or superscripts) to denote a candidate view set for Q. To
ease the exposition, we also employ from [21] a visual representa-
tion of each state by means of a state graph.

DEFINITION 3.1 (STATE GRAPH). Given a query set Q and

a state Si(Q) = 〈Vi, Ri〉, the state graph G(Si) = (Ni, Ei) is a

directed multigraph such that:

• each triple ti appearing in a view v ∈ Vi is represented by a

node ni ∈ Ni;

• let ti and tj be two triples in a view v ∈ Vi, and a join on

their attributes ti.ai and tj .aj (where ai, aj ∈ {s, p, o}).

For each such join, there is an edge ei ∈ Ei connecting the

respective nodes ni, nj ∈ Ni and labeled v:ni.ai = nj .aj .

We call ej a join edge;

• let ti be a triple in a view v ∈ Vi and ni ∈ Ni be its cor-

responding node. For every constant ci that appears in the

attribute ai ∈ {s, p, o} of ti, an edge labeled v:ni.ai = ci
connects ni to itself. Such an edge is called selection edge.

The graph of v is defined as the subgraph of G(Si) correspond-
ing to v. Observe that in a view, two nodes may be connected by
several join edges if their corresponding atoms are connected by
more than one join predicates.
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Figure 1: Sample initial state graph S0, and states attained through successive transitions.

We define two states to be equivalent if they have the same view
sets. Furthermore, to avoid a blow-up in the storage space required
by the views, we do not consider views including Cartesian prod-

ucts. In a relational setting, some Cartesian products, e.g., between
small dimension tables in an OLAP context, may not raise perfor-
mance issues. In contrast, in the RDF context where all data lies in
a single large triple table, views with Cartesian products are likely
not interesting and their storage overhead is prohibitive. The ab-
sence of Cartesian products from our views entails that the graph

of every view is a connected component of the state graph.
As a (simple) example, consider the state S0(Q) = 〈{v1}, R0〉,

where Q = {q1} is a workload containing only the previously in-
troduced query q1, and v1 = q1. The rewriting set R0 consists of
the trivial rewriting {q1 = v1}. The graph G(S0) is depicted at left
in Figure 1, and since it corresponds to a single view, it comprises
only one connected component.

3.2 State Transitions
To enumerate candidate view sets (or, equivalently, states), we

use four transitions, inspired from [21]. As we show in Section 5.1,
our transition set is complete, i.e., all possible states for a given
workload can be reached through our four transitions. The first
three transitions remove predicates from views, thus can be seen as
“relaxing”, and may split a view in two, increasing the number of
views. The last one factorizes two views into one, thus reducing the
number of workload views. The graphs corresponding to the states
before and after each transition are illustrated in Figure 1.

We use v:e to denote an edge e belonging to the view v in a state
graph. While we define rewritings as conjunctive queries, for ease
of explanation, we now denote rewritings by (equivalent) relational
algebra expressions. We use σe to denote a selection on the condi-
tion attached to the edge e in a view set graph. Since the query set
Q is unchanged across all transitions, we omit it for readability.

DEFINITION 3.2 (VIEW BREAK (VB)). Let S = 〈V,R〉 be a

state, v a view in V and Nv the set of nodes of the graph of v with

|Nv| > 2. Let Nv1 , Nv2 be two subsets of Nv such that:

• Nv1 * Nv2 and Nv2 * Nv1 ;

• Nv1 ∪Nv2 = Nv;

• the subgraph of the graph of v defined by Nv1 (respectively,

by Nv2 ) and the edges between these nodes is connected.

We create two new views, v1 and v2. View v1 (respectively v2)

derives from the graph of v by copying the nodes corresponding to

Nv1 (Nv2 ) and the edges between them. The head variables of v1
(v2) are those of v appearing also in the body of v1 (v2), together

with all additional variables appearing in the nodes Nv1 ∩Nv2 .

The new state S′ = 〈V ′, R′〉 consists of:

• V ′ = (V \ {v}) ∪ {v1, v2},

• G(S′) is obtained from G(S) by removing the graph of v
and adding those of v1 and v2, and

• R′ is obtained from R by replacing all the occurrences of v,

with πhead(v)(v1 ⊲⊳ v2), where ⊲⊳ is the natural join.

For example, we apply a view break on the view v1 of state S0

introduced in the previous Section, and obtain the new state S1:

S1 = 〈{v2, v3}, {q1 = πhead(v1)(v2 ⊲⊳ v3)}〉

DEFINITION 3.3 (SELECTION CUT (SC)). Let S = 〈V,R〉
be a state and v:e be a selection edge in G(S). A selection cut
on e yields a state S′ = 〈V ′, R′〉 such that:

• V ′ is obtained from V by replacing v with a new view v′, in

which the constant in the selection edge e has been replaced

with a fresh head variable (i.e., is returned by v′, along with

the variables returned by v),

• G(S′) is obtained from G(S) by removing the graph of v
and adding the one of v′, and

• R′ is obtained from R by replacing all occurrences of v with

the expression πhead(v)(σe(v
′)).

For instance, we apply a selection cut on the edge labeled
v2:n1.o=starryNight of G(S1) and obtain the state S2, in which
v2 is replaced by a new view v4:

S2 = 〈{v3, v4},
{q1 = πhead(v1)(πhead(v2)(σn1.o=starryNight(v4)) ⊲⊳ v3)}〉

DEFINITION 3.4 (JOIN CUT (JC)). Let S = 〈V,R〉 be a state

and v:e be a join edge in G(S) of the form ni.ci = nj .cj , such that

ci, cj ∈ {s, p, o}. A join cut on e yields a state S′ = 〈V ′, R′〉, ob-

tained as follows:

1. If the graph of v is still connected after the cut, V ′ is ob-

tained from V by replacing v with a new view v′ in which the

variable corresponding to the join edge e becomes a head

variable, and the occurrence of that variable correspond-

ing to ni.ci is replaced by a new fresh head variable. The

new rewriting set R′ is obtained from R by replacing v by

πhead(v)(σe(v
′)). The new graph G(S′) is obtained from

G(S) by removing the graph of v and adding the one of v′.

2. If the graph of v is split in two components, V ′ is obtained

from V by replacing v with two new symbols v′1 and v′2, each

corresponding to one component. In each of v′1 and v′2, the

join variable of e becomes a head variable. The new rewrit-

ing set R′ is obtained from R by replacing v by πhead(v)(v
′
1

⊲⊳ e v′2). The new graph G(S′) is obtained from G(S) by

removing the graph of v and adding the ones of v′1 and v′2.

For example, cutting the join edge v4:n1.s = n2.s of G(S2)
disconnects the graph of v4, resulting in two new views, v5 and v6
(see Figure 1). View symbol v4 is replaced in the rewritings by
the expression πhead(v4)(v5 ⊲⊳n1.s=n2.s v6). If we continue by
cutting the edge v3:n4.o = n3.s, v3 is split into v7 and v8. The
resulting state S3 is:

S3 = 〈{v5, v6, v7, v8},
{q1 = πhead(v1)(πhead(v2)(σn1.o=starryNight(πhead(v4)(
v5 ⊲⊳n1.s=n2.s v6))) ⊲⊳ πhead(v3)(v7 ⊲⊳n4.o=n3.s v8)}〉

DEFINITION 3.5 (VIEW FUSION (VF)). Let S = 〈V,R〉 be

a state and v1, v2 be two views in V such that their respective

graphs are isomorphic (their bodies are equivalent up to variable

renaming). We denote by 〈i→j〉 the renaming of the variables of

vi into those of vj . Let v3 be a copy of v1, such that head(v3) =
head(v1)∪ head(v2〈2→1〉). Fusing v1 and v2 leads to a new state

S′ = 〈V ′, R′〉 obtained as follows:
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• V ′ = (V \ {v1, v2}) ∪ {v3},

• G(S′) is obtained from G(S) by removing the graphs of v1
and v2 and adding that of v3, and

• R′ is obtained from R by replacing any occurrence of v1 with

πhead(v1)(v3), and of v2 with πhead(v2)(v3〈3→2〉)

For example, in state S3, the graphs of v5 and v8 are isomorphic,
and can thus be fused creating the new view v9. Similarly, v6 and
v7 can be fused into a new view v10 leading to state S4.

