Refactoring the Web Interface

John R. Douceur’, Jon Howellf, Bryan Parno’, Michael Walfish#

TMicrosoft Research

1 The IRON properties of the web

The web browser, which originated as a simple viewer
for displaying static web pages, has evolved into an oper-
ating system for executing web applications. The quan-
tity, diversity, and capability of web applications have
grown dramatically, such that many modern web appli-
cations have begun to rival the breadth and functionality
of desktop applications. What has fueled this trend? Why
do users find a browser to be a better application platform
than a traditional operating system?

Somewhere within the amalgamation of standards and
conventions that define what it means to be a web ap-
plication, there must be some key properties that make
such applications particularly attractive to users. We ar-
gue that these important properties are unrelated to most
of the de facto web API, including HTML, DOM, CSS,
GIF, JPEG, PNG, JavaScript, etc. In other words, an en-
tirely different set of web standards could be just as at-
tractive and successful, as long as it were to maintain a
particular set of core properties.

In particular, we posit that web apps are attractive be-
cause they are isolated, rich, on-demand, and networked:

e Isolated: Web applications cannot unilaterally affect
other applications, so they are safe to try.

e Rich: Web applications are visually appealing, in-
teractively responsive, and semantically powerful.

e On-demand: Web applications do not require instal-
lation or OS configuration, so they are easy to test
drive and easy to point others to.

e Networked: Web applications make use of resources
on the web, so they can access and integrate a grow-
ing and up-to-date set of disparate content.

We argue that these properties—which we call the
IRON properties—are individually necessary to preserve
the attractiveness of the current web. If web apps were
not isolated or on-demand, the increased risk or burden
of trying out a new app would reduce its rate of prolifer-
ation. If they were not networked, many of today’s most
interesting web apps (online maps, electronic commerce,
cloud storage, etc.) could not function. And although the
early static web was not very rich, the introduction of
client-side execution (via JavaScript) was needed to en-
able virtually every web app in use today.

We further believe that these properties are jointly suf-
ficient to provide the user experience that makes web
applications attractive to users. To demonstrate this, the
Zoog project at Microsoft Research is constructing a
minimal execution platform that satisfies the IRON prop-
erties. Our intent is to show that this platform can support
the entire set of applications that exist on today’s web.

TUT-Austin

2 Weaknesses of the current web API

Although the IRON properties are what makes web ap-
plications attractive, the current web API actually weak-
ens all four of these properties.

Web apps are not strongly isolated, because the web
API is very broad. Not only does the API include render-
ing interfaces for the suite of HTML standards (DOM,
CSS) and an execution interface for JavaScript, but it also
de facto includes interfaces to common image formats
(GIF, JPEG, PNG) and popular plug-ins (Flash, JVM).
This broad API is implemented via a large trusted com-
puting base (TCB), which has evinced numerous security
vulnerabilities and exploits [7], weakening the degree to
which web applications are isolated.

‘Web applications are undoubtedly rich, but they are far
less rich than desktop applications. In large part, this is
because desktop apps can build on a huge volume of ex-
isting code and libraries, written in arbitrary languages,
and built using a wide variety of toolchains. By contrast,
only a small fraction of legacy code is written in or trans-
latable to a web-standard language such as JavaScript,
Flash bytecode, or JVM bytecode [5].

The web API enables applications to be richer by tak-
ing advantage of plug-ins, such as ActiveX controls and
runtimes for Flash and Java. However, this makes web
apps less on-demand, because these plug-ins require reg-
ular updating and patching, which requires users to make
configuration decisions since the plug-ins are part of the
TCB. Attempts to use plug-ins to deploy entirely new
runtimes, such as Silverlight, suffer from low uptake be-
cause they require user action beyond merely clicking on
a link. The on-demand nature of web apps is also weak-
ened by browser incompatibilities that inevitably arise
among different implementations of a complex API [6].

Web applications are restrictively networked by the
web API’s policy rules. The same-origin policy (SOP)
prevents a web app from exchanging content with any
site other than the app’s origin site. (Displaying images
and executing scripts are permitted exceptions, although
reading the image or script content is not.) These rules
arose to prevent attacks that leverage a browser’s privi-
leged location to compromise another machine, but their
realization inhibits interesting classes of networked ap-
plications, most notably peer-to-peer applications.

These weaknesses have been noted before, and various
research efforts have attempted to address them. OP [4],
IBOS [9], Chrome [8], and Gazelle [10] improve the abil-
ity of a browser to keep applications isolated, by par-
titioning browser functionality to reduce the TCB size
and to limit unintended cross-application dependencies.



Xax [5] and Native Client [11] are plug-in models that
enable applications to become richer without becoming
less on-demand, by executing native-code plug-ins inside
isolated sandboxes. Consent protocols [1, 2] reduce the
limitations of the SOP by providing safe means for web
applications to communicate with non-origin servers.
Although these efforts have made significant progress,
their potential is limited by the constraints of the current
web API. Understandably, there is reluctance to change
such a popular API, because of legacy concerns and
because of developer familiarity with the existing APIL.
However, we argue that the biggest problem is not so
much changing the web API but rather disentangling two
concepts that are tightly coupled (and, moreover, con-
flated) in the term “Application Programming Interface”.

