Atlantis: Robust, Extensible Execution Environments for
Web Applications

James Mickens
. Microsoft Research
mickens@microsoft.com

ABSTRACT

Today’s web applications run inside a complex browser en-
vironment that is buggy, ill-specified, and implemented in
different ways by different browsers. Thus, web applications
that desire robustness must use a variety of conditional code
paths and ugly hacks to deal with the vagaries of their run-
time. Our new exokernel browser, called Atlantis, solves
this problem by providing pages with an extensible execu-
tion environment. Atlantis defines a narrow API for basic
services like collecting user input, exchanging network data,
and rendering images. By composing these primitives, web
pages can define custom, high-level execution environments.
Thus, an application which does not want a dependence on
Atlantis’ predefined web stack can selectively redefine com-
ponents of that stack, or define markup formats and script-
ing languages that look nothing like the current browser run-
time. Unlike prior microkernel browsers like OP, and unlike
compile-to-JavaScript frameworks like GWT, Atlantis is the
first browsing system to truly minimize a web page’s depen-
dence on black box browser code. This makes it much easier
to develop robust, secure web applications.

Categories and Subject Descriptors

D.4.7 [Operating Systems]|: Organization and Design; D.4.5
[Operating Systems]|: Reliability; D.4.6 [Operating Sys-
tems]|: Security and Protection

General Terms
Design, Reliability, Security

Keywords

Web browsers, microkernels, exokernels

1. INTRODUCTION

Modern web browsers have evolved into sophisticated com-
putational platforms. Unfortunately, creating robust web
applications is challenging due to well-known quirks and de-
ficiencies in commodity browsers [41]. In theory, there are a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SOSP '11, October 23-26, 2011, Cascais, Portugal.

Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

217

Mohan Dhawan
Rutgers University
mdhawan@cs.rutgers.edu

variety of standards that define the software stack for web
applications [14, 19, 36, 52, 55]. In practice, the aggregate
specification is so complex that it is difficult for any browser
to implement it properly. To further complicate matters,
browser vendors often add new features without consulting
other vendors. Thus, each browser defines an idiosyncratic
JavaScript interpreter, HTML parser, and layout engine.

These components are loosely compatible across different
vendors, but fine-tuning an application for multiple brows-
ers often means developing specialized application code in-
tended for just one browser. For example:

e Writing a portable web-based GUI is challenging be-
cause different browsers handle mouse and keyboard
events in different, buggy ways (§2.4.1).

e Web pages use CSS [52] to express complex visual
styles. Some browsers do not support certain CSS el-
ements, or do not implement them correctly (§2.4.3).
When this happens, web developers must trick each
browser into providing the proper layout by cobbling
together CSS elements that the browser does under-
stand.

e Browsers expose certain internal data structures as Ja-
vaScript objects that web pages can access. By in-
trospecting these objects, pages can implement useful
low-level services like logging/replay frameworks [31].
However, the reflection interface for internal browser
objects is extremely brittle, making it challenging to
implement low-level services in a reliable, portable fash-
ion (§2.4.4).

All of these issues make it difficult for web developers to rea-
son about the robustness and the security of their applica-
tions. JavaScript frameworks like jQuery [5] try to encapsu-
late browser incompatibilities, providing high-level services
like GUI libraries atop an abstraction layer that hides condi-
tional code paths. However, these frameworks cannot hide
all browser bugs, or change the fundamental reality that
some browsers support useful features that other browsers
lack [27, 31]. Indeed, the abstraction libraries themselves
may perform differently on different browsers due to unex-
pected incompatibilities [18, 28].

1.1 A Problem of Interface

These problems are problems of interface: web applications
interact with the browser using a bloated, complex API that
is hard to secure, difficult to implement correctly, and which

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

often exposes important functionality in an obscure way, if
at all. For example, a page’s visual appearance depends on
how the page’s HTML and CSS are parsed, how the parsed
output is translated into a DOM tree (§2.2), how the result-
ing DOM tree is geometrically laid out, and how the renderer
draws that layout. A web page cannot directly interact with
any step of this process. Instead, the page can only provide
HTML and CSS to the browser and hope that the browser
behaves in the intended fashion. Unfortunately, this is not
guaranteed [15, 30, 39, 41]. Using an abstraction framework
like jQuery does not eliminate the fundamentally black box
nature of the browser’s rendering engine.

Using Xax [13] or NaCl [56], developers can write native
code web applications, regaining low-level control over the
execution environment and unlocking the performance that
results from running on the bare metal. However, most web
developers who are proficient with JavaScript, HTML, and
CSS do not want to learn a native code development en-
vironment. Instead, these developers want a more robust
version of their current software stack, a stack which does
have several advantages over native code, like ease of devel-
opment and the ability to deploy to any device which runs
a browser.

1.2 Our Solution: Atlantis

To address these issues, we have created a new microkernel
web browser called Atlantis. Atlantis’ design was guided by
a fundamental insight: the modern web stack is too compli-
cated to be implemented by any browser in a robust, secure
way that satisfies all web pages. The Atlantis kernel only
defines a narrow, low-level API that provides basic services
like network 1/0, screen rendering, and the execution of ab-
stract syntax trees [1] that respect same-origin security poli-
cies. Each web page composes these basic services to define
a richer high-level runtime that is completely controlled by
that page.

The Atlantis kernel places few restrictions on such a runtime.
We envision that in many cases, web pages will customize a
third-party implementation of the current HTML/CSS stack
that was written in pure JavaScript and compiled to Atlantis
ASTs. However, a page is free to use a different combination
of scripting and markup technologies. Atlantis is agnostic
about the details of the application stack—Atlantis’ main
role is to enforce the same origin policy and provide fair allo-
cation of low-level system resources. Thus, Atlantis provides
web developers with an unprecedented ability to customize
the runtime environment for their pages. For example:

e Writing robust GUIs is easy because the developer has
access to low-level input events, and can completely
define higher-level event semantics.

e Creating a specific visual layout is straightforward be-
cause the developer can define his own HTML and CSS
parsers, and use Atlantis’ bitmap rendering APIs to
precisely control how content is displayed.

e Pages can now safely implement low-level services that
introspect “internal” browser state. The introspection
is robust because the internal browser state is com-
pletely managed by the page itself—the Atlantis kernel
knows nothing about traditional browser data struc-
tures like the DOM tree.

218

Atlantis’ extensibility and complete agnosticism about the
application stack differentiates it from prior browsers like
OP [25] and IBOS [46] that also use a small kernel. Those
systems are tightly coupled to the current browser abstrac-
tions for the web stack. For example, OP pushes the Ja-
vaScript interpreter and the HTML renderer outside the
kernel, isolating them in separate processes connected by a
message passing interface. However, the DOM tree abstrac-
tion is still managed by native code that a web page cannot
introspect or modify in a principled way. In Atlantis, ap-
plications do not have to take dependencies on such opaque
code bases. Thus, in contrast to prior microkernel brows-
ers, Atlantis is more accurately described as an exokernel
browser [16] in which web pages supply their own “library
OSes” that implement the bulk of the web stack.

1.3 Contributions

Atlantis’ primary contribution is to show that exokernel
principles can lead to a browser that is not just more secure,
but that also provides a more extensible execution environ-
ment; in turn, this increased extensibility allows web pages
to be more robust. We provide a demonstration web stack
that is written in pure JavaScript and contains an HTML
parser, a layout engine, a DOM tree, and so on. This stack
takes advantage of our new scripting engine, called Syphon,
which provides several language features that make it eas-
ier to create application-defined runtimes (§3.3). We show
that our prototype Syphon engine is fast enough to execute
application-defined layout engines and GUI event handlers.
We also demonstrate how easy it is to extend our demon-
stration web stack. For example, we show that it is trivial
to modify the DOM tree innerHTML feature so that a san-
itizer [33] is automatically invoked on write accesses. This
allows a page to prevent script injection attacks [38].

The rest of this paper is organized as follows. In Section 2,
we describe modern browser architectures, explaining why
current browsers, both monolithic and microkernel, impede
application robustness by exposing brittle black box and
grey box interfaces. This discussion motivates the exokernel
design of Atlantis, which we describe in Section 3. After
describing our prototype implementation (§4) and several
practical deployment issues (§5), we evaluate our prototype
in Section 6, demonstrating its extensibility and its perfor-
mance on a variety of tasks. We then discuss related work
in Section 7 before concluding.

2. BACKGROUND

The vast majority of lay people, and many computer sci-
entists, are unaware of the indignities that web developers
currently face as they try to create stable, portable web ap-
plications. In this section, we describe the architecture of
a modern web browser, and explain why even new research
browsers fail to address the fundamental deficiency of the
web programming model, namely, that the aggregate “web
APT” is too complex for any browser to implement in a ro-
bust fashion.

2.1 Core Web Technologies

Modern web development uses four essential technologies:
HTML, CSS, JavaScript, and plugins. HTML [55] is a declar-
ative markup language that describes the basic content in a

web page. HTML defines a variety of tags for including dif-
ferent kinds of data; for example, an tag references an
external image, and a tag indicates a section of bold text.
Tags nest using an acyclic parent-child structure. Thus, a
page’s tags form a tree which is rooted by a top-level <html>
node.