Our transitions adapt those introduced in [21] to our RDF view
selection context; the differences are detailed in [25].

3.3 Estimated State Cost
To each state, we associate a cost estimation cǫ, taking into ac-

count: the space occupancy of all the materialized views, the cost
of evaluating the workload query rewritings, and the cost associated
to the maintenance of the materialized views.

For any conjunctive query or view v, we use len(v) to denote
the number of atoms in v, |v| for the number of tuples in v and |v|ǫ

for our estimation of this number. Let S(Q) =〈V,R〉 be a state.
View space occupancy (VSOǫ) To estimate the cardinality of a
given view v ∈ V , we adopt the solution of [16], which consists in
counting and storing the exact number of tuples (i) for each given
s, p and o value; (ii) for each pair of (s, p), (s, o) and (s, p) values.
This leads to exact cardinality estimations for any 1-atom view with
1 or 2 constants. The size of an 1-atom view with no constants is
the size of the data set; three-constants atoms are disallowed in our
framework since they introduce Cartesian products in views.

We now turn to the case of multi-atom views. From each view
v ∈ V , and each atom ti ∈ v, 1 ≤ i ≤ len(v), let vi be the
conjunctive query whose body consists of exactly the atom ti and
whose head projects the variables in ti. From our gathered statis-
tics, we know |vi|. We assume that values in each triple table col-
umn are uniformly distributed, and that values of different columns
are independently distributed1. For the s, p and o columns, more-
over, we store the number of distinct values, as well as the mini-
mum and maximum values. Then, we compute |v|ǫ based on the
exact counts |vi| and the above assumptions and statistics, applying
known relational formulas [18]. Finally, we use the average size of
a subject, property, respectively object, the attributes in the head of
v, and |v|ǫ, to estimate the space occupancy of view v.

Since the workload is known, we gather only the statistics needed
for this workload: (i) we count the triples matching each of the
query atoms (ii) we also count the triples matching all relaxations

of these atoms, obtained by removing constants (as SC does during
the search). Consider, for instance, the following query:

q(X1, X2):−t(X1, rdf :type, picture), t(X1, isLocatIn,X2)

We count the triples matching the two query atoms:

q1(X1):−t(X1, rdf :type, picture), q2(X1, X2):−t(X1, isLocatIn,X2)

as well as the triples matching three relaxed atoms, obtained by
removing the constants from q1 and q2:

q3(X1, X2):−t(X1, rdf :type,X2), q
4(X1, X2):−t(X1, X2, picture),

q5(X1, X2, X3):−t(X1, X2, X3).

Based on the cardinalities of the above atoms, we can estimate the
cardinality of any possible view created throughout the search.
Rewriting evaluation cost (RECǫ) This cost estimation reflects
the processing effort needed to answer the workload queries using
the proposed rewritings in R. It is computed as:

RECǫ(S) =
∑

r∈R(c1 · io
ǫ(r) + c2 · cpu

ǫ(r))

1A very recent work [14] provides an RDF query size estimation
method which does not make the independence assumption. This
estimation method could easily be integrated in our framework.

where ioǫ(r) and cpuǫ(r) estimate the I/O cost and the CPU pro-
cessing cost of executing the rewriting r respectively, and c1, c2 are
some weights. The I/O cost estimation is:

ioǫ(r) =
∑

v∈r |v|
ǫ

where v ∈ r denotes a view appearing in the rewriting r.
The CPU cost estimation cpuǫ(r) sums up the estimated costs

of the selections, projections, and joins required by the rewriting
r, computed based on the view cardinality estimations and known
formulas from the relational query processing literature [18].
View maintenance cost (VMCǫ) The cost of maintaining the views
in V when the data is updated depends on the algorithm imple-
mented to propagate the updates. In a conservative way, we chose
to account only for the costs of writing/removing tuples to/from the
views due to an update, ignoring the other maintenance operation
costs. Consider the addition of a triple t+ to the triple table, and
a view v of len(v) atoms. With some simplification, we consider
that t+ joins with f1 existing triples for some constant f1, the tu-
ples resulting from this, in turn, join with f2 existing triples etc.
Adding the triple t+ thus causes the addition of f1 ·f2 · . . . ·flen(v)

tuples to v. A similar reasoning holds for deletions. To avoid esti-
mating f1, f2, . . . , flen(v), which may be costly or impossible for
triples which will be added in the future, we consider a single user-
provided factor f , and compute:

VMCǫ(S) =
∑

v∈V f len(v)

The estimated cost cǫ of a state S is defined as:

cǫ(S) = cs · V SOǫ(S) + cr ·RECǫ(S) + cm · VMCǫ(S)

where the numerical weights cs, cr and cm determine the impor-
tance of each component: if storage space is cheap cs can be set
very low, if the triple table is rarely updated cm can be reduced etc.
Impact of transitions on the cost Transition SC increases the view
size and adds to some rewritings the CPU cost of the selection.
Thus, SC always increases the state cost. Transitions JC and VB

may increase or decrease the space occupancy, and add the costs of
a join to some rewritings. JC decreases maintenance costs, whereas
VB may increase or decrease it. Overall, JC and VB may increase
or decrease the state cost. Finally, VF decreases the view space
occupancy and view maintenance costs. Query processing costs
may remain the same or be reduced, but they cannot increase. Thus,
VF always reduces the overall cost of a state.

4. VIEW SELECTION & RDF REASONING
The approach described so far does not take into consideration

the implicit triples that are intrinsic to RDF and that complete query
answers. Section 4.1 introduces the notion of RDF entailment to
which such triples are due. Section 4.2 presents the two main meth-
ods for processing RDF queries when RDF entailment is consid-
ered, namely database saturation and query reformulation. In par-
ticular, we devise a novel reformulation algorithm extending the
state of the art. Finally, Section 4.3 details how we take RDF en-
tailment into account in our view selection approach.

4.1 RDF entailment
The W3C RDF recommendation [26] provides a set of entail-

ment rules, which lead to deriving new implicit (or entailed) triples
from an RDF database. We provide here an overview of these rules.

Some implicit triples are obtained by generalizing existing triples
using blank nodes. For instance, a triple (s, p, o) entails the triple
( :b, p, o), where s is a URI and :b denotes a blank node.

Some other rules derive implicit triples from the semantics of a
few special URIs, which are part of the RDF standard, and are as-
signed special meaning. For instance, RDF provides the rdfs:Class
URI whose semantics is the set of all RDF-specific (predefined)
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Semantic relationship RDF notation FOL notation

Class inclusion (c1, rdfs:subClassOf, c2) ∀X(c1(X)
⇒ c2(X))

Property inclusion (p1, rdfs:subPropertyOf, p2) ∀X∀Y (p1(X,Y )
⇒ p2(X,Y ))

Domain typing of a (p, rdfs:domain, c) ∀X∀Y (p(X,Y )
property ⇒ c(X))
Range typing of a (p, rdfs:range, c) ∀X∀Y (p(X,Y )
property ⇒ c(Y ))

Table 1: Semantic relationships expressible in an RDFS.

and user-defined URIs denoting classes to which resources may be-
long. When, for example, a triple states that a resource u belongs to
a given user-defined class painting, i.e., (u, rdf:type, painting)
using the predefined URI rdf:type, an implicit triple states that
painting is a class: (painting, rdf:type, rdfs:Class).