3 Deconstructing the web API

When a developer programs a desktop application, she
writes code to implement application-specific behavior.
This code employs both OS system services and also li-
brary components linked into the application. From the
developer’s point of view, she is writing the app to talk
to a Developer Programming Interface (DPI). When a
client OS executes an application, it executes instructions
that occasionally call system services. The client OS is
oblivious to calls from the application to its linked-in li-
braries. From the client’s point of view, it is executing an
app that is talking to a Client Execution Interface (CEI).
For desktop applications, the difference between DPI and
CEI can vary significantly depending on how much li-
brary code the developer chooses to include in the app.

For web applications, the DPI and CEI are commonly
identical': The developer writes her app to manipulate
HTML via the DOM and CSS, using code written in
JavaScript or Flash/Java/Silverlight, presenting images
in GIF, JPEG, or PNG format. The code that implements
this functionality is resident on the client, so the same
interface is used by the client to execute the application.

There is no need for these two interfaces to be identi-
cal; the CEI merely needs sufficient functionality to sat-
isfy the IRON properties and to support code that imple-
ments the DPI. Otherwise, the CEI should be as small as
possible: A small CEI makes applications more strongly
isolated because it reduces the size of the shared TCB,
thereby minimizing opportunities for security vulnerabil-
ities across applications. A CEI that enables native-code
execution, a la Xax or Native Client, supports richer ap-
plications, because it allows the reuse of extant code, li-
braries, and toolchains. With a small CEIL, all rich code
is outside the TCB, so even applications with new rich
functionality can be loaded without involving user con-
figuration decisions, thus keeping them on-demand.

! Although toolkits such as GWT provide a higher-level DPI.

To support networked applications, we argue that each
application should have a raw IP pipe to the internet, and
this connection should be logically outside any firewall.
It is clear that this removes the awkward SOP restric-
tions of the current web API, but one might reasonably
be concerned that this proposal may increase a malicious
application’s ability to harm (1) other apps on the same
machine, (2) other machines on the same subnet, or (3)
other machines on the internet. We address each in turn.

Other applications on the same machine are strongly
isolated from the malicious app, because our small CEI
has a very narrow interface that we posit is easy to secure.
The only means for two apps to communicate is via their
network connections, so the malicious app’s only avenue
for attack is sending packets to the target app. Thus, the
case of another app on the same machine reduces to the
case of another machine on the internet.

Other machines on the same subnet might seem partic-
ularly vulnerable to non-SOP-restricted communication,
because the SOP was developed to prevent attacks that
leverage a browser’s privileged location. However, in our
proposal, each web application’s IP pipe is logically out-
side any firewall, so the browser is not in a privileged
location. For legitimate web apps that need access to en-
terprise resources behind a firewall, each app must estab-
lish a separate authenticated connection to the enterprise
server, analogous to the use of VPN to provide access to
enterprise resources for remote clients.

Lastly, other machines on the internet are no more vul-
nerable to a malicious app when it runs on a client than
when it runs on the attacker’s home machine. An attacker
does obtain additional resources from the client, with
which it can launch DDoS attacks. However, the client
can enforce correct source addresses in outgoing packets,
and it can include source-side mechanisms [3] to protect
against DDoS attacks.

References

[1] Adobe. Cross-domain policy file specification. http://www.adobe . com/

devnet/articles/crossdomain_policy_file_spec.html.

[2] L Fette. The WebSocket protocol. http://tools.ietf.org/html/

draft-ietf-hybi-thewebsocketprotocol, 2011.
[3] J. M. Gregory, G. Prier, and P. Reiher. Attacking DDoS at the source. In
IEEE ICNP, 2002.

[4] C. Grier, S. Tang, and S. T. King. Secure web browsing with the OP web

browser. In /EEE Symp. on Security and Privacy, 2008.

J. Howell, J. R. Douceur, J. Elson, and J. R. Lorch. Leveraging legacy code

to deploy desktop applications on the web. In OSDI, 2008.

[6] E.Kiciman and B. Livshits. AjaxScope: A platform for remotely monitor-
ing the client-side behavior of Web 2.0 applications. In SOSP, 2007.

[7]1 NIST Vulnerability Database. http://nvd.nist.gov/nvd.cfm.

[8] C. Reis and S. D. Gribble. Isolating Web Programs in Modern Browser
Architectures. In ACM EuroSys, 2009.

[9] S.Tang, H.Mai, and S. T. King. Trust and Protection in the Illinois Browser
Operating System. In OSDI, 2010.

[10] H.J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and H. Ven-
ter. The multi-principal OS construction of the Gazelle web browser. In
USENIX Security Symposium, 2009.

[11] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native client: A sandbox for portable, untrusted
x86 native code. In IEEE Symposium on Security & Privacy, 2009.

[5