Using tags like , HTML supports rudimentary manip-
ulation of a page’s visual appearance. However, cascading
style sheets (often abbreviated as CSS [52]) provide much
richer control. Using CSS, a page can choose fonts and color
schemes, and specify how tags should be visually positioned
with respect to each other.

JavaScript [20] is the most popular language for client-side
browser scripting. JavaScript allows web pages to dynami-
cally modify their HTML structure and register handlers for
GUI events. JavaScript also allows a page to asynchronously
fetch new data from web servers.

JavaScript has traditionally lacked access to client-side hard-
ware like web cameras and microphones. However, a vari-
ety of native code plugins like Flash and Silverlight pro-
vide access to such resources. These plugins run within the
browser’s address space and are often used to manipulate
audio or video data. A web page instantiates a plugin using
a special HTML tag like <object>.

2.2 Standard Browser Modules

Browsers implement the core web technologies using a stan-
dard set of software components. The idiosyncratic experi-
ence of “surfing the web” on a particular browser is largely
governed by how the browser implements these standard
modules.

e The network stack implements various transfer proto-
cols like http://, https://, file://, and so on.

e The HTML parser validates a page’s HI'ML. The CSS
parser performs a similar role for CSS. Since mal-
formed HTML and CSS are pervasive, parsers define
rules for coercing ill-specified pages into a valid format.

e The browser internally represents the HTML tag tree
using a data structure called the DOM tree. “DOM”
is an abbreviation for the Document Object Model,
a browser-neutral standard for describing HTML con-
tent [51]. The DOM tree contains a node for every
HTML tag. Each node is adorned with the associated
CSS data, as well as any application-defined event han-
dlers for GUI activity.

e The layout and rendering engine traverses the DOM
tree and determines the visual size and spatial posi-
tioning of each element. For complex web pages, the
layout engine may require multiple passes over the
DOM tree to calculate the associated layout.

e The JavaScript interpreter provides two services. First,
it implements the core JavaScript runtime. The core
runtime defines basic datatypes like strings, and pro-
vides simple library services like random number gen-
eration. Second, the interpreter reflects the DOM tree
into the JavaScript namespace, defining JavaScript ob-
jects which are essentially proxies for internal browser
objects. These internal objects are written in native
code (typically C++). From the perspective of a web

219

application, the JavaScript wrappers for internal na-
tive objects should support the same programming se-
mantics that are supported by application-defined ob-
jects. However, as we discuss later, browsers do not
provide this equivalence in practice.

e The storage layer manages access to persistent data
like cookies, cached web objects, and DOM storage [48],
a new abstraction that provides each domain with sev-
eral megabytes of key/value storage.

Even simple browser activities require a flurry of communi-
cation between the modules described above. For example,
suppose that JavaScript code wants to dynamically add an
image to a page. First, the JavaScript interpreter must send
a fetch request to the network stack. Once the stack has
fetched the image, it examines the response headers and
caches the image if appropriate. The browser adds a new
image node to the DOM tree, recalculates the layout, and
renders the result. The updated DOM tree is then reflected
into the JavaScript namespace, and the interpreter triggers
any application-defined event handlers that are associated
with the image load.

2.3 Isolating Browser Components

Figure 1(a) shows the architecture of a monolithic browser
like Firefox or IE8. Monolithic browsers share two impor-
tant characteristics. First, a browser “instance” consists of a
process containing all of the components mentioned in Sec-
tion 2.2. In some monolithic browsers, separate tabs receive
separate processes; however, within a tab, browser compo-
nents are not isolated.

The second characteristic of a monolithic browser is that,
from the web page’s perspective, all of the browser com-
ponents are either black box or grey box. In particular,
the HTML/CSS parser, layout engine, and renderer are all
black boxes—the application has no way to monitor or di-
rectly influence the operation of these components. Instead,
the application provides HTML and CSS as inputs, and re-
ceives a DOM tree and a screen repaint as outputs. The Ja-
vaScript runtime is grey box, since the JavaScript language
provides powerful facilities for reflection and dynamic ob-
ject modification. However, many important data structures
are defined by native objects, and the JavaScript proxies for
these objects are only partially compatible with JavaScript’s
ostensible object semantics. The reason is that these prox-
ies are bound to hidden browser state that an application
cannot directly observe. Thus, seemingly innocuous inter-
actions with native code proxies may force internal browser
structures into inconsistent states [31]. We provide examples
of these problems in Section 2.4.

Figure 1(b) shows the architecture of the OP microkernel
browser [25]. The core browser consists of a network stack,
a storage system, and a user-interface system. Each com-
ponent is isolated in a separate process, and they commu-
nicate with each other by exchanging messages through the
kernel. A web page instance runs atop these core compo-
nents. Each instance consists of an HTML parser/renderer,
a JavaScript interpreter, an Xvnc [47] server, and zero or
more plugins. All of these are isolated in separate processes
and communicate via message passing. For example, the Ja-
vaScript interpreter sends messages to the HTML parser to

Page instance

I ==

Page instance

Markup | DOM
Parser tree

Scripting
runtime

Layout +
rendering

Browser + web page

(a) A monolithic browser like
Firefox.

Browser

(b) The OP browser.

Master kernel
(c) Atlantis.

Figure 1: Browser architectures. Rectangles represent strong isolation containers (either processes or C#
AppDomains). Rounded rectangles represent modules within the same container. Solid borders indicate a lack
of extensibility. Dotted borders indicate partial extensibility, and no border indicates complete extensibility.

dynamically update a page’s content; the parser sends screen
updates to the Xvnc server, which forwards them to the Ul
component using the VNC protocol [47]. The kernel deter-
mines which plugins to load by inspecting the MIME types
of HTTP fetches (e.g., application/x-shockwave-flash).
The kernel loads each plugin in a separate process, and the
plugins use message passing to update the display or the
page’s HTML content. IBOS [46] is another microkernel
browser that uses a philosophically similar isolation scheme.

OP and IBOS provide better security and fault isolation
than monolithic browsers. However, OP and IBOS still use
standard, off-the-shelf browser modules to provide the DOM
tree, the JavaScript runtime, and so on. Thus, these brows-
ers still present web developers with the frustrations that we
describe next.

2.4 The Challenges of Web Development

Each browser provides its own implementation of the stan-
dard components. These implementation families are roughly
compatible with each other, but each one has numerous
quirks and bugs. Since a browser’s components are weakly
introspectable at best, developers are forced to use condi-
tional code paths and ad-hoc best practices to get sophisti-
cated web applications running across different browsers. In
the remainder of this section, we provide concrete examples
of these development challenges.

2.4.1 Event Handling

To react to user inputs like mouse clicks, applications at-
tach event handlers to DOM nodes. When the user gener-
ates an event, the browser creates a new JavaScript event
object and traces a path through the DOM tree, invoking
any event handlers along that path. The official DOM spec-
ification defines a three-phase propagation model. Let the
target node of the event be the DOM node whose GUI rep-
resentation initiated the event; for example, the target for
a mouse click might be a <button> element. In the captur-
ing phase, the browser delivers the event to nodes along the
path from the root <html> tag down to the <button> tag.

220

In the target phase, the <button>’s event handlers are in-
voked. In the bubbling phase, the event follows the reverse
path of the capturing phase, moving upwards towards the
DOM tree root. At any point, the event can be canceled by
an event handler. This stops the event from traversing the
rest of the propagation path.

TE9 supports the capturing phase, but IE8 does not—on IES8,
event propagation starts at the target. This makes some
web applications difficult to write on IE8 but easy to write
on IE9. For example, Mugshot [31] is a tool for logging and
replaying web applications. On browsers that support the
capturing phase, logging all GUI events is straightforward—
Mugshot simply installs capturing event handlers at the top
of the DOM tree. On IE8, Mugshot has to use an assort-
ment of hacks. Mugshot cannot just define top-level bub-
bling handlers, since these handlers would miss events that
were canceled earlier in the propagation process. Further-
more, whereas all events (are supposed to) have a capture
phase, the DOM specification states that some events do not
have a bubbling phase. IE8 adheres to this part of the speci-
fication, so bubbling-phase logging handlers would miss non-
bubbling events as well. To avoid these problems, Mugshot
uses DOM extensions [27]. Unfortunately, as we describe
later, DOM extensions are also problematic.

Another severe problem with event handling is that browsers
do not completely agree upon the set of events that should be
supported. Furthermore, even “cross-browser” events may
have different semantics on different browsers. For example:

e All popular browsers ostensibly support the blur event,
which fires when the user shifts input focus away from
a DOM node. Unfortunately, Chrome and Safari do
not consistently fire the event for all types of DOM
nodes. Opera sometimes generates multiple events for
a single underlying blur [41].

e Browsers allow web pages to generate synthetic events.
The browser is supposed to handle these fake events
in the same way that it handles real ones. However,
this does not happen in practice. For example, on

Firefox and IE, generating a fake mouseup event on
a drop-down selection box will not cause an item to
actually be selected. Similarly, generating synthetic
keypress events on a text input will not actually cause
the displayed text to change [31].

e [E fires an event when the user copies from or pastes
to the clipboard. Other browsers do not support these
events.