Finally, some rules derive implicit triples from the semantics en-
capsulated in an RDF Schema (RDFS for short). An RDFS speci-
fies semantic relationships between classes and properties used in
descriptions. Table 1 shows the four semantic relationships allowed
in RDF, together with their first-order logic semantics. Some rules
derive implicit triples through the transitivity of class and property
inclusions, and of inheritance of domain and range typing. For in-
stance, if painting is a subclass of masterpiece, i.e., (painting,
rdfs:subClassOf,masterpiece), which is a subclass of work,
i.e., (masterpiece, rdfs:subClassOf, work), then an entailed
triple is (painting, rdfs:subClassOf, work). If hasPainted is a
subproperty of hasCreated, i.e., (hasPainted,
rdfs:subPropertyOf, hasCreated), the ranges of which are the
classes painting and masterpiece respectively, i.e.,
(hasPainted, rdfs:range, painting) and (hasCreated,
rdfs:range,masterpiece), then those triples are implicit:
(hasPainted, rdfs:range,masterpiece), (hasPainted,
rdfs:range, work), and (hasCreated, rdfs:range, work). Some
other rules use the RDFS to derive implicit triples by propagat-
ing values (URIs, blank nodes, and literals) from subclasses and
subproperties to their superclasses and superproperties, and from
properties to classes typing their domains and ranges. If a re-
source u has painted something, i.e., (u, hasPainted, :b), im-
plicit triples are: (u, hasCreated, :b), ( :b, rdf:type, painting),
( :b, rdf:type,masterpiece), and ( :b, rdf:type, work).

Returning complete answers requires considering all the implicit
triples. In practice, RDF data management frameworks (e.g., Jena2)
allow specifying the subset of RDF entailment rules w.r.t. which
completeness is required. This is because the implicit triples brought
by some rules, e.g., generalization of constants into blank nodes,
may not be very informative in most settings. Of particular inter-
est among all entailment rules are usually those derived from an
RDFS, since they encode application domain semantics.

4.2 RDF entailment and query answering
We consider here the two main approaches previously proposed

to answer queries w.r.t. a given set of RDF entailment rules: data-
base saturation and query reformulation.

Database saturation The first approach saturates the database by
adding to it all the implicit triples specified in the RDF recommen-
dation [26]. The benefit of saturation is that standard query eval-
uation techniques for plain RDF can be applied on the resulting
database to compute complete answers [27]. Saturation also has
drawbacks. First, it needs more space to store the implicit triples,
competing with the data and the materialized views. Observe that
saturation adds all implicit triples to the store, whether user queries
need them or not. Second, the maintenance of a saturated database,

2http://jena.sourceforge.net/

Algorithm 1: Reformulate(q,S)

Input : an RDF schema S and a conjunctive query q over S
Output: a union of conjunctive queries ucq such that for any

database D:
evaluate(q, saturate(D,S)) = evaluate(ucq,D)

1 ucq ← {q}, ucq′ ← ∅
2 while ucq 6= ucq′ do

3 ucq′ ← ucq
4 foreach conjunctive query q′ ∈ ucq′ do
5 foreach atom g in q′ do

6 if g = t(s, rdf :type, c2) and

c1 rdfs:subClassOf c2 ∈ S then

7 ucq ← ucq ∪ {q′
[g/t(s,rdf :type,c1)]

} //rule 1

8 if g = t(s, p2,o) and p1 rdfs:subPropertyOf p2 ∈ S
then ucq ← ucq ∪ {q′

[g/t(s,p1,o)]
} //rule 2

9 if g = t(s, rdf :type, c) and p rdfs:domain c ∈ S then

10 ucq ← ucq ∪ {q′
[g/∃X t(s,p,X)]

} //rule 3

11 if g = t(o, rdf :type, c) and p rdfs:range c ∈ S then
12 ucq ← ucq ∪ {q′

[g/∃X t(X,p,o)]
} //rule 4

13 if g = t(s, rdf :type,X) and c1, c2 . . . , cn are all the

classes in S then //rule 5
14 ucq ← ucq∪

⋃n
i=1{(q

′
[g/t(s,rdf :type,ci)]

)σ=[X/ci]
}

15 if g = t(s, X,o) and p1, p2 . . . , pm are all the

properties in S then //rule 6
16 ucq ← ucq ∪

⋃m
i=1{(q

′
[g/t(s,pi,o)]

)σ=[X/pi]
} ∪

{(q′
[g/t(s,rdf :type,o)]

)σ=[X/rdf :type]}

17 return ucq

which can be seen as an inflationary fixpoint, when adding or re-
moving data and/or RDFS statements may be complex and costly.
Finally, saturation is not always possible, e.g., when querying is
performed at a client with no write access to the database.

Query reformulation The second approach reformulates a (con-
junctive) query into an equivalent union of (conjunctive) queries.
The complete answers of the initial query (w.r.t. the considered
RDF entailment rules) can be obtained by standard query evalu-
ation techniques for plain RDF [27] using this union of queries
against the non-saturated database.

The benefit of reformulation is leaving the database unchanged.
However, reformulation has an overhead at query evaluation time.

Query reformulation w.r.t. an RDFS Query reformulation algo-
rithms have been investigated in the literature for the well-known
Description Logic fragment of RDF [3, 5]: datasets with RDFSs,
without blank nodes, and where RDF entailment only considers
the rules associated to an RDFS (those of the third kind in Section
4.1). However, these algorithms allow reformulating queries from
a strictly less expressive language than the one of our RDF queries
(see Section 7 for more details) and, thus, cannot be applied to our
setting. We therefore propose the Algorithm 1 that fully captures
our query language, so that we can obtain the complete answers of
any RDF query by evaluating its reformulation.

The algorithm uses the set of rules of Figure 2 to unfold the
queries; in this Figure and onwards, we denote by s, p, respec-
tively, o, a placeholder for either a constant or a variable occur-
ring in the subject, property, respectively, object position of a triple
atom. Notice that rules (1)-(4) follow from the four rules of Ta-
ble 1. The evaluate and saturate functions, used in Algorithm 1
provide, respectively, the standard query evaluation for plain RDF,
and the saturation of a data set w.r.t. an RDFS (Table 1). Moreover,
q[g/g′] is the result of replacing the atom g of the query q by the
atom g′ and qσ=[X/c] is the result of replacing any occurrence of
the variable X in q with the constant c.
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t(s, rdf :type, c1)⇒ t(s, rdf :type, c2),

with c1 rdfs:subClassOf c2 ∈ S (1)

t(s, p1,o)⇒ t(s, p2,o),with p1 rdfs:subPropertyOf p2 ∈ S (2)

t(s, p,X)⇒ t(s, rdf :type, c),with p rdfs:domain c ∈ S (3)

t(X, p,o)⇒ t(o, rdf :type, c),with p rdfs:range c ∈ S (4)

t(s, rdf :type, ci)⇒ t(s, rdf :type,X), for any class ci of S (5)

t(s, pi,o)⇒ t(s, X,o), for any property pi of S and rdf :type (6)

Figure 2: Reformulation rules for an RDFS S.

More precisely, Algorithm 1 uses the rules in Figure 2 to gener-
ate new queries from the original one, by a backward application
of the rules on the query atoms. It then applies the same procedure
on the newly obtained queries until no new queries can be con-
structed, and then outputs the union of the generated queries. The
inner loop (lines 5-16) comprises six if statements, one for each of
the six rules above. The conditions of these statements represent
the heads (right parts) of the rules, whereas the consequents corre-
spond to their bodies (left parts). In each iteration, when a query
atom matches the condition of an if, the respective rule is triggered,
replacing the atom with the one of the body of the rule. Note that
rules 5 and 6 need to bind a variable X of an atom to a constant ci,
pi, or rdf :type, thus use σ to bind all the occurrences of X in the
query in order to retain the join on X within the whole new query.

THEOREM 4.1 (TERMINATION OF Reformulate(q,S)).
Given a query q over an RDFS S, Reformulate(q,S) terminates

and outputs a union of no more than (2|S|2)m queries, where |S|
is the number of statements in S and m the number of atoms in q.

The proof can be found in the technical report [25]. This theorem
also exhibits that the query reformulation is polynomial in the size
of the schema and exponential in the size of the query.

THEOREM 4.2 (CORRECTNESS OF ALGORITHM 1). Let ucq
be the output of Reformulate(q,S), for a query q over an RDFS

S. For any database D associated to S:

evaluate(q, saturate(D,S)) = evaluate(ucq,D).

Again the proof is delegated to the technical report [25].

