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Abstract

We present results obtained with several advanced language
modeling techniques, including class based model, cache
model, maximum entropy model, structured language model,
random forest language model and several types of neural net-
work based language models. We show results obtained after
combining all these models by using linear interpolation. We
conclude that for both small and moderately sized tasks, we ob-
tain new state of the art results with combination of models,
that is significantly better than performance of any individual
model. Obtained perplexity reductions against Good-Turing tri-
gram baseline are over 50% and against modified Kneser-Ney
smoothed 5-gram over 40%.

Index Terms: language modeling, neural networks, model
combination, speech recognition

1. Introduction

In this paper, we will deal with the statistical approaches to lan-
guage modeling, that are motivated by information theory. This
will allow us to fairly compare different techniques. It is sup-
posed that the model that is the best predictor of words given
the context, is the closest model to the true model of language.
Thus, the measure that we will aim to minimize is the cross en-
tropy of the test data given the language model. The cross en-
tropy is equal to logz perplexity (PPL). The per-word perplexity
is defined as
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It is important to note that perplexity does not depend just on
the quality of the model, but also on the nature of training and
test data. For difficult tasks, when small amounts of training
data are available and large vocabulary is used (thus the model
has to choose between many variants), the perplexity can reach
values over 1000, while on easy tasks, it is common to observe
values below 100.

Another difficulty that arises when using perplexity as a
measure of progress is when improvements are reported as per-
centual reductions. It can be seen that constant relative reduc-
tion of entropy results in variable reduction of perplexity. For
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example, 20% reduction of perplexity is equal to 4.8% reduc-
tion of entropy if the original model had perplexity 100, but
only 3.6% if the original model had perplexity 500.

Thus we claim that reporting perplexity reductions by us-
ing advanced techniques on different setups, which is a com-
mon practice today, can be often more confusing than helpful
for evaluating contribution of new techniques. The other prob-
lem, which was originally pointed out by Goodman [1], is that
new techniques are usually studied in isolation, and are very
often compared just to a weak baseline model, such as a Good-
Turing smoothed trigram. This does not allow us to estimate
complementarity of the new proposed techniques to the already
existing ones.

For combination of models, linear interpolation is the most
popular technique due to its simplicity. The probability of a
word w in the context h is computed as

N
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where N it the number of models. The weights \; of individ-
ual models are non-negative and sum to 1, i.e. Zi\’: 1A= 1
More complex, but also commonly used is the log-linear inter-
polation [15].

The rest of this paper is organized as follows. In section 2,
we will present results obtained by various basic and advanced
techniques on a standard task. Individual performance of mod-
els as well as combination of all techniques by using linear in-
terpolation will be presented. In section 3, we will show results
obtained with adaptive linear interpolation that uses variable in-
terpolation weights. In section 4, we present automatic speech
recognition results obtained with the most promising individual
models on a larger task.

2. Penn Treebank corpus experiments

One of the most widely used data sets for evaluating perfor-
mance of statistical language models is the Penn Treebank por-
tion of the Wall Street Journal corpus (denoted further simply
as Penn Treebank corpus). It has been used by numerous re-
searchers, while using exactly the same settings (the same train-
ing, development and test data and the same vocabulary limited
to 10K words). This is quite rare in the language modeling field,
and allowed us to compare directly different techniques and
their combinations, as many researchers were kind enough to
provide us their results for the following comparison. It should
be however noted that in our comparison, we are interested only
in the accuracy of the model, and we ignore computational com-
plexity.
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Table 1: Perplexity of individual models alone and after combination with baseline language models. Results are reported on the Penn

Treebank corpus evaluation set.