Abstraction libraries like jQuery [5] try to hide many of these
differences, but some problems remain unfixable because
they arise from browser functionality that is simply missing
or fundamentally broken. Indeed, inconsistent cross-browser
event policies can cause abstraction libraries themselves to
behave differently on different browsers [28]. Furthermore, if
a library’s browser-sniffing algorithm has a bug, the library
may execute the wrong conditional code paths for the actual
browser being used [18].

2.4.2 Parsing bugs

Using the document .write () call, JavaScript code can insert
new HTML tags into a document as that document is being
parsed. This introduces race conditions into the parsing
process, since the parser may or may not receive the new
HTML tokens before it consumes the original token stream.
Different browsers resolve this race in different ways [37].

Buggy parsers can also lead to security problems. Recent
versions of Firefox, Chrome, Safari, and IE are vulnerable
to a CSS parsing bug that allow an attacker to steal pri-
vate data from authenticated web sessions [26]. Microsoft
recently issued a patch for IE8 [32] which fixed a bug in
the JSON [11] parser. In both of these cases, web devel-
opers who were aware of the security problems were reliant
on browser vendors to implement fixes; the page develop-
ers themselves could not ship their pages with a patched
execution environment.

2.4.3 Rendering bugs

All browsers have a variety of rendering quirks. For example,
in Firefox 3.x and IE8 (but not prior versions of IE), neg-
ative values for the CSS word-spacing property are incor-
rectly coerced to zero, leading to problems with visual align-
ment [30]. Various hacks are needed to get IE to properly
render semi-transparent elements [22]. Safari and Chrome
can incorrectly calculate element dimensions that are speci-
fied as a percentage of the enclosing container’s size [9]. Ma-
jor browsers also define non-standard CSS attributes which
are not universally implemented and whose use will cause
web pages to render differently on different browsers [24].

2.4.4 JavaScript/DOM incompatibilities

JavaScript supports object inheritance using prototypes in-
stead of classes [20]. A prototype object is an exemplar
which defines properties for all objects using that prototype.
Each object has exactly one prototype. Inheritance hierar-
chies are created by setting the prototype field for an object
which itself is used as a prototype.

JavaScript is a dynamic language which permits runtime
modification of prototype objects. In theory, this allows an
application to arbitrarily extend the behavior of predefined

221

objects. In practice, extending DOM objects is extremely
brittle [27, 31] because the properties of DOM prototype ob-
jects are bound to opaque native code that is implemented
in different ways on different browsers. Thus, wrapping old
prototype properties, adding new ones, or deleting old ones
may result in success on one browser but a runtime failure on
another. Different browsers also define different prototype
inheritance chains, meaning that modifying the same parent
prototype on two browsers may lead to different property
definitions for descendant prototypes. Although DOM ex-
tension is a powerful feature, it introduces so many corner
cases that developers of the popular Prototype JavaScript
framework [10] decided to abandon the technique for newer
releases of the framework [27].

JavaScript allows applications to define getter and setter
functions for object properties. These functions allow an ap-
plication to intercept reads and writes to a property. Much
like extending DOM prototypes, shimming the properties of
native objects is difficult to do robustly, and it may disrupt
the browser’s event dispatch process [31]. Despite the dan-
ger of these techniques, they remain tantalizingly attractive
because they allow a page to work around the deficiencies of
a browser’s DOM implementation.

In summary, it is easy to write a simple web page that looks
the same in all browsers and has the same functionality in
all browsers. Unfortunately, web pages of even moderate
sophistication quickly encounter inconsistencies and bugs in
browser runtimes. This observation motivates the Atlantis
design, which we describe next.

3. ATLANTIS DESIGN

Figure 1(c) depicts Atlantis’ architecture. At the bottom
level is the switchboard process, the device server, and the
storage manager; in aggregate, we refer to these compo-
nents as the master kernel. The switchboard creates the
isolation containers for web pages, and routes messages be-
tween these containers. The device server arbitrates access
to non-essential peripheral devices like web cameras and mi-
crophones. The storage manager provides a key/value inter-
face for persistent data.

The storage space is partitioned into a single public area and
multiple, private, per-domain areas.! Any domain can read
from or write to the public area, but the storage manager au-
thenticates all requests for domain-private data. When the
switchboard creates a new isolation container for domain X,
it gives X an authentication token. It also sends a message
to the storage manager that binds the token to X. Later,
when X wishes to access private storage, it must include
its authentication token in the request. In Section 3.2, we
explain the usefulness of unauthenticated public storage.

In Atlantis, each instantiation of a web domain receives a
separate isolation container. Following the terminology of
Gazelle, we refer to these containers as principal instances.
For example, if a user opens two separate tabs for the URL
http://a.com/foo.html, Atlantis creates two separate prin-
cipal instances. Each one contains a per-instance Atlantis

' A “domain” is synonymous with a <protocol, host name,
port> origin as defined by the same-origin policy.

<environment>
<compiler=’http://a.com/compiler.syp’>
<markupParser=’http://b.com/parser. js’>
<runtime=’http://c.com/runtime.js’>
</environment>

Figure 2: To redefine its runtime, a web application
puts an <environment> tag at the top of its markup.

kernel and a script interpreter. The instance kernel contains
two modules. The network manager implements transfer
protocols like http:// and file://. The Ul manager cre-
ates a new C# Form and registers handlers for low-level GUI
events on that form. The Ul manager forwards these events
to the application-defined runtime, and updates the Form’s
bitmap in response to messages from the page’s layout en-
gine.

The script interpreter executes abstract syntax trees which
represent a new language called Syphon (§3.3). A web page
installs a custom HTML/CSS parser, DOM tree, layout en-
gine, and high-level script runtime by compiling the code
to Syphon ASTs and submitting the ASTs for execution.
The Syphon interpreter ensures that the code respects same-
origin policies, but in all other regards, the interpreter is ag-
nostic about what the code is doing. Thus, unlike in current
browsers, the bulk of the web stack has no deep dependen-
cies on internal browser state.

A principal instance’s network stack, Ul manager, and Sy-
phon interpreter run in separate native threads. Thus, these
components can run in parallel and take full advantage of
multicore processors. Although these threads reside within
a single process belonging to the principal instance, the
threads are strongly isolated from each other using C# Ap-
pDomains [2]. AppDomains use the managed .NET runtime
to enforce memory safety within a single process. Code in-
side an AppDomain cannot directly access memory outside
its domain. However, domains can explicitly expose entry
points that are accessible by other domains. The C# com-
piler translates these entry points into RPCs, serializing and
deserializing data as necessary.

As shown in Figure 1(c), an application’s runtime modules
execute within the AppDomain of the interpreter. However,
Syphon provides several language primitives which allow
these modules to isolate themselves from each other. For
example, an application can partition its Syphon code into
privileged and unprivileged components, such that only priv-
ileged code can make kernel calls. We provide a detailed dis-
cussion of Syphon’s protection features in Section 3.3. For
now, we simply note that an application uses these isolation
features to protect itself from itself—the Syphon interpreter
is agnostic to the meaning of the protection domains that
it enforces, and Atlantis’ security guarantees do not depend
on applications using Syphon-level protection mechanisms.

3.1 Initializing a New Principal Instance

When a new instance kernel starts, it receives a storage au-
thentication token from the master kernel and then initial-
izes its Ul manager, network stack, and Syphon interpreter.

222

Once this is done, the instance kernel fetches the markup
associated with its page’s URL. Atlantis is agnostic about
whether this markup is HT'ML or something else. However,
pages that wish to redefine their runtime must include a
special <environment> tag at the top of their markup. An
example of this tag is shown in Figure 2. The tag contains
at most three elements.

e The <compiler> element specifies the code that will
translate a page’s script source into Syphon ASTs. The
compiler itself must already be compiled to Syphon.
If no compiler is specified, Atlantis assumes that the
page’s runtime environment is directly expressed in Sy-
phon.

e The <markupParser> element specifies the code that
the page will use to analyze its post-<environment>
tag markup.

e The <runtime> code provides the rest of the execution
environment, e.g., the layout engine, the DOM tree,
and the high-level scripting runtime.

The compiler code must define a standardized entry point
called compiler.compile(srcString). This method takes
a string of application-specific script code as input, and out-
puts the equivalent Syphon code. The instance kernel in-
vokes compiler.compile() to generate executable code for
the markup parser and the runtime library. After installing
this code, the kernel passes the application’s markup to the
standardized parser entry point markup.parse (markupStr).
At this point, Atlantis relinquishes control to the applica-
tion. As the application parses its markup, it invokes the
kernel to fetch additional objects, update the screen, and so
on.