4.3 View selection aware of RDF entailment
We now discuss possible ways to take RDF implicit triples into

account in our view selection approach. As will be explained, the
exact way cardinality statistics are collected for each view atom,
described first in Section 3.3, play an important role here.

Database saturation If the database is saturated prior to view se-
lection, the collected statistics do reflect the implicit triples.

Pre-reformulation Alternatively, one could reformulate the query
workload and then apply our search on the new workload. To
do so, we extend the definition of our initial state, as well as our
rewriting language to that of unions of conjunctive queries. More
precisely, given a set of queries Q = {q1, . . . , qn}, and assum-
ing that Reformulate(qi,S) = {q1i , . . . , q

ni
i }, it is sufficient to

define S0(Q) = 〈V0, R0〉 as the set of conjunctive views V0 =⋃n
i=1{q

1
i , . . . , q

ni
i } and the set of rewritings R0 =⋃n

i=1{qi = q1i ∪ · · · ∪ qni
i }. In this case, statistics are collected on

the original (non-saturated) database for the reformulated queries.
As stated in Theorem 4.1, query reformulation can yield a signif-

icant number of new queries, increasing the number of views of our
initial state and leading to a serious increase of the search space. As
an example, the following simple query on the Barton [24] dataset

q(X1, X2, X3):−t(X1, rdf :type, text), t(X1, relatedTo,X2),
t(X2, rdf :type, subjectPart), t(X1, language, fr),
t(X2, description,X3)

q1,S q1(X1) :−t(X1, rdf :type, picture) (1)
∪ q1(X1) :−t(X1, rdf :type, painting) (2)

q4,S q4(X1, X2) :−(X1, X2, picture) (1)
∪ q4(X1, isLocatIn) :−t(X1, isLocatIn, picture) (2)
∪ q4(X1, isExpIn) :−t(X1, isExpIn, picture) (3)
∪ q4(X1, rdf :type) :−t(X1, rdf :type, picture) (4)

∪ q4(X1, isLocatIn) :−t(X1, isExpIn, picture) (5)
∪ q4(X1, rdf :type) :−t(X1, rdf :type, painting) (6)

Table 2: Term reformulation for post-reasoning.

is reformulated with the Barton schema into a union of 104 queries.
Given the very high complexity of the exhaustive search problem
(Section 5.1), such an increase may significantly impact view se-
lection performance.

Post-reformulation To avoid this explosion, we propose to apply
reformulation not on the initial queries but directly on the views in
the final (best) state recommended by the search.

Directly doing so introduces a source of errors: since statistics
are collected directly on the original database, and the queries are
not reformulated, the implicit triples will not be taken into account
in the cost estimation function cǫ. To overcome this problem, we
reflect implicit triples to the statistics, by reformulating each view

atom vi into a union of atoms Reformulate(vi,S) prior to the

view search, and then replacing |vi| (i.e., the cardinality of vi) in

our cost formulas with |Reformulate(vi,S)|. This results in hav-
ing the same statistics as if the database was saturated. Then, we
perform the search using the (non-reformulated) queries and get
the same best state as in the database saturation approach (as we
use the same initial state and statistics). Since materializing the
best state’s views directly would not include the implicit triples, we
need to reformulate these views first. Theorem 4.2 guarantees the
correctness of post-reformulation (materializing the reformulated
views on the non-saturated database is the same as materializing
the non-reformulated ones on the saturated database).

Consider the query q of Section 3.3, with the following schema:

S = {painting rdfs:subClassOf picture,
isExpIn rdfs:subPropertyOf isLocatIn}

We first count (see Section 3.3) the exact number of triples match-
ing the query atoms and their relaxed versions, namely q1 to q5.

We now reformulate each qi based on S into a union of queries,
denoted qi,S . Table 2 illustrates this for q1 and q4 (for space rea-
sons, we omit the other similar terms). Rule 1 (Figure 2) has been
applied on q1, adding to it a second union term. Applying rule 6 on
q4 leads to replacing X2 with isLocatIn, isExpIn, and rdf :type
respectively in the second, third and fourth union terms of q4,S . In
turn, the second term triggers rule 2 producing a fifth term, while
the fourth term triggers rule 1 to produce the sixth union term.

The cardinality of each reformulated atom qi,S is estimated prior
to the search. Then, we perform the search for the non-reformulated
version of q using these statistics, and get the following best state:

v1(X1, X2):−t(X1, rdf :type,X2), v2(X1, X2):−t(X1, isLocatIn,X2)
r3 = πv1.X1,v2.X2

(σX2=picture(v1) ⊲⊳v1.X1=v2.X1
v2)

After the search has finished, instead of the recommended views
v1 and v2, we materialize their reformulated variants v′1 and v′2:

v′1(X1, X2):−t(X1, rdf :type,X2)
∪ v′1(X1, painting):−t(X1, rdf :type, painting)
∪ v′1(X1, picture):−t(X1, rdf :type, picture)
∪ v′1(X1, picture):−t(X1, rdf :type, painting)

v′2(X1, X2):−t(X1, isLocatIn,X2)
∪ v′2(X1, X2):−t(X1, isExpIn,X2)

Executing r3 on v′1 and v′2 provides the complete answers for q.
In post-reformulation, finding the best state does not require sat-

urating the database nor multiplying the queries and making the
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Q = {q}

q(Y, Z):−

t(X,Y, c1),

t(X,Z, c2)

S0 S1

S2

S3

S4

S5

S6

S7 S8
JC

SC(c1)

SC(c2)

SC(c2)

SC(c1)

SC(c1)

SC(c2)

JC

SC(c2)

SC(c1)

JC

JC

VF

V0 {q(Y, Z):−t(X,Y, c1), t(X,Z, c2)}
V1 {q1(X1, Y ):−t(X1, Y, c1); q2(X2, Z):−t(X2, Z, c2)}
V2 {q(Y, Z,W1):−t(X,Y,W1), t(X,Z, c2)}
V3 {q(Y, Z,W2):−t(X,Y, c1), t(X,Z,W2)}
V4 {q(Y, Z,W1,W2):−t(X,Y,W1), t(X,Z,W2)}
V5 {q1(X1, Z,W1):−t(X1, Z,W1); q2(X2, Z):−t(X2, Z, c2)}
V6 {q1(X1, Z):−t(X1, Z, c1); q2(X2, Z,W2):−t(X2, Z,W2)}
V7 {q1(X1, Z,W1):−t(X1, Z,W1); q2(X2, Z,W2):−t(X2, Z,W2)}
V8 {q(X,Y, Z):−t(X,Y, Z)}

Figure 3: Sample exhaustive strategy (solid arrows), EXNAÏVE

strategy (solid and dashed arrows), and view sets correspond-

ing to each state.

search space size explode (as pre-reformulation does). Thus, this is
the best approach for situations where database saturation is not an
option, which is also shown through our experiments in Section 6.5.

5. SEARCHING FOR VIEW SETS
This Section discusses strategies for navigating in the space of

candidate view sets (or states), looking for a low- or minimal-cost
state. We discuss the exhaustive search strategies and identify an
interesting subset of stratified strategies in Section 5.1, based on
which we analyze the size of the search space. In Section 5.2, we
present several efficient optimizations and search heuristics.

5.1 Exhaustive Search Strategies
We define the initial state of the search as S0(Q) = 〈V0, R0〉,

such that V0 = Q, i.e., the set of views is exactly the set of queries,
and each rewriting in R0 is a view scan. The state graph G(S0)
corresponds to the queries in Q. Clearly, the rewriting cost of S0 is
low, since each query rewriting is simply a view scan. However, its
space consumption and/or view maintenance costs may be high.

We denote by S
τ
−→ S′ the application of the transition τ ∈

{SC,JC,VB,VF} on a state S, leading to the state S′.

DEFINITION 5.1 (PATH). A path is a sequence of transitions

of the form: S0
τ0−→ S1, S1

τ1−→ S2, . . ., Sk−1

τk−1

−−−→ Sk.

For instance, in Figure 3, (S0
SC(c2)
−−−−→ S3), (S3

JC
−→ S6) is a path.

We may denote a path simply by its transitions, e.g., (SC(c2), JC).