[ Model | Perplexity | Entropy reduction |
individual | +KN5 | +KN5+cache || over KN5 | over KN5+cache

3-gram with Good-Turing smoothing (GT3) 165.2 - - - -

5-gram with Good-Turing smoothing (GT5) 162.3 - - - -

3-gram with Kneser-Ney smoothing (KN3) 148.3 - - - -

5-gram with Kneser-Ney smoothing (KN5) 141.2 - - - -

5-gram with Kneser-Ney smoothing + cache 125.7 - - - -

Maximum entropy model with 5-gram features 142.1 138.7 124.5 0.4% 0.2%
Random clusterings LM 170.1 126.3 115.6 2.3% 1.7%
Random forest LM 131.9 131.3 117.5 1.5% 1.4%
Structured LM 146.1 125.5 1144 2.4% 1.9%
Within and across sentence boundary LM 116.6 110.0 108.7 5.0% 3.0%
Log-bilinear LM 144.5 115.2 105.8 4.1% 3.6%
Feedforward neural network LM [9] 140.2 116.7 106.6 3.8% 3.4%
Feedforward neural network LM [18] 141.8 114.8 105.2 4.2% 3.7%
Syntactical neural network LM 131.3 110.0 101.5 5.0% 4.4%
Recurrent neural network LM 124.7 105.7 97.5 5.8% 5.3%
Adaptive RNNLM 1232 102.7 98.0 6.4% 5.1%
Combination of static RNNLMs 102.1 95.5 89.4 7.9% 7.0%
Combination of adaptive RNNLMs 101.0 92.9 90.0 8.5% 6.9%

The Penn Treebank corpus was divided as follows: sections
0-20 were used as training data (930k tokens), sections 21-22 as
validation data (74k tokens) and sections 23-24 as test data (82k
tokens). All words outside the 10K vocabulary were mapped to
a special token (unknown word).

2.1. Performance of individual models

The performance of all individual models used in our further
experiments is shown in Table 1. Results for the n-gram mod-
els were obtained by using SRILM toolkit [12] (we have used
no count cutoffs). We can observe that the 5-gram model with
modified Kneser-Ney smoothing (KN5) is performing the best
among n-gram models, and we use it further as a baseline. As
several techniques that are presented later exploit longer range
dependencies, our second baseline is n-gram model with a uni-
gram cache model.

The Maximum entropy LM was trained by using an exten-
sion to SRILM, with the default L1 and L2 regularization pa-
rameters [13]. Random clustering LM is a class based model
described further in [10] (in our implementation, we used just
simple classes for this model). We used 4-gram features for the
Random forest language model [6]. We are aware of several im-
plementations of structured language models evaluated on this
dataset - in our experiments, we have used the one implemented
by Filimonov' [7]. The Within and across sentence boundary
LM [16] is a combination of several simpler models (including
cache-like model, skip n-gram and a class based model).

Next, we present results with different neural network based
language models, that have been consistently providing very
good performance in wide variety of ASR tasks as reported
in [3, 18, 4]. The log-bilinear LM [19] is an alternative to the
standard NNLM. In our comparison, we have used the LIMSI
implementation of feedforward NNLM [18] that follows closely
the original Bengio’s model [2]. In our previous work [9], we

'We are aware of slightly better results reported on this dataset with
yet another structured LM - in [17], perplexity 118.4 is reported by
using SuperARV language model combined with n-gram model.
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have presented alternative feedforward model that is based on
two neural networks, each having one hidden layer. We have
found that both feedforward NNLM architectures work almost
the same. Emami has proposed a Syntactical NNLM [8] that
aims to incorporate linguistic features into the neural network
model. Emami’s model was a state of the art model on this
dataset, until we have recently shown that Recurrent neural net-
work based language model (RNNLM) is performing better [5].

In [5], we have also proposed several extensions to further
improve the RNNLM - by using more models with randomly
initialized weights, which is loosely inspired by the Bayesian
approach, we can obtain further significant gains. Linear inter-
polation with uniform weights is used for combination of dif-
ferent RNNLMs. By unsupervised adaptation of the model dur-
ing the test phase, we can achieve topic adaptation and obtain
cache-like information. Interestingly, combination of static and
adaptive models leads to further gains, as we will see later on.

We have used over 20 different RNN models in the com-
bination, which differ not only in the initialization of weights,
but also in the size of the hidden layer. Originally in [5] we re-
ported results with models that had 200 neurons in the hidden
layer. In the extended results presented in this paper, we have
used models with up to 400 neurons. For the adapted models,
we have used fixed learning rate o = 0.1 (where « is the stan-
dard learning rate parameter for the Backpropagation through
time algorithm [20]).