If the instance kernel does not find an <environment> prefix
in the page’s markup, it assumes that the page wishes to ex-
ecute atop the traditional web stack. In this case, Atlantis
loads its own implementation of the HTML/CSS/JavaScript
environment. From the page’s perspective, this stack be-
haves like the traditional stack, with the important excep-
tion that everything is written in pure JavaScript, with no
dependencies on shadow browser state. This means that, for
example, modifying DOM prototypes will work as expected
(§2.4), and placing getters or setters on DOM objects will
not break event propagation. Of course, Atlantis’ default
web stack might have bugs, but the application can fix these
bugs itself without fear of breaking the browser.

3.2 The Kernel Interface

As the web application executes, it interacts with its in-
stance kernel using the API in Figure 3. The API is largely
self-explanatory, but we highlight a few of the subtler as-
pects in the text below.

To create a new frame or tab, the application invokes cre-
atePI(). If the new principal instance is a child frame, the
instance kernel in the parent registers the parent-child rela-
tionship with the master kernel. Later, if the user moves or
resizes the window containing the parent frame, the master
kernel notifies the instance kernels in the descendant frames,
allowing Atlantis to maintain the visual relationships be-
tween parents and children.

createPI(url, width, height, topX,
topY, isFrame=false)

Create a new principal instance. If isFrame is true, the
new instance is the child of a parent frame. Otherwise,
the new instance is placed in a new tab.

registerGUICallback(dispatchFunc)

Register an application-defined callback which the kernel
will invoke when GUI events are generated.

renderImage (pixelData, width, height,
topX, topY, options)

renderText (textStr, width, height,
topX, topY, options)

renderGUIwidget (widgetType, options)

The application’s layout engine uses these calls to
update the screen. Strictly speaking, renderImage ()

is sufficient to implement a GUI. However, web pages
that want to mimic the native look-and-feel of desktop
applications can use native fonts and GUI widgets using
renderText () and renderWidget ().

HTTPStream openConnection(url)

Open an HTTP connection to the given domain. Returns
an object supporting blocking writes and both blocking
and non-blocking reads.

sendToFrame (targetFrameUrl, msg)

Send a message to another frame. Used to implement
cross-frame communication like postMessage ().

executeSyphonCode (ASTsourceCode)

Tell the interpreter to execute the given AST.

persistentStore(mimeType, key, value,
isPublic, token)
string persistentFetch(mimeType, key,
isPublic, token)

Access methods for persistent storage. The storage
volume is partitioned into a single public area, and
multiple, private, per-domain areas. The token
argument is the authentication nonce created by the
switchboard.

Figure 3: Primary Atlantis kernel calls.

Using the sendToFrame() kernel call, two frames can ex-
change messages. An application can implement JavaScript’s
postMessage () as a trivial wrapper around sendToFrame ().
The application can also use sendToFrame () to support cross-
frame namespace abstractions. For example, in the tradi-
tional web stack, if a child frame and a parent frame are
in the same domain, they can reference each other’s Java-
Script state through objects like window.parent and win-
dow.frames[childId]. An Atlantis DOM implementation
supports these abstractions by interposing on accesses to
these objects and silently generating postMessage() RPCs
which read or write remote variables. We describe how Sy-
phon supports such interpositioning in Section 3.3.

The functions persistentStore() and persistentFetch()
allow applications to implement abstractions like cookies
and DOM storage [48], a new HTMLS5 facility which provides
a public storage area and private, per-domain storage. At-
lantis’ persistent store exports a simple key/value interface,
and like DOM storage, it is split into a single public space
and multiple, private, per-domain areas. Accessing private
areas requires an authentication token; accessing public ar-
eas does not. The standard browser cache is stored in the
public area, with cached items keyed by their URL. How-
ever, only instance kernels can write to public storage using
URL keys. This ensures that when the network stack is han-
dling a fetch for an object, it can trust any cached data that
it finds for that object.

The public storage area is useful for implementing asyn-
chronous cross-domain message queues. In particular, public
storage allows two domains to communicate without forcing
them to use postMessage() (which only works when both
domains have simultaneously active frames). Atlantis does
not enforce mandatory access controls for the public storage
volume, so domains that desire integrity and authenticity
for public data must layer security protocols atop Atlantis’
raw storage substrate.

223

3.3 Syphon: Atlantis ASTs

Applications pass abstract syntax trees to Atlantis for exe-
cution. However, we could have chosen for applications to
pass low-level bytecodes ala applets. We eschewed this op-
tion for two reasons. First, it is easier to optimize ASTs
than bytecodes, since bytecodes obscure semantic relation-
ships that must be recreated before optimizations can take
place [45]. Second, it is difficult to reconstruct source code
from bytecode, whereas this is trivial for ASTs. This feature
is useful when one is debugging an application consisting of
multiple scripts from multiple authors.

Atlantis ASTs encode a new language that we call Syphon.
The Syphon specification is essentially a superset of the re-
cent ECMAScript JavaScript specification [14], albeit de-
scribed with a generic tree syntax that is amenable to serv-
ing as a compilation target for higher-level languages that
may or may not resemble JavaScript. In this section, we
focus on the Syphon features that ease the construction of
robust, application-defined runtimes.

Object shimming: JavaScript supports getter and setter
functions which allow applications to interpose on reads and
writes to object properties. Syphon supports these, but it
also introduces watcher functions which can execute when
any property on an object is accessed in any way, including
attempted deletions.

Watchers are very powerful, and the default Atlantis web
stack uses them extensively. As we describe in Section 6.2,
watchers allow the web stack to place input sanitizers in
the write path of sensitive runtime variables that deal with
untrusted user inputs. As another example, consider cross-
frame namespace accesses like window.parent .objInParent.
To implement this operation, the web stack defines a watcher
on the window.parent object and resolves property accesses
by issuing sendToFrame () calls to a namespace server in the
parent frame.

Method binding and privileged execution: The typi-
cal Atlantis application will consist of low-level code like the
layout engine and the scripting runtime, and higher-level
code which has no need to directly invoke the Atlantis ker-
nel. Syphon provides several language features that allow
applications to isolate the low-level code from the high-level
code, effectively creating an application-level kernel. Like in
JavaScript, a Syphon method can be assigned to an arbitrary
object and invoked as a method of that object. However, Sy-
phon supports the binding of a method to a specific object,
thereby preventing the method from being invoked with an
arbitrary this reference.

Syphon also supports the notion of privileged execution. Sy-
phon code can only invoke kernel calls if the code belongs
to a privileged method that has a privileged this refer-
ence. By default, Syphon creates all objects and functions
as privileged. However, an application can call Syphon’s
disableDefaultPriv() function to turn off that behavior.
Subsequently, only privileged execution contexts will be able
to create new privileged objects.

Our demonstration web stack leverages privileged execution,
method binding, and watchers to prevent higher-level ap-
plication code from arbitrarily invoking the kernel or per-
turbing critical data structures in the DOM tree. However,
the Atlantis kernel is agnostic as to whether the application
takes advantage of features like privileged execution. These
features have no impact on Atlantis’ security guarantees—
they merely help an application to protect itself from itself.

Strong typing: By default, Syphon variables are untyped,
as in JavaScript. However, Syphon allows programs to bind
variables to types, facilitating optimizations in which the
script engine generates fast, type-specific code instead of
slow, dynamic-dispatch code for handling generic objects.

Note that strong primitive types have straightforward se-
mantics, but the meaning of a strong object type is un-
clear in a dynamic, prototype-based language in which ob-
ject properties, including prototype references, may be fluid.
To better support strong object types, Syphon supports EC-
MAScript v5 notions of object freezing. By default, objects
are Unfrozen, meaning that their property list can change
in arbitrary ways at runtime. An object which is Prop-
ertyListFrozen cannot have old properties deleted or new
ones added. A FullFreeze object has a frozen property list,
and all of its properties are read-only. An object’s freeze
status can change dynamically, but only in the stricter di-
rection. By combining strong primitive typing with object
freezing along a prototype chain, Syphon can simulate tra-
ditional classes in strongly typed languages.

Threading: Syphon supports a full threading model with
locks and signaling. Syphon threads are more powerful than
HTMLS5 web workers [50] for two reasons. First, web workers
cannot access native objects like the DOM tree because this
would interfere with the browser’s internal locking strate-
gies. In contrast, Syphon DOM trees reside in application-
layer code; this means that, for example, an application can
define a multi-threaded layout engine without fear of cor-
rupting internal browser state.

224

The second disadvantage of web workers is that they are lim-
ited to communication via asynchronous message exchanges.
To implement these exchanges, browsers must serialize and
deserialize objects across threading containers and fire noti-
fication callbacks. Syphon threads avoid this overhead since
they are just thin wrappers around native OS threads.

3.4 Hardware Access

JavaScript has traditionally lacked access to hardware de-
vices like web cameras and microphones. Thus, web pages
that wished to access such devices were forced to use na-
tive code plugins such as Flash and Silverlight. Like Gazelle
and OP, Atlantis loads plugins in separate processes and re-
stricts their behavior using same-origin checks. We refer the
reader to other work for a more detailed discussion of plugin
isolation [25, 49].