THEOREM 5.1 (COMPLETENESS OF THE TRANSITION SET).
Given a workload Q and an initial state S0, for every possible state

S(Q), there exists a path from the initial state S0 to S.

The proof is given in our technical report [25].

DEFINITION 5.2 (STRATEGY). A search strategy Σ is a se-

quence of transitions of the form:

Σ = (Si1

τi1−−→ S′
i1), (Si2

τi2−−→ S′
i2), . . . , (Sik−1

τik−1

−−−−→ S′
ik−1

),

(Sik

τik−−→ S′
ik
)

where Si1 = S0, for every j ∈ [1..k] τij ∈ {SC,JC,VB,VF}, and

for every j ∈ [2..k] there exists l < j such that S′
il

= Sij (each

state but S0 must be attained before it is transformed).

For example, for the one-query workload depicted at the top left
of Figure 3, one possible strategy is:

Algorithm 2: EXNAÏVE(S0)

Input : an initial state S0

Output: the best state Sb found
1 Sb ← S0, Snew ← null, CS ← {S0}, ES ← ∅, NS ← ∅
2 while CS 6= ∅ do

3 foreach state Sc ∈ CS do

4 Snew ← applyTrans({SC,JC,VB,VF}, Sc, (ES ∪ CS))
5 if Snew = null then move Sc from CS to ES
6 else
7 CS ← CS ∪ {Snew}
8 if cǫ(Snew) < cǫ(Sb) then Sb ← Snew

Σ1 = (S0
SC(c1)
−−−−→ S2), (S2

SC(c2)
−−−−→ S4), (S0

SC(c2)
−−−−→ S3),

(S3
SC(c1)
−−−−→ S4), (S0

JC
−→ S1)

A strategy Σ is exhaustive if any state S that can be reached
through a path, is also reached in Σ (not necessarily through the
same path). For instance, in Figure 3, the solid arrows depict an
exhaustive strategy, reaching all possible states.

We first consider a simple family of strategies called EXNAÏVE

and described through Algorithm 2. EXNAÏVE strategy (as all
strategies presented in this work) maintains a candidate state set

CS and a set of explored states ES. CS keeps the states on which
more transitions can be possibly applied and is initially {S0}. ES
is disjoint from CS and is empty in the beginning. A state S is
explored, when any state S′ = τ(S) obtained by applying some
transition τ ∈ {SC, JC, VB, VF} to S, already belongs either to
CS or to ES. EXNAÏVE at each point picks a state Sc from CS
and tries to apply a transition to it (applyTrans, line 4). If no
new state is obtained, Sc was already explored and is moved to ES
(line 5); otherwise, the newly obtained state (Snew) is copied to
CS (line 7). During the search, we also keep the best state found
so far (denoted Sb), i.e., having the lowest cost cǫ(S) (line 8). The
strategy stops when no new states can be found. Clearly, EXNAÏVE

strategies are exhaustive. In Figure 3, the solid and dashed arrows,
together, illustrate an EXNAÏVE strategy.

For a given strategy Σ, the paths to a state S ∈ Σ, denoted →֒S, is
the set of all Σ paths whose final state is S. In an EXNAÏVE strategy
there may be multiple paths to some states, e.g., S6 is reached twice
in our example, which slows down the search. We define the notion
of stratification to reduce the number of such duplicate states.

DEFINITION 5.3 (STRATIFIED PATH). A path p ∈ →֒S for

some state S ∈ Σ is stratified iff it belongs to the regular language:

VB* SC* JC* VF*.

A stratified path constrains the order among the types of tran-
sitions on the path: all possible view breaks appear only in the
beginning of the path and are followed by the selection cuts. Join
cuts appear only after all selection cuts are applied and are in turn
followed by zero or more view fusions. In Figure 3, all solid-arrow
paths starting from S0 are stratified.

The following theorem formalizes the interest of stratified paths.

THEOREM 5.2 (COMPLETENESS OF STRATIFIED PATHS).
Let Q be a query workload and S(Q) be a state for Q. There

exists a stratified path leading from the initial state S0 to S.

The proof can be found in our technical report [25].
We can now identify an interesting family of strategies.

DEFINITION 5.4 (STRATIFIED STRATEGY). A strategy Σ is

stratified iff for any S ∈ Σ and p ∈ →֒S, p is stratified.

In Figure 3, any topological sort of the solid edges is a stratified
strategy, more efficient than the EXNAÏVE one illustrated in the
Figure, since the latter performs four extra transitions. Observe
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that a stratified strategy does not constrain the order of transitions
that are not on the same path. For instance, in Figure 3, a stratified

strategy may apply the transition S0
JC
−→ S1 before all the SCs.

We now define the important family of EXSTR strategies. Start-
ing from the initial state S0, an EXSTR strategy picks any state on
which it applies any applicable transition, preserving the stratifica-

tion of all strategy paths. Several EXSTR strategies may exist for
a workload, differing in their ordering of the transitions. We will
simply use EXSTR to refer to any of them. The EXNAÏVE strategy
(Algorithm 2) can be turned to an EXSTR one through the follow-
ing modification: when applyTrans (line 4) is called on a state
Sc, it should apply the transitions in a stratified way, i.e., first it at-
tempts a VB and only if no new state is obtained, it applies an SC,
and then a JC and, finally, a VF.

THEOREM 5.3 (INTEREST OF EXSTR). (i) Any EXSTR strat-

egy is exhaustive. (ii) For a given workload Q, and arbitrary

EXSTR strategy ΣS and EXNAÏVE strategy ΣN , ΣS has at most

the number of transitions of ΣN .

The proof is given in [25]. Due to Theorem 5.3, among the
exhaustive strategies, we will only consider wlog the stratified ones.

Size of the search space Let the workload Q having in total n
nodes in its initial state S0. Denoting by Bk the k-th Bell num-
ber (the number of partitions of a set of size k), and by µ(n, k)
the number of minimal covers with k members of a set of size
n, for the number of candidate view sets we have NS(Q,n) ≤
∑n

k=1 2
kn2

µ(n, k) Bk. The details are provided in [25].

Time complexity The time complexity of exhaustive search can be
derived from the number of states created by each transition and the
time complexity of the transition. The cost of a SC, JC and VB is
linear in the size of the largest view, which is bound by 3n, whereas
VF requires checking query equivalence, which is in O(2n) [7].

The complexity of exhaustive search is very high and, even if
views are selected off-line and thus time is not a concern, it brings
real issues due to memory limitations. This highlights the need for
robust strategies with low memory needs, and efficient heuristics.

5.2 Optimizations and heuristics
We now discuss a set of search strategies with interesting prop-

erties, as well as a set of pruning heuristics which may be used to
trade off completeness for efficiency of the search.

Depth-first search strategies (DFS) A (stratified) strategy Σ is
depth-first iff the order of Σ’s transitions satisfies the following
constraint. Let S be a state reached by a path p of the form VB*.
Immediately after S is reached, Σ enumerates all states recursively
attainable from S by SC only. This process is then repeated with
JC and then with VF. The pseudocode of DFS can be obtained by
replacing lines 3-4 of Algorithm 2 with the following ones, where
recApplyTrans returns all states that can be reached by a specific
transition starting from a given state:

foreach state SVB ∈ {recApplyTrans(VB, S0)} do

foreach state SSC ∈ {recApplyTrans(SC, SVB)} do

foreach state SJC ∈ {recApplyTrans(JC, SSC)} do

foreach state SVF ∈ {recApplyTrans(VF, SJC)} do
· · ·

For instance, in Figure 3, the following strategy Σ3 is DFS:

Σ3 = (S0
SC(c1)
−−−−→ S2), (S2

SC(c2)
−−−−→ S4), (S4

JC
−→ S7),

(S7
VF
−→ S8), (S0

SC(c2)
−−−−→ S3), (S3

JC
−→ S6)

An advantage of DFS strategies is that they fully explore each ob-
tained state more quickly, reducing the number of states stored in

CS. This results in a significant reduction of the maximum mem-
ory needs during the search compared, e.g., with EXNAÏVE, which
develops a huge number of candidates before fully exploring them.