2.2. Model combination

In Table 2, we report results on the Penn Treebank evaluation
set after combining all models by using linear interpolation (see
eq. 2). The weights of individual models were tuned to min-
imize perplexity on the evaluation set, as we did not have re-
sults with all models on the development set. However this is
no serious flaw in our experiments: both the development and
evaluation sets are highly coherent, thus the weights tuned on
the dev set would be almost the same. Second, as we will show
in the next section, we do not need any development data at all



Table 2: Results on Penn Treebank corpus (evaluation set) after
combining all models. The weight of each model is tuned to
minimize perplexity of the final combination.

Table 4: Results on Penn Treebank corpus (evaluation set) with
different linear interpolation (LI) techniques.

Model PPL
Model Weight | PPL Static LI of ALL 83.5
3-gram with Good-Turing smoothing (GT3) 0 165.2 Static LI of ALL + Adapted RNNs with o = 0.5 80.5
5-gram with Kneser-Ney smoothing (KN5) 0 141.2 Adaptive LI of ALL + Adapted RNNs with « = 0.5 || 79.4
5-gram with Kneser-Ney smoothing + cache || 0.0792 | 125.7
Maximum entropy model 0 142.1
Random clusterings LM 0 170.1 with fixed weights is suboptimal. When the first word in the test
Random forest LM 0.1057 | 131.9 data is processed, both static and adaptive models are equal. As
Structured LM 0.0196 | 146.1 more data is processed, the adaptive model is supposed to learn
Within and across sentence boundary LM 0.0838 | 116.6 new information, and thus its weight should increase. However
Log-bilinear LM 0 144.5 if there is a sudden change of topic in the test data, the static
Feedfor' ward NNLM 0 140.2 model might perform better for several sentences.
Syntactical NNLM 0.0828 | 131.3 Further improvement was motivated by the observation that
Combmaqon of static RNNLMs 0.3231 | 102.1 adaptation of RNN models with the learning rate o = 0.1 leads
Combination of adaptive RNNLMs 0.3058 | 101.0 usually to the best individual results, but models in combina-
ALL ! 83.5 tion are more complementary if some are processed with larger

to find optimal weights of individual models by using adaptive
weights estimated on the recent history during processing of the
test data.

The reported results show that RNN based language mod-
els dominate in the final combination, having together weight of
almost two thirds. Other notable models that seem to contribute
are 5-gram model with cache, Random forest LM, Within and
across sentence boundary LM and Syntactical NNLM. In Ta-
ble 3, we report results when we add models into the combina-
tion iteratively, by always adding the one that improves results
the most. Somewhat surprisingly, we can see that the standard
5-gram model is the most complementary model to RNN mod-
els. Other models provide only small additional improvements.

3. Adaptive linear model combination

We have extended the usual linear combination of models that
uses fixed weights to a case when weights of all individual mod-
els are variable, and are estimated during processing of the test
data. The initial distribution of weights is uniform (every model
has the same weight), and as the test data are being processed,
we compute optimal weights based on the performance of mod-
els on the history of the last K words. In theory, K can be
chosen so that all history is used. However we found that it
is possible to use multiple model combinations, with different
K values. Those that use small K aim to capture short con-
text characteristics that can vary rapidly between individual sen-
tences or paragraphs.

It should be noted that another important motivation for this
approach is that combination of adaptive and static RNN models

Table 3: Results on Penn Treebank corpus (evaluation set) when
models are added sequentially into the combination. The most
contributing models are added first.

Model PPL
Combination of adaptive RNNLMs 101.0
+KNS5 (with cache) 90.0
+Combination of static RNNLMs 86.2
+Within and across sentence boundary LM 84.8
+Random forest LM 84.0

learning rate. The results are summarized in Table 4.

4. Performance with increasing size of the
training data

So far, we have reported results with models trained on small
amount of data (930k tokens). It was observed by Goodman [1]
that with increasing amount of the training data, improvements
provided by many advanced techniques vanish, with a possible
conclusion that it might be sufficient to train n-gram models on
huge amounts of data.