The HTML5 specification [55] exposes hardware to Java-
Script programs through a combination of new HTML tags
and new JavaScript objects. For example, the <device>
tag [54] can introduce a web camera object into the Ja-
vaScript namespace; the JavaScript interpreter translates
reads and writes of that object’s properties into hardware
commands on the underlying device. Similarly, the navi-
gator.geolocation object exposes location data gathered
from GPS, wireless signal triangulation, or IP address ge-
olocation [53].

HTML5 has been welcomed by web developers because it fi-
nally gives JavaScript first-class access to hardware devices.
However, HTMLS5 is problematic from the security perspec-
tive because it entrusts hardware security to the JavaScript
interpreter of an unsandboxed browser. Interpreters are
complex, buggy pieces of code. For example, there have
been several attacks on the JavaScript garbage collectors in
Firefox, Safari, and IE [12]. Once an HTML5 JavaScript
interpreter is subverted, an attacker has full access to all of
the user’s hardware devices.

In contrast to HTML5, Atlantis sandboxes the Syphon in-
terpreter, preventing it from directly accessing hardware.
Instead, web pages use the Gibraltar AJAX protocol [3] to
access hardware. The master kernel contains a device server
running in an isolated process. The device server is a small
program which directly manipulates hardware using native
code, and exports a web server interface on the localhost
address. Principal instances that wish to access hardware
send standard AJAX requests to the device server. For ex-
ample, a page that wants to access a web camera might send
an AJAX request to http://localhost/webCam, specifying
various device commands in the HTTP headers of the re-
quest. Users authorize individual web domains to access
individual hardware devices, and the device server authen-
ticates each hardware request by looking at its referrer
HTTP header. This header identifies the URL (and thus
the domain) that issued the AJAX request.

In Atlantis, each principal instance runs its own copy of the
Syphon interpreter in a separate AppDomain. Thus, even if
a malicious web page compromises its interpreter, it can-
not learn which other domains have hardware access unless
those domains willingly respond to postMessage () requests
for that information. Even if domains collude in this fash-

ion, the instance kernel implements the networking stack, so
web pages cannot fake the referrer fields in their hardware
requests unless they also subvert the instance kernel.

A variety of subtle authentication issues remain. There are
also low-level engineering questions, such as how to facilitate
device discovery, and how to create efficient device protocols
atop HTTP. We defer a full discussion of these issues to other
work [3].

4. PROTOTYPE IMPLEMENTATION

In this section, we briefly describe how we implemented our
Atlantis prototype. We also describe some of the perfor-
mance challenges that we faced. Many of these challenges
will be obviated in the next version of Atlantis, which will
use the advanced SPUR .NET environment [4]. Compared
to the default .NET environment, SPUR has a faster core
runtime and a more powerful JIT compiler.

The trusted computing base: The core Atlantis system
contains 8634 lines of C# code. 4900 lines belong to the
Syphon interpreter, 358 belong to the master kernel, and the
remainder belong to the instance kernel and the messaging
library shared by various components. We implemented the
full kernel interface described in Section 3.2, but we have
not yet ported any plugins to Atlantis.

The Syphon interpreter: The interpreter implements all
of the language features mentioned in Section 3.3. The in-
terpreter represents each type of Syphon object as a sub-
class of the SyphonObject C# class. SyphonObject imple-
ments the “object as dictionary” abstraction used by all non-
primitive types; it also implements introspection interfaces
like watcher shims.

Dynamic languages like Syphon allow applications to manip-
ulate the namespace in rich ways at runtime. For example,
programs can dynamically add and remove variables from
a scope; programs can also create closures, which are func-
tions that remember the values of nonlocal variables in the
enclosing scope. Each scope in the scope chain is essentially
a dynamically modifiable dictionary, so each namespace op-
eration requires the modification of one or more hash tables.

These modifications can be expensive, so the Syphon in-
terpreter performs several optimizations to minimize dictio-
nary operations. For example, when a function references a
variable for the first time, the interpreter searches the scope
chain, retrieves the relevant object, and places it in a unified
cache that holds variables from various levels in the scope
hierarchy. This prevents the interpreter from having to scan
a potentially deep scope chain for every variable access.

Each function call requires the interpreter to allocate and
initialize a new scope dictionary, and each function return
requires a dictionary to be torn down. To avoid these costs,
the interpreter tries to inline functions, twizzling the names
of their arguments and local variables, rewriting the function
code to reference these twizzled variables, and embedding
these variables directly in the name cache of the caller. The
function call itself is implemented as a direct branch to the
rewritten function code. When the inlined function returns,
the interpreter must destroy the twizzled name cache entries,

225

but the overall cost of invoking an inlined function is still
much smaller than the cost of invoking a non-inlined one.
The interpreter will inline closures, but not functions that
generate closures, since non-trivial bookkeeping is needed to
properly bind closure variables.

The interpreter itself (and the enclosing browser) are written
in C# and statically compiled to a CIL bytecode program.
When the user invokes the browser, it is dynamically trans-
lated to x86 by the default .NET just-in-time compiler. In our
current prototype, the Syphon interpreter compiles AST's to
high-level bytecodes, and then interprets those bytecodes
directly. We did write another Syphon interpreter that di-
rectly compiled ASTs to CIL, but we encountered several
challenges to making it fast. For example, to minimize the
overhead of Syphon function calls, we wanted to implement
them as direct branches to the starting CIL instructions of
the relevant functions. Experiments showed that this kind of
invocation was faster than placing the CIL for each Syphon
function inside a C# function and then invoking that C#
function using the standard CIL CallVirt instruction. Un-
fortunately, CIL does not support indirect branches. This
made it tricky to implement function returns, since any given
function can return to many different call sites. We had
to implement function returns by storing call site program
counters on a stack, and upon function return, using the
topmost stack entry to index into a CIL switch where each
case statement was a direct branch to a particular call site.

Unfortunately, this return technique does not work as de-
scribed thus far. CIL is a stack-based bytecode, and the
default .NET JIT compiler assumes that, for any instruc-
tion that is only the target of backward branches, the eval-
uation stack is empty immediately before that instruction
executes [42]. This assumption was intended to simplify
the JIT compiler, since it allows the compiler to determine
the stack depth at any point in the program using a sin-
gle pass through the CIL. Unfortunately, this assumption
means that if a function return is a backwards branch to a
call site, the CIL code after the call site must act as if the
evaluation stack is initially empty; otherwise, the JIT com-
piler will declare the program invalid. If the evaluation stack
is not empty before a function invocation (as is often the
case), the application must manually save the stack entries
to an application-defined data structure before branching to
a function’s first instruction.? Even with the overhead of
manual stack management, branching function calls and re-
turns were still faster than using the CallVirt instruction.
However, this overhead did reduce the overall benefit of the
technique, and the overhead would be avoidable with a JIT
compiler that did not make the empty stack assumption.

We encountered several other challenges with the default
JIT compiler. For example, we found that the JIT com-
piler was quick to translate the statically generated CIL
for the Atlantis interpreter, but much slower to translate
the dynamically generated CIL representing the Syphon ap-
plication. For example, on several macrobenchmarks, we
found that the CIL-emitting interpreter was spending twice
as much time in JIT compilation as the high-level bytecode

20ne could use forward branches to implement function re-
turns, but then function invocations would have to use back-
wards branches, leading to a similar set of problems.

interpreter, even though the additional CIL to JIT (the CIL
belonging to the Syphon program) was much smaller than
the CIL for the interpreter itself.

Given these issues, our current prototype directly interprets
the high-level bytecode. However, it is important to note
that our challenges did not arise from an intrinsic deficiency
in the .NET design, but from artifacts of the default .NET
runtime, which is not optimized for our unusual demands.
The SPUR project [4] has shown that significant perfor-
mance gains can be realized by replacing the default .NET
JIT engine with a custom one that can perform advanced
optimizations like type speculation and trace-based JITing.
We plan on using the SPUR framework in the next version
of Atlantis.

The default web stack: If a web application does not
provide its own high-level runtime, it will use Atlantis’ de-
fault stack. This stack contains 5581 lines of JavaScript code
which we compiled to Syphon ASTs using an ANTLR [40]
tool chain. 65% of the code implements the standard DOM
environment, providing a DOM tree, an event handling in-
frastructure, AJAX objects, and so on. The remainder of
the code handles markup parsing, layout calculation, and
rendering. Our DOM environment is quite mature, but our
parsing and layout code is the target of active development;
the latter set of modules are quite complex and require clever
optimizations to run quickly.

5. EXOKERNEL BROWSERS: PRACTICAL
ISSUES

Current web browsers must support an API that is hope-
lessly complex. This API is an uneasy conglomerate of dis-
parate standards that define network protocols, markup for-
mats, hardware interfaces, and more. Using exokernel prin-
ciples [16], Atlantis allows each web page to ship with its
own implementation of the web stack. Each page can tailor
its execution environment to its specific needs; in doing so,
the page liberates browser vendors from the futile task of
creating a one-size-fits-all web stack.