Aggressive view fusion (AVF) This technique can be included in
any strategy and is based on the fact that VF can only decrease the
overall cost of a state (Section 3.3). Once a new state S is obtained
through some SC, JC or VB, we recursively apply on S all possi-
ble VFs (until no more views can be fused). It can be shown that
such repeated VFs converge to a single state SVF. We then discard
all intermediate states leading from S to SVF and add only SVF to
CS. Thus, AVF preserves the optimality of the search, all the while
eliminating many intermediary states whose estimated cost is guar-
anteed to be higher than that of SVF. For example, assume we reach
a state S containing three identical views. We apply a VF on S fus-
ing two of the three views and obtain the state S′. We then apply a
VF on S′ fusing the two remaining identical views and obtain SVF.
AVF discards S′ and keeps only SVF to continue the search.

Greedy stratified (GSTR) This strategy starts by applying all pos-
sible VB transition sequences on S0. It then discards all the ob-

tained states but Sb, and repeatedly applies on it all possible SC.
Keeping only Sb, it proceeds in the same way by applying JC and
then VF. The interest of GSTR lies in the possibility to combine it
with the AVF technique, leading to the GSTR-AVF strategy. GSTR-
AVF has low memory needs due to the many states dropped by
GSTR and AVF and moves fast towards lower-cost states due to
AVF. Although neither GSTR nor GSTR-AVF can guarantee opti-
mality, they perform well in practice, as our experiments show.

Stop conditions We use some stop conditions to limit the search
by considering that some states are not promising and should not
be explored. Clearly, stop conditions lead to non-exhaustive search.
We have considered the following stop conditions for a state S.

• stoptt(S): true if a view in S is the full triple table t.

• stopvar(S): true if a view in S has only variables. The idea
is that we reject S since we consider its space occupancy to
be too high. This condition is not applicable if it is satisfied
by the initial state, but such queries are of limited interest.

• stoptime(S): true if the search has lasted more than a given
amount of time. Observe that our approach is guaranteed to
have some recommended Sb state at any time.

6. EXPERIMENTAL EVALUATION
This Section presents an experimental evaluation of our approach,

which we have fully implemented as a Java 6 application. The ap-
plication takes as input a set of conjunctive RDF queries and pos-
sibly an RDF schema, and produces as output the set of recom-
mended views and query rewritings. It uses a database back-end to
store both the original RDF data and schema, and the views.
Platform and data layout We used PostgreSQL (version 8.4.3) as
the database back-end for its reputation as a (free) efficient plat-
form that has been used in several related works [1, 15, 16, 20, 23].
Integrating our view selection approach with another platform is
easy as soon as that platform supports the evaluation of our select-
project-join rewritings, and provided that the cost function is appro-
priately customized to account for the respective evaluation engine.

As in many previous works, for efficiency, we stored the data in
a dictionary-encoded triple table, using a distinct integer for each
distinct URI or literal appearing in an s, p or o value. The encoding
dictionary was stored as a separate table indexed both by the integer
dictionary code and by the encoded constant. The triple table was
clustered by the columns p and then s, to enhance the efficiency of
(frequent) queries where the p values are specified in most or all

104



atoms. Moreover, we indexed the encoded triple table on s, p, o,
and all two- and three-column combinations.
Data and queries As in previous works [1, 15, 23], we used the
Barton RDF dataset and RDFS [24]. The initial dataset consists of
about 50 million triples. After some cleaning (removing format-
ting errors, eliminating duplicates etc.) we kept about 35 million
distinct triples. The space occupied by the encoded triple table, the
dictionary and the indexes within PostgreSQL was 39 GB.

The Barton query workload [24] contains few queries with no
commonality among them. To better test our approach, we built
two query generators, producing queries of controllable size, shape,
and commonality. The first one simply outputs the desired queries,
and has maximum flexibility. The second takes as input not only
the workload characteristics, but also a dataset (RDF + RDFS) and
generates queries having non-empty answers on the given dataset.
We used it to obtain interesting workloads on the Barton dataset.
Weights of cost components For V SO and REC (Section 3.3),
we used cs=1 and cr=1. For each workload, we set the value of
cm taking into account the database size and the average number
of atoms in each query, so that for the initial state S0, cm · VMC
is within at most two orders of magnitude from the other two cost
components, cs · V SO and cr · REC. In most cases, this lead to
cm=0.5. Finally, we set f=2 in VMC, since this value gave the
most appropriate range to VMC through the search.
Hardware and memory The PostgreSQL server ran on a separate
2.13 GHz Intel Xeon machine with 8GB RAM. We ran search al-
gorithms on two classes of hardware: a desktop 8-core Intel Xeon
2.13 GHz machine with 16 GB RAM (the JVM was given 4 GB),
and several cluster machines, each of which is a 4-core Intel Xeon
2.33 GHz with 4 GB RAM (the JVM was given 3 GB). Each exper-
iment ran on one machine. While there are opportunities for paral-
lelization (see Section 8), we did not exploit them in this work. All
machines were running Mandriva Linux 2.6.31.

6.1 Competitor search strategies
We have implemented the three strategies, Pruning, Greedy and

Heuristic, introduced in the relational view selection work which
inspired our states and transitions [21]. All these strategies follow
a divide-and-conquer approach. They start by breaking down the
initial state into a set of 1-query states, and apply all possible edge
removals, then all possible view breaks on each such state. Then,
they seek to put back together states corresponding to the complete
workload by adding up and, when appropriate, fusing, one state for
each workload query. Since any combination of partial states leads
to a valid state in [21], the number of states thus created explodes.
To avoid it, Pruning discards partial states outgrowing the given
space or cost budget, whereas Greedy develops very few states: it
only keeps the best combined state, say, for the workload queries
{q1, q2}, even though this may prevent finding the best combined
state for {q1, q2, q3}. Finally, Heuristic resembles Pruning, ex-
cept that after having built all one-query states, it only keeps: the
minimal-cost state for each query, and any states which offer some
view fusing opportunity. Since our algorithms do not use a cost or
space budget, we did not give one to the [21] strategies either. This
does not prevent their pruning which is mostly based on comparing
two states and discarding the less interesting one.

Search strategy acronyms In the sequel, for convenience, we will
refer to the [21] strategies simply as Pruning, Greedy and Heuris-

tic. Among the strategies we propose (see Section 5.2), DFS is the
(stratified) depth-first search, while GSTR is the greedy strategy.
The suffix -AVF after a strategy name denotes aggressive view fu-
sion is applied in conjunction with that strategy, while the -STV

suffix denotes that the stopvar stop condition is used.
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Figure 4: Strategy comparison on small workloads.

Relative cost reduction To assess search effectiveness, we define
the relative cost reduction (rcr) of a given strategy Σ and workload
Q, at a given moment, as the ratio (cǫ(S0)− cǫ(Sb))/c

ǫ(S0), that
is, the fraction of the cost of the initial state S0, avoided by the
current best state found by Σ by that moment during the search.

6.2 Comparison with existing strategies
We compare our strategies with those of [21] for two small work-

loads of 5 queries each. While the queries they tested involve on
average 4 relations, one needs more RDF atoms than relations to
express the same logical query, since data that would fit in a wide
relational tuple is split over many RDF triples. Thus, queries in the
first and second workload have 5 and 10 atoms each, respectively.

Figure 4 shows the rcr of the three strategies of [21] and our
strategies DFS-AVF-STV and GSTR-AVF-STV. The reasons for
using the specific heuristics on our strategies are explained in Sec-
tion 6.3. The Figure considers workloads of star and chain queries,
which are typical in RDF. In particular, star queries translate to
query graphs (Definition 3.1) that are cliques (each atom is con-
nected to all others), allowing for many VBs and JCs and, therefore,
have a search space of increased size, whereas chain queries can be
considered an average case regarding the difficulty of the search.
The workloads were generated both with high and low commonal-
ity across queries and we used the stoptime stop condition set to 30
minutes. While this may seem long, recall that the complexity of
search is high (Section 5.1). We consider this duration acceptable
as view selection is an off-line process. The overhead is worth it
especially for large workloads, and/or queries asked repeatedly.