Individual exokernel vendors might still produce buggy ex-
okernel implementations. However, exokernel browsers are
much simpler than their monolithic cousins; thus, their bugs
should be smaller in number and easier to fix. Of course,
an exokernel browser is only interesting when paired with a
high-level runtime. In a certain sense, each high-level run-
time represents yet another browser target with yet another
set of quirks and incompatibilities that developers must ac-
count for. However, and importantly, a page has complete
control over its high-level runtime. A page chooses which
runtime it includes, and can modify that runtime as it sees
fit. Thus, from the perspective of a web developer reason-
ing about portability challenges, the introduction of a new
exokernel browser seems much less vexing than the intro-
duction of a new monolithic browser.

Even if a single exokernel interface becomes the de facto
browser design, there is always the danger that individual
exokernel vendors will expand the narrow interface or intro-
duce non-standard semantics for the sake of product differ-
entiation. It seems impossible to prevent such feature creep
by fiat. However, we believe that innovation at a low se-

226

mantic level happens more slowly than innovation at a high
semantic level. For example, fundamentally new file system
features are created much less frequently than new applica-
tion types that happen to leverage the file system. Thus,
we expect that cross-vendor exokernel incompatibilities will
arise much less frequently than incompatibilities between
different monolithic browsers.

Exokernel browsers allow individual web applications to de-
fine their own HTML parsers, DOM trees, and so on. Mul-
tiple implementations of each component will undoubtedly
arise. By design or accident, these implementations may
become incompatible with each other. Furthermore, certain
classes of components may be rendered unnecessary for some
web applications; for example, if an application decides to
use SGML instead of HTML as its markup language, it has
no need for an HTML parser. Incompatibilities above the
exokernel layer are not problematic, and are encouraged by
Atlantis in the sense that Atlantis enables web developers
to customize their high-level runtimes as they see fit. In
practice, most Atlantis developers will not create runtimes
from scratch, in the same way that most web developers
today do not create their own JavaScript GUI frameworks.
Instead, most Atlantis applications will use stock runtimes
that are written by companies or open-source efforts, and
which are incorporated into applications with little or no
modification. Only popular sites or those with uncommon
needs will possess the desire and the technical skill needed
to write a heavily customized runtime.

6. EVALUATION

In this section, we explore three issues. First, we discuss
the security of the Atlantis browser with respect to various
threats. Second, we demonstrate how easy it is to extend
the demonstration Atlantis web stack. Finally, we exam-
ine the performance of Atlantis on several microbenchmarks
and macrobenchmarks. We defer an evaluation of Atlantis’
AJAX hardware protocol to other work [3].

6.1 Security

Prior work has investigated the security properties of mi-
crokernel browsers [25, 46, 49]. Here, we briefly summarize
these properties in the context of Atlantis, and explain why
Atlantis provides stronger security guarantees than prior mi-
crokernel browsers.

Trusted computing base: The core Atlantis runtime con-
tains 8634 lines of trusted C# code. This code belongs to the
Syphon interpreter, the instance kernel, the master kernel,
and the IPC library. In turn, these modules depend on the
.NET runtime which implements the garbage collector, the
standard .NET data types, and so on. The .NET runtime is
also included in Atlantis’ trusted computing base. However,
these libraries are type-safe and memory managed, in con-
trast to the millions of lines of non-type safe C++ code found
in IE, Firefox, and other commodity browsers. Thus, we
believe that Atlantis’ threat surface is comparatively much
smaller, particularly given its narrow microkernel interface.

Our Atlantis prototype also includes 5581 lines of Java-
Script representing the demonstration web stack, and an
ANTLR [40] tool chain which compiles JavaScript to Sy-
phon ASTs. These components are not part of the trusted

computing base, since Atlantis does not rely on information
from the high-level web stack to guide security decisions.

Principal Isolation: Like other microkernel browsers, At-
lantis strongly isolates principal instances from each other
and the core browser components. This prevents a large
class of attacks which exploit the fact that monolithic brows-
ers place data from multiple domains in the same address
space, and lack a centralized point of enforcement for same-
origin checks [6]. By strongly isolating each plugin in a
process and subjecting them to the same-origin checks ex-
perienced by other web content, Atlantis prevents the full
browser compromise that results when a monolithic browser
has a subverted plugin in its address space [25, 49].

Gazelle, OP, and IBOS use a single browser kernel which, al-
though memory isolated, is shared by all principal instances.
If this kernel is compromised, the entire browser is compro-
mised. For example, a subverted Gazelle kernel can inspect
all messages exchanged between principal instances, tamper
with persistent data belonging to an arbitrary domain, and
update the visual display belonging to an arbitrary domain.
In contrast, Atlantis has a single master kernel and multiple,
sandboxed per-instance kernels. A subverted instance kernel
can draw to its own rendering area and create new rendering
areas, but it cannot access or update the display of another
instance. Similarly, a subverted instance kernel can only
tamper with public persistent data (which is untrustworthy
by definition) or private persistent data that belongs to the
domain of the compromised principal instance. To tamper
with resources belonging to arbitrary domains, the attacker
must subvert the master kernel, which is strongly isolated
from the instance kernels.

Enforcing the Same-origin Policy: Browsers define an
object’s origin as the server hostname, port, and protocol
which are used to fetch the object. For example, a script
named https://x.com:8080/y.js has a protocol of https,
a port of 8080, and a hostname of x.com.

The same-origin policy constrains how documents and scripts
from domain X can interact with documents and scripts from
domain Y. For example, JavaScript in X’s pages cannot is-
sue XMLHttpRequests for Y’s JavaScript files; this ostensibly
prevents X’s pages from reading Y’s source code. X can ex-
ecute (but not inspect) Y’s code by dynamically creating a
<script> tag and setting its src attribute to an object in
Y’s domain. This succeeds because HTML tags are exempt
from same-origin checks.

Importantly, the same-origin policy does not prevent collud-
ing domains from communicating. For example, if X and Y
have frames within the same page, the frames cannot forcibly
inspect each other’s cookies, nor can they forcibly read or
write each other’s DOM tree or JavaScript state. However,
colluding domains can exchange arbitrary data across frames
using postMessage (). Domains can also leak data through
iframe URLs. For example, X can dynamically create an
iframe with a URL like http://y.com?=PRIVATE_X_DATA.
Given all of this, the practical implication of the same-origin
policy is that it prevents non-colluding domains from tam-
pering with each other.

227

As a result of Atlantis’ exokernel design, it can perform
many, but not all, of the origin checks that current brows-
ers perform. However, Atlantis provides the same practical
level of domain isolation. Each principal instance resides in
a separate process, so each frame belonging to each origin
is separated by hardware-enforced memory protection. This
prevents domains from directly manipulating each other’s
JavaScript state or window properties. The kernel also par-
titions persistent storage by domain, ensuring that pages
cannot inspect the cookies, DOM storage, or other private
data belonging to external domains.

In Atlantis, abstractions like HTML tags and XMLHttpRe-
quest objects are implemented entirely outside the kernel.
Thus, when the Atlantis kernel services an openConnec-
tion() request, it cannot determine whether the fetch was
initiated by an HTML parser upon encountering a <script>
tag, or by an XMLHttpRequest fetch. To ensure that <script>
fetches work, Atlantis must also allow cross-domain XML-
HttpRequest fetches of JavaScript. This violates a strict in-
terpretation of the same-origin policy, but it does not change
the practical security provided by Atlantis, since X’s pages
can trivially learn Y’s JavaScript source by downloading the
. js files through X’s web server. From the security perspec-
tive, it is not important to prevent the discovery of inher-
ently public source code. Instead, it is important to protect
the user-specific client-side state which is exposed through
the browser runtime and persistent client-side storage. At-
lantis protects these resources using strong memory isola-
tion and partitioned local storage. This is the same security
model provided by Gazelle [49], which assumes that princi-
pal instances will not issue cross-domain script fetches for
the purposes of inspecting source code.

6.2 Extensibility

Atlantis’ primary goal is to allow web pages to customize
their runtime in a robust manner. To demonstrate Atlantis’
extensibility, we produced two variants of the default At-
lantis web stack.

Safe innerHTML: A DOM node’s innerHTML property is a
text string representing the contents of its associated HTML
tag. Web pages like message boards often update themselves
by taking user-submitted text and assigning it to an inner-
HTML property. Unfortunately, an attacker can use this vec-
tor to insert malicious scripts into the page [38]. To prevent
this attack, we place a setter shim (§3.3) on innerHTML that
invokes the Caja sanitizer library [33]. Caja strips danger-
ous markup from the text, and the setter assigns the safe
markup to innerHTML.

Stopping drive-by downloads: Assigning a URL to a
frame’s window.location property makes the frame navi-
gate to a new site. If a frame loads a malicious third party
script, the script can manipulate window.location to trick
users into downloading malware [8]. To prevent this, we
place a setter on window.location that either prevents all
assignments, or only allows assignments if the target URL
is in a whitelist.

Implementing these extensions on Atlantis was trivial since
the default DOM environment is written in pure JavaScript.
Neither of these application-defined extensions are possible

4
m
-] 3 B | S S ———
§ O Layout
a 5 W HTML parse
g OHTML fetch
s 1 O Start-up
©
o
-

, . =

Slashdot Craigslist Wordpress Bing Flickr

Figure 4: Atlantis page load times. The dotted line
shows the three second window after which many
users will become frustrated [21].

on a traditional browser. The design documents for popular
browsers like IE and Firefox explicitly forbid applications
from placing setters on window properties; placing setters
on innerHTML is technically allowed, but actually doing so
will break the browser’s JavaScript engine [31].

6.3 Performance

To explore Atlantis’ performance, we ran our prototype on
a Lenovo Thinkpad laptop with 4 GB of RAM and a dual
core 2.67 MHz processor. Our first experiment explored how
quickly Atlantis could load several popular web pages. Fig-
ure 4 depicts the results. Each bar represents the average
of five trials and contains four components: the start-up
time between the user hitting “enter” on the address bar
and the kernel issuing the fetch for the page’s HTML; the
time needed to fetch the HT'ML; the time needed to parse
the HTML; and the time needed to calculate the layout and
render the page. Note that layout time includes both pure
computation time and the fetch delay for external content
like images. To minimize the impact of network delays which
Atlantis cannot control, Figure 4 depicts results for a warm
browser cache. However, some objects were marked by their
server as uncacheable and had to be refetched.

Given the unoptimized nature of our prototype scripting
engine, we are encouraged by the results. In three of the
five cases, Atlantis’ load time is well below the three-second
threshold at which users begin to get frustrated [21]. One
page (Craiglist) is at the threshold, and another (Slashdot)
is roughly a second over.

Figure 4 shows that Atlantis load times were often domi-
nated by HTML parsing overhead. To better understand
this phenomenon, we performed several microbenchmarks.
The results are shown in Figure 5. Each bar represents At-
lantis’ relative execution speed with respect to IES; standard
deviations were less than 5% for each set of experiments.
Figure 5 shows that in many cases, the Syphon interpreter
is as fast or faster than IE’s interpreter. In particular, Sy-
phon is two to three times faster at accessing global vari-
ables, performing mathematical operations, and accessing
object properties, whether they are defined directly on an
object, on an object’s prototype, or on a nested object four
property accesses away.

228

NN ERE

vs IE8
=

Normalized execution time

o o X SN
v,c"é, v,c."q“, 6\&(‘ ° V\ef:‘& g'i'\o & $’$"\4 «OV’QQ
& & KX O & <& f
& v")\\ W *6@0 Nl & ¥
NN o & o N &

Figure 5: Execution speed versus IE8 (microbench-
marks).

[3
£ T
=}
c
o
k= 2
3w
@ uw
s 2
- W 5 P 5 1 At S 5 S (S
N
©
£ []
o 0 T T]
2
" < © 3 & X <
&v ’?o ‘d‘b A @@ & &
& & « é‘e &
Q o\) & 6\(\
o{\

Figure 6: Execution speed versus IE8 (macrobench-
marks). All tests were CPU-bound except for On-
MouseMove.

The cost of application code invoking native functions like
String.index0f () is the same on both platforms. However,
Atlantis is twice as slow to access local variables, and 1.7
times as slow to invoke application-defined functions from
other application-defined functions. Given that Atlantis ac-
cesses global variables much faster than IE, its relative slow-
ness in accessing local variables is surprising—both types of
accesses should be assisted by Atlantis’ name cache. We
are currently investigating this issue further. Atlantis func-
tion invocation is slower because Atlantis performs several
safety checks that IE does not perform. These checks help to
implement the Syphon language features described in Sec-
tion 3.3. For example, to support strongly typed variables,
the Syphon interpreter has to compare the type metadata
for function parameters with the type metadata for the ar-
guments that the caller actually supplied. To enforce priv-
ilege constraints, the Syphon interpreter must also check
whether the function to invoke and its “this” pointer are
both privileged. These checks make HTML parsing slow
on our current Atlantis prototype, since the parsing process
requires the invocation of many different functions that pro-
cess strings, create new DOM nodes, and so on.

Figure 6 shows Atlantis’ performance on several macrobench-
marks from three popular benchmark suites (SunSpider, Dro-
maeo, and Google’s V8). Figure 6 shows that in general, IE8

is 1.5-2.8 times faster than our Atlantis prototype. How-
ever, for the OnMouseMove program, which tracks the rate
at which the browser can fire application event handlers
when the user rapidly moves the cursor, Atlantis is actu-
ally about 50% faster. This is important, since recent em-
pirical work has shown that most web pages consist of a
large number of small callback functions that are frequently
invoked [43]. Note that firing application-defined event han-
dlers requires native code to invoke application-defined code.
The FCallAppToNative experiment in Figure 5 measures the
costs for application code to call native code.

In summary, our prototype Atlantis implementation is al-
ready fast enough to load many web pages and to dispatch
events at a fast rate. As mentioned in Section 4, we expect
Atlantis’ performance to greatly improve when we transition
the code base from the stock .NET runtime to the SPUR [4]
runtime which is aggressively tuned for performance.

7. RELATED WORK

In Sections 1.2, 2.3, and 6.1, we provide a detailed discus-
sion of OP [25] and IBOS [46], two prior microkernel brows-
ers. Gazelle [49] is another microkernel browser; like At-
lantis, Gazelle is agnostic about a web page’s runtime en-
vironment. However, Atlantis differs from Gazelle in five
important ways.

e First, Gazelle only isolates web domains from each
other; in contrast, Atlantis also protects intra-domain
components like HTML parsers and scripting engines
from each other.

e Second, Gazelle only has a single kernel, and uses heavy-
weight processes to isolate this kernel from web page
instances. In contrast, Atlantis uses lightweight C#
AppDomains [2] to place a new kernel instance into each
page’s process. This maintains strong isolation be-
tween the kernel instance and the page while allowing
Atlantis to sandbox individual kernel instances. Thus,
unlike a Gazelle kernel subverted by domain X, a sub-
verted Atlantis instance kernel can only tamper with
data belonging to domain X.

e Third, Atlantis provides new, low-level runtime prim-
itives (§3.3) which make it easier for web applications
to define robust high-level runtimes.

e Fourth, Atlantis defines a bootstrapping process that
allows a web page to automatically and dynamically
load its own runtime environment. In contrast, Gazelle
assumes that runtimes are manually installed using an
out-of-band mechanism. Seamless dynamic loading is
extremely important, since it allows page developers
to change their runtime whenever they please without
requiring action from the user.

e Finally, although the Gazelle kernel is agnostic to the
web stack running above it, in practice, Gazelle uses
an isolated version of Internet Explorer to provide that
stack. In contrast, Atlantis provides a default web
stack implemented in pure, extensible JavaScript. The
stack includes a DOM tree, an HTML parser, a multi-
pass layout algorithm, and a JavaScript runtime. This
new stack provides web developers with unprecedented
control over a runtime implemented with their preferred
software tools: JavaScript and HTML.

229

The last point illuminates a primary contribution of this
paper: whereas prior work leveraged microkernels solely to
provide isolation, Atlantis leverages microkernels to also pro-
vide extensibility.

ServiceOS [34] is an extension of Gazelle that implements
new policies for resource allocation. Architecturally, Ser-
viceOS is very similar to Gazelle, so Atlantis has the same
advantages over ServiceOS that it has over Gazelle.

JavaScript frameworks like jQuery [5] and Prototype [10]
contain conditional code paths that try to hide browser in-
compatibilities. However, these libraries cannot hide all
of these incompatibilities; furthermore, these libraries can-
not make native code modules like layout engines amenable
to introspection. Compile-to-JavaScript frameworks [7, 29]
have similar limitations.

There are several JavaScript implementations of browser
components like HTML parsers and JavaScript parsers [17,
23, 35, 44]. These libraries are typically used by a web page
to analyze markup or script source before it is passed to
the browser’s actual parsing engine or JavaScript runtime.
Using extensible web stacks, Atlantis lets pages extend and
introspect the real application runtime. Atlantis’ Syphon in-
terpreter also provides new language primitives for making
this introspection robust and efficient.

8. CONCLUSIONS

In this paper, we describe Atlantis, a new web browser which
uses microkernels not just for security, but for extensibility
as well. Whereas prior microkernel browsers reuse buggy,
non-introspectable components from monolithic browsers,
Atlantis allows each web page to define its own markup
parser, layout engine, DOM tree, and scripting runtime.
Atlantis gives pages the freedom to tailor their execution
environments without fear of breaking fragile browser inter-
faces. Our evaluation demonstrates this extensibility, and
shows that our Atlantis prototype is fast enough to render
popular pages and rapidly dispatch event handlers. Atlantis
also leverages multiple kernels to provide stronger security
guarantees than previous microkernel browsers.