As can be seen in Figure 4, for the smaller workload, all strate-
gies ran well, with DFS-AVF-STV and GSTR-AVF-STV being the
best. The runs did not finish, i.e., the strategies might have found
better solutions by searching longer. Greedy managed to reduce the
cost significantly for chains but failed to find any state better than
the initial one for stars queries. For the larger workload, the [21]
strategies failed to produce any solution, as they outgrow the avail-
able memory building partial states (for 1, 2, 3 queries etc.) be-
fore building any state covering all 5 queries. In contrast, DFS-
AVF-STV and GSTR-AVF-STV keep running and achieve interest-
ing cost reductions. The same trend was observed on workloads
with cycle- and random graph-shaped queries (we generated both
sparse and dense graphs), at high and low commonality.

Thus, from now on, and in particular for large workloads, we
focus only on our strategies, since those of [21] systematically out-
grow the memory before reaching a full candidate view set.

6.3 Impact of heuristics and optimizations
We now study the impact of the AVF and STV techniques on

the search space explored by our algorithms. A tiny workload of 2
queries of 4 atoms each (satisfiable on the Barton dataset) suffices
to illustrate this (Figure 5). The queries used are star-shaped with
low commonality; [25] shows similar results for other workloads.
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Figure 5: Impact of heuristics on the search.
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Figure 6: Relative cost reduction for large workloads.

We used the DFS strategy and several combinations of heuristics.
The states created are those reached by the search, while duplicates

are those already attained through a different search path (already
belong to CS or ES; see Section 5) and are ignored. Discarded are
the states excluded from the search once they are created, whereas
explored are the ones from which all outgoing transitions respecting
DFS have been explored. In this experiment that ran in the cluster,
all strategies completed execution and reached the same best state.

A first remark based on Figure 5 is that the number of dupli-
cate states may be quite important. Duplicates occur because even
when using a stratified strategy, a state may be reached by more
than one path. For instance, assume for some given views v1, v2

that an SC modifies v1 into v′1 (denoted v1
SC(c1)
−−−−→ v′1) and simi-

larly v2
SC(c2)
−−−−→ v′2. From the state (v1, v2), our algorithms reach

the state (v′1, v
′
2) twice: once through (v1, v

′
2) and a second time

through (v′1, v2). Our algorithm identifies such states as soon as
they are created, in order not to repeat their exploration.

Second, Figure 5 shows that AVF (which fuses views within one

candidate set as soon as possible) reduces the number of created
states (while preserving optimality as explained in Section 5.2),
because no state containing identical views is explored. A third
remark is that STV discards a significant number of states, which
trims down significantly all state counts. The combination AVF-
STV is marginally better than STV and was efficient in all the ex-
periments we ran. Hence, we systematically use it in the sequel.

6.4 Cost reduction on large workloads
We study the scalability of our DFS and GSTR algorithms for

large query workloads. To this purpose, we generated workloads
of 5, 10, 20, 50, 100 and 200 queries; each query has 10 atoms,
i.e., the views of the initial states contains 10 atoms on average. We
consider workloads consisting of: star queries only; chain queries
only; random-graph shaped queries (with two variants, dense graph
and sparse graph); mixed, combining queries of all the previous
shapes. For each kind of workload, we generate three low- and
three high-commonality variants. On each of these 30 workloads,
we ran DFS-AVF-STV and GSTR-AVF-STV. We used the stoptime

Workload Q |Q| #a(Q) #c(Q) |Qr| #a(Qr) #c(Qr)
Q1 5 33 35 20 143 157
Q2 10 76 77 231 1436 1651

Table 3: Workloads used for reformulation experiments.
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Figure 7: Search for view sets using reformulation.

stop condition set to 3 hours. These experiments ran in the cluster.
Figure 6 plots for each of the 10 workload types, the rcr aver-

aged over the 3 workloads of that type, at the end of the search.
A first remark is that DFS’s relative cost reduction is very impres-
sive overall, and in many cases around 0.99. Second, note that the
rcr of GSTR-AVF-STV is generally smaller than that of DFS-AVF-
STV, because GSTR explores significantly fewer states than DFS

and might miss interesting opportunities. Third, we can distinguish
“easier” workloads, such as chains and random-sparse graphs, re-
sulting in query graphs with fewer edges and, thus, fewer transi-
tions. For such workloads, the rcr is higher since the search space
is smaller (and bigger part of it was explored). Stars and random-
dense graphs are difficult cases, as they lead to many edges, thus
smaller rcrs. Finally, the rcrs obtained for high-commonality work-
loads are generally higher than for low-commonality, e.g., for
random-dense and mixed workloads. This confirms the intuition
that more factorization opportunities lead to higher gains. DFS-
AVF-STV resulted in views with 3.2 atoms in average, whereas
GSTR-AVF-STV produced views with 6.5 atoms in average.

We conclude that DFS-AVF-STV scales well up to 200 queries,
depending on the workload structural complexity, and can achieve
very significant reductions in the state cost.

6.5 View selection and implicit triples
We study the impact of implicit triples on view selection perfor-

mance. Starting from a non-saturated database D and workload Q,
three scenarios are possible: (i) saturated database Ds, search on
Q and the statistics of Ds; (ii) original database D, search on the
pre-reformulated workload Qr and the statistics of D; (iii) original
database D, search on Q with the statistics of the saturated database
Ds (recall from Section 4.3 that we gather them without actually
saturating the database). Of course, we consider the same RDF
entailment rules for the three scenarios, i.e., those brought by an
RDFS. Saturation and post-reformulation coincide for any search
algorithm, since they lead to the same input statistics and workload.
Hence, we only study the search for pre- and post-reformulation.

This experiment uses the Barton dataset as well. The schema
consists of 39 classes, 61 properties, and 106 RDFS statements
of the kinds listed in Table 1. We generated two satisfiable work-
loads Q1 and Q2, whose properties and those of their reformulated
versions Qr

1 and Qr
2 are characterized in Table 3; |Q| denotes the

number of queries in Q, #a(Q) the number of atoms and #c(Q)
the number of constants. Q1 is a subset of Q2.

Figure 7 shows the evolution of the best cost found by DFS-
AVF-STV for both workloads (post-reformulation) and their refor-
mulated variants (pre-reformulation). The search was cut after 3
hours. We see that the initial state for reformulated workloads has
higher cost than the original workloads. Further, the best state cost
decreases rapidly with post-reformulation, because the workload is
much smaller and the search space is traversed faster. In contrast,
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the important workload sizes slow down the cost decrease for pre-
reformulation. The best cost of pre-reformulation is higher than
that of post-reformulation, by a factor of 2.7 for Q1, and 22 for
Q2. This confirms our expectation that the advantages of post-
reformulation are most visible for larger workloads (with larger
Qr). Moreover, the best cost is reached faster in post-reformulation.

In general, the number of implicit triples increases with the size
of the database D and of the schema S. We show in [25] that
the bound is O(|D| × |S|) for the considered RDFS entailment
rules. Similarly, |Qr| may be the same as |Q|, or exponentially
larger (Theorem 4.1). In a reformulation-based setting, view se-
lection based on post-reformulation is clearly better than based
on pre-reformulation, since the initial state is better and search is
faster, especially for large workloads. Among saturation and post-

reformulation, the best choice strongly depends on the context (dis-
tribution, rights to update the database, frequency and types of up-
dates etc.) as explained in Section 4.2. The views recommended in
a saturation and a post-reformulation context are the same.

6.6 View­based query evaluation
We now study the benefits that our recommended views actu-

ally bring to query evaluation (recall though that our view selection
does not optimize for query evaluation only, but for a combination
including storage and maintenance costs). For the workload Q1 de-
scribed in Section 6.5, we materialized the views recommended by
pre- and post-reformulation, and ran the 5 queries Q1

1 to Q5
1 of Q1

using (i) the views, (ii) the (dictionary-encoded, heavily indexed)
saturated triple table in PostgreSQL, (iii) a restricted version of (ii)
only with the triples needed for answering Q1, (iv) RDF-3X [17]
(loading the saturated database in it), and (v) the materialization of
the query workload (initial state). RDF-3X times were put as a ref-
erence; by using PostgreSQL (even with views) we did not expect
to get better times than those of the state-of-the-art RDF platform.

The views were materialized in 81 seconds for post-reformulation
(the total view size was 433 MB or 15% of the database size), and
103 seconds for pre-reformulation (601 MB or 21% of the database
size). Figure 8 shows that using our views, queries are evaluated
more than an order of magnitude faster than on the triple table,
even when using the restricted triple table (iii). Both pre- and post-
reformulation performed in the range of RDF-3X. This is a promis-
ing result, since our approach can be used on top of RDF-3X and
achieve an even bigger gain. Finally, as expected, materializing the
queries gives the best results (simply scanning the views is suffi-
cient). More experiments are provided in [25].

Pre-computed views are likely to speed up query evaluation in
any platform, simply by avoiding computations at runtime. More-
over, our framework (i) avoids the overhead of query rewriting at
run-time, as query rewritings are also pre-computed and (ii) could
easily translate our rewritings directly to any RDF platform’s logi-
cal plans, exploiting its physical optimization capabilities.

6.7 Experiment conclusion
Our experiments have shown that the GSTR and DFS strategies

scale well on up to 200 queries and achieve impressive cost reduc-

tion factors in many cases close to 99%. The strategies of [21] are
also effective for small workloads, but they outgrow the memory on
larger ones before producing a solution. The AVF and STV heuris-
tics are efficient and effective, i.e., they reduce the search space
while preserving view set quality. Post-reformulation largely out-
performs pre-reformulation in terms of speed and effectiveness of
the candidate view set selection. Finally, our recommended views
do reduce query evaluation times by several orders of magnitude.

A tighter integration of the view selection tool with the internals
of the data management platform, and/or using a dedicated RDF
system, is likely to increase performance gains even more.

7. RELATED WORKS
Our work is among the first to explore materialized view selec-

tion in RDF databases. The closest works related to ours are [6]
and [9]. RDFMatView [6] recommends RDF indices to materialize
for a given workload, while in [9] a set of path expressions appear-
ing in the given workload is selected to be materialized, both aim-
ing at improving the performance of query evaluation. Unlike our
approach, none of these works aims at rewriting the queries com-
pletely using the materialized indices or paths and, thus, cannot be
used in scenarios where the client needs to process her queries even
without access to the database. Moreover, they do not consider the
implicit triples that are inherent to RDF.

Commonly used RDF management platforms (e.g., Sesame,
3store or Jena) are based on a relatively simple mapping of triples
within a relational database. Many works have addressed the ef-
ficient processing of RDF queries and updates [1, 15, 16, 17, 20,
22, 23], proposing various storage and indexing models. In vertical
partitioning [1] one (s, o) relation is created for each property value
(possibly leading to large unions for queries with variables in the
p position). The authors of [16, 17] have built RDF-3X, a native
RDF query engine. In many of the approaches, the (s, p, o) table is
indexed in multiple ways (by each attribute, each pair of attributes
etc.), a technique originally introduced in [23]. Recently, the prob-
lem of view-based SPARQL query rewriting was studied in [13].
These techniques have been shown to result in good RDF query
and update performance. We view our approach as complementary
to these works, since we seek to identify materialized views to store
on top (independently) of the base store and indexes. To adapt our
approach to a specific RDF platform, one only needs (i) an execu-
tion framework capable of evaluating our simple select-project-join
rewritings and (ii) possibly, tailoring the cost function to the partic-
ularities of the platform. Our approach improves performance by
exploiting pre-computed results and thus avoiding computations at

query evaluation time, gains likely to extend to any context.
The main results on query rewriting for answering queries using

views are surveyed in [11]. In contrast with query rewriting algo-
rithms, views are not part of the input of view selection, but are part
of the output together with the rewritings. In particular, and follow-
ing [21], our view selection algorithm generates rewritings while
searching for candidate views. As for the rewritings themselves,
view selection produces equivalent rewritings, as query rewriting
does in the setting of query optimization, while query rewriting for
data integration typically produces maximally-contained rewritings
due to the incompleteness of the data sources.

Materialized view selection has been intensely studied in rela-
tional databases [8] and data warehouses [12]. We used [21] as a
starting point for our work, as it is one of the prevalent works in
the area and the closest to our problem definition and query lan-
guage. However, in [21] the restriction that no relation may appear

twice in a workload query is imposed, under which view equiva-
lence can be tested in PTIME. This simplification is incompatible
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with RDF queries, which repeatedly use the triple table. In our
context, determining view equivalence (needed for VF and for the
search strategies) is NP-complete [7]. This, along with the typically
bigger size of RDF queries compared to the relational ones (since
only one table with three attributes is used), increase the complexity
of the problem even more. Hence, the strategies presented in [21]
are not effective in our context. We innovate over [21] by propos-
ing new search strategies and heuristics, which, as demonstrated in
Section 6, do not suffer from memory limitations and lead to the
selection of efficient views, even if we limit the time of the search.
Furthermore, there are some differences between our transitions
and those in [21], due to the differences between their SQL-like
language and our Datalog formalism (for more details see [25]).

Multi-query optimization [28] and partial view materialization
[29] are also related works. Unlike our approach, none of them
aims to completely rewrite the queries using the views. In [28],
common query subexpressions among the queries are recognized to
be materialized. Views with disjunctions are supported, which we
also plan to do as future work. In [29] views are only partially ma-
terialized and their content is adjusted as the queries change, which
is another difference with our work (we consider static queries).

Query reformulation (a.k.a. unfolding) is directly related to query
answering under constraints interpreted in an open-world assump-
tion (e.g., [19]), i.e., when constraints are used as deductive rules.
In particular, our query reformulation algorithm builds on those
in the literature considering the so-called Description Logic (DL)

fragment of RDF [3, 5], i.e., description logic constraints. This
fragment corresponds to RDF databases without blank nodes that
are made of an RDFS, called a Tbox, and a dataset made of as-
sertions for classes and properties in the RDFS, called an Abox,
i.e., well-formed triples of the form (s, rdf:type, c) or (s, p,o),
where c is a class and p a property of the RDFS. Lastly, the RDF
entailment rules considered are only those dedicated to an RDFS
(see Section 4.1). Reformulation algorithms for the DL fragment
of RDF actually reformulate queries from a strictly less expressive
language than our RDF queries. They only support atoms in which
the class or the property is specified, i.e., they do not support atoms
of the form t(s, rdf:type, X) or t(s, X,o) with X a variable. To
overcome this, our reformulation algorithm extends the state of the
art to our RDF queries, i.e., the BGP of SPARQL.

An early version of this work was demonstrated in [10].

8. CONCLUSION AND FUTURE WORK
We considered the setting of a Semantic Web database, including

both explicit data encoded in RDF triples, and implicit data, derived
from the RDF entailment rules [26]. Implicit data is important since
correctly evaluating a query against an RDF database also requires
taking it into account. In this context, we have addressed the prob-
lem of efficiently recommending a set of views to materialize, min-
imizing a combination of query evaluation, view storage and view
maintenance costs. Starting from an existing relational approach,
we have proposed new search algorithms and shown that they scale
to large query workloads, for which previous search algorithms fail.
Our view selection approach can be used as well with a saturated
RDF database (where all implicit triples are added explicitly to the
data), or with a non-saturated one (when queries need to be refor-
mulated to reflect implicit triples). We have proposed a new algo-
rithm for reformulating queries based on an RDF Schema, as well
as a novel post-reformulation method for taking into account im-
plicit triples in a query reformulation context. Post-reformulation
can be much more efficient than naı̈ve pre-reformulation, due to the
high complexity of view search in the number of queries.

As future work, we consider parallelizing our view search al-

gorithms by identifying workload queries that do not have many
commonalities and running the search in parallel for each group.
We also consider extending our query and view language, as well
as adapting our approach to dynamic query workloads.
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