9. REFERENCES

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
2nd edition, 2007.
J. Albahari and B. Albahari. C# 3.0 in a Nutshell.
O’Reilly Publishing, O'Reilly Media, Inc., 3rd edition,
2007.
Anonymous. Paper title blinded. In submission.
M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo,
W. Schulte, N. Tillmann, and H. Venter. SPUR: A
Trace-Based JIT Compiler for CIL. Microsoft Research
Tech Report MSR-TR-2010-27, March 25, 2010.
J. Chaffer and K. Swedberg. jQuery 1.4 Reference
Guide. Packt Publishing, Birmingham, United
Kingdom, 2010.
S. Chen, D. Ross, and Y.-M. Wang. An Analysis of
Browser Domain-Isolation Bugs and A Light-Weight
Transparent Defense Mechanism. In Proceedings of
CCS, Alexandria, VA, October 2007.
R. Cooper and C. Collins. GWT in Practice. Manning
Publications, Greenwich, CT, 2008.
[8] M. Cova, C. Kruegel, and G. Vigna. Detection and

7]

[10]

[11]

[12]

[14]

[15]

[16]

[23]

[24]

[26]

[27]

Analysis of Drive-by-Download Attacks and Malicious
JavaScript Code. In Proceedings of WWW, Raleigh,
NC, April 2010.

C. Coyier. Percentage Bugs in WebKit. CSS-tricks
Blog. http:
//css-tricks.com/percentage-bugs-in-webkit/,
August 30, 2010.

D. Crane, B. Bibeault, and T. Locke. Prototype and
Scriptaculous in Action. Manning Publications,
Greenwich, CT, 2007.

D. Crockford. The application/json Media Type for
JavaScript Object Notation (JSON). RFC 4627, July
2006.

M. Daniel, J. Honoroff, and C. Miller. Engineering
Heap Overflow Exploits with JavaScript. In
Proceedings of USENIX Workshop on Offensive
Technologies, 2008.

J. Douceur, J. Elson, J. Howell, and J. Lorch.
Leveraging Legacy Code to Deploy Desktop
Applications on the Web. In Proceedings of OSDI, San
Diego, CA, December 2008.

Ecma International. Ecmascript language

specification, 5'" edition, December 2009.

H. Edskes. TE8 overflow and expanding box bugs.
Final Builds Bloghttp://www.edskes.net/ie/
ie8overflowandexpandingboxbugs.htm, 2010.

D. Engler, M. Kaashoek, and J. O. Jr. Exokernel: An
Operating System Architecture for Application-Level
Resource Management. In Proceedings of SOSP,
Copper Mountain, CO, December 1995.

Envjs Team. Envjs: Bringing the Browser.
http://www.envjs.com/, 2010.

eSpace Technologies. A tiny bug in Prototype JS leads
to major incompatibility with Facebook JS client
library. eSpace.com blog, April 23, 2008.

Fielding, R., Gettys, J., Mogul, J. Frystyk, H.,
Masinter, L., Leach, P., and Berners-Lee, T.
Hypertext Transfer Protocol - HTTP/1.1. RFC 2616
(Draft Standard), June 1999.

D. Flanagan. JavaScript: The Definitive Guide.
O’Reilly Media, Inc., 5th edition, 2006.

Forrester Consulting. eCommerce Web Site
Performance Today: An Updated Look At Consumer
Reaction To A Poor Online Shopping Experience.
White paper, 2009.

S. Galineau. The CSS Corner: Using Filters In IES.
IBBlog.
http://blogs.msdn.com/b/ie/archive/2009/02/19/
the-css-corner-using-filters-in-ie8.aspx,
February 19, 2009.

D. Glazman. JSCSSP: A CSS parser in JavaScript.
http://www.glazman.org/JSCSSP/, 2010.

Google. Fixing Google Chrome Compatibility bugs in
WebSites. http://code.google.com/p/doctype/
wiki/ArticleGoogleChromeCompatFAQ#Inline_
elements_can%27t_enclose_block_elements, May
25, 2010.

C. Grier, , S. Tang, and S. King. Secure Web
Browsing with the OP Web Browser. In Proceedings of
IEEE Security, Oakland, CA, May 2008.

L.-S. Huang, Z. Weinberg, C. Evans, and C. Jackson.
Protecting Browsers from Cross-Origin CSS Attacks.
In Proceedings of CCS, Chicago, IL, October 2010.

J. Zaytsev. What’s wrong with extending the DOM.
Perfection Kills Website. http://perfectionkills.
com/whats-wrong-with-extending-the-dom, April 5,
2010.

[28] jQuery Message Forum. Focus() inside a blur()

[29]

handler. https://forum. jquery.com/topic/
focus-inside-a-blur-handler, January 2010.
N. Kothari. Script#: Version 0.5.5.0.

230

(30]

37]

(38]
(39]
[40]
(41]

[42]

(50]

[51]

http://projects.nikhilk.net/ScriptSharp, 2009.
L. Lazaris. CSS Bugs and Inconsistencies in Firefox
3.x. Webdesigner Depot.
http://www.webdesignerdepot.com/2010/03/
css-bugs-and-inconsistencies-in-firefox-3-x,
March 15, 2010.

J. Mickens, J. Howell, and J. Elson. Mugshot:
Deterministic Capture and Replay for JavaScript
Applications. In Proceedings of NSDI, San Jose, CA,
April 2010.

Microsoft. Update for Native JSON feature in TES.
http://support.microsoft.com/kb/976662, February
2010.

M. Miller, M. Samuel, B. Laurie, I. Awad, and

M. Stay. Caja: Safe active content in sanitized
JavaScript. Draft specification, January 15, 2008.

A. Moshchuk and H. J. Wang. Resource Management
for Web Applications in ServiceOS. Microsoft Research
Tech Report MSR-TR-~2010-56, May 18, 2010.
Mozilla Corporation. Narcissus javascript. http:
//mxr.mozilla.org/mozilla/source/js/narcissus/.
Mozilla Developer Center. Gecko Plugin API
Reference. https://developer.mozilla.org/en/
Gecko_Plugin_API_Reference, 2010.

Mozilla Developer Center. HTML5 Parser.
https://developer.mozilla.org/en/HTML/HTML5/
HTML5_Parser, July 29, 2010.

National Vulnerability Database. CVE-2010-2301,
2010. Cross-site scripting vulnerability: innerHTML.
T. Olsson. The Ultimate CSS Reference. Sitepoint,
Collingwood, Victoria, Austraiia, 2008.

T. Parr. The Definitive ANTLR Reference. Pragmatic
Bookshelf, Raleigh, North Carolina, 2007.

Peter-Paul Koch. QuirksMode—for all your browser
quirks. http://www.quirksmode.org, 2011.

J. Pobar, T. Neward, D. Stutz, and G. Shilling.
Shared Source CLI 2.0 Internals.
http://callvirt.net/blog/files/Shared,
20Source20CLI%202.0%20Internals. pdf, 2008.

P. Ratanaworabhan, B. Livshits, and B. Zorn.
JSMeter: Comparing the Behavior of JavaScript
Benchmarks with RealWeb Applications. In
Proceedings of USENIX WebApps, Boston, MA, June
2010.

J. Resig. Pure JavaScript HTML Parser. http:
//ejohn.org/blog/pure-javascript-html-parser/,
May 2008.

C. Stork, P. Housel, V. Haldar, N. Dalton, and

M. Franz. Towards language-agnostic mobile code. In
Proceedings of the Workshop on Multi- Language
Infrastructure and Interoperability, Firenze, Italy,
2001.

S. Tang, H. Mai, and S. T. King. Trust and Protection
in the Illinois Browser Operating System. In
Proceedings of OSDI, 2010.

C. Tyler. X Power Tools. O’Reilly Media, Inc.,
Cambridge, MA, 2007.

W3C Web Apps Working Group. Web Storage: W3C
Working Draft. http:
//www.w3.org/TR/2009/WD-webstorage-20091029,
October 29, 2009.

H. J. Wang, C. Grier, A. Moshchuk, S. T. King,

P. Choudhury, and H. Venter. The Multi-principal OS
Construction of the Gazelle Web Browser. In
Proceedings of USENIX Security, 2009.

Web Hypertext Application Technology Working
Group (WHATWG). Web Workers (Draft
Recommendation). http://www.whatwg.org/specs/
web-workers/current-work/, September 10, 2010.
World Wide Web Consortium. Document object
model (DOM) level 2 core specification. W3C

[54]

[55]

Recommendation, November 13, 2000.

World Wide Web Consortium. Cascading Style Sheets
Level 2 Revision 1 (CSS 2.1) Specification. W3C
Working Draft. http://www.w3.org/TR/CSS2,
September 8, 2009.

World Wide Web Consortium. Geolocation API
Specification.
http://dev.w3.org/geo/api/spec-source.html,
February 10, 2010.

World Wide Web Consortium. HTML Device: An
addition to HTML.
http://dev.w3.org/html5/html-device/, September
9, 2010.

World Wide Web Consortium. HTML5: A vocabulary
and associated APIs for HTML and XHTML. W3C
Working Draft. http://wuw.w3.org/TR/html5, June
24, 2010.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,

T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In Proceedings of IEEE Security,
Oakland, CA, May 2009.

231

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