Thus we extend our results by a study of behaviour of the
most successful models so far - RNNLMs and n-gram models
with cache - on a larger task. We have decided to extend our
previous results reported in [4]. The training data consists of
37M tokens from English Gigaword, NYT section. We also
report ASR results after rescoring 100-best lists from DARPA
WSJ’92 and WSJ’93 data sets. In Table 5, we can observe that
improvements both in entropy and word error rate actually do
not vanish with increasing amount of the training data. This is
quite optimistic result, as it gives further motivation for future
work on language modeling.

For simplicity and due to computational requirements, we
only combined two different RNN models® trained on all data.
The final combination of KN5+cache, static and adaptive RNNs
yields perplexity 108 on this task, while Good-Turing smoothed
trigram achieves 246 and 5-gram with modified Kneser-Ney
smoothing 212. We also report comparison of advanced lan-
guage modeling techniques on this WSJ setup in Table 6.

2All RNN models for WSJ task were trained with factorization of
the output layer using 400 classes to reduce computational complexity,
as described in [5].

Table 5: Comparison of results on the WSJ dev set obtained
with models based on different amount of the training data.

# words PPL WER Improvement[ %]
KNS5 | +RNN KN5 | +RNN Entropy | WER
223K 415 333 - - 3.7 -
675K 390 298 15.6 13.9 4.5 10.9
2233K 331 251 149 12.9 4.8 134
6.4M 283 200 13.6 11.7 6.1 14.0
37TM 212 133 12.2 10.2 8.7 16.4




Table 6: Comparison of advanced language modeling tech-
niques on the WSJ task with all training data.

Model [ Dev WER[%] | Eval WER[%] |

Baseline - KN5 12.2 17.2
Discriminative LM [14] 11.5 16.9
Joint LM [7] - 16.7
Static RNN 10.5 14.9
Static RNN + KN 10.2 14.6
Adapted RNN 9.8 14.5
Adapted RNN + KN 9.8 14.5
All RNN 9.7 14.4

5. Conclusion and future work

On the Penn Treebank, we achieved a new state of the art result
by using a combination of many advanced language modeling
techniques, surpassing previous state of the art by a large margin
- the obtained perplexity 79.4 is significantly better than 96 re-
ported in our previous work [5]. Compared to the perplexity of
Good-Turing smoothed trigram that is 165.2 on this setup, we
have achieved 52% reduction of perplexity, and 14.3% reduc-
tion of entropy. Compared to the 5-gram with modified Kneser-
Ney smoothing that has perplexity 141.2, we obtained 44% re-
duction of perplexity and 11.6% reduction of entropy.

On the WSJ task, we have shown that the possible improve-
ments actually increase with more training data. Although we
have used just two RNNLMs that were trained on all data, we
observed similar gains as on the previous setup. Against Good-
Turing smoothed trigram that has perplexity 246, our final result
108 is by more than 56% lower (entropy reduction 15.0%). The
5-gram with modified Kneser-Ney smoothing has on this task
perplexity 212, thus our combined result is by 49% lower (en-
tropy reduction 12.6%).

As far as we know, our work is the first attempt to com-
bine many advanced language modeling techniques after the
work done by Goodman [1], as usually combination of only
two or three techniques is reported. We have found that many
techniques are actually redundant and do not contribute signif-
icantly to the final combination - it seems that by using Re-
current neural network based language models and a standard
n-gram model, we can obtain near-optimal results. However,
this should not be interpreted as that further work on other tech-
niques is useless. We are aware of several possibilities how to
make better use of individual models - it was reported that log-
linear interpolation of models [15] outperforms in some cases
significantly the basic linear interpolation. While we have not
seen any significant gains when we combined log-linearly indi-
vidual RNNLMs, for combination of different techniques, this
might be an interesting extension of our work in the future.
However, it should be noted that log-linear interpolation is com-
putationally very expensive.

As the final combination is dominated by the RNNLM, we
believe that future work should focus on its further extension.
We observed that combination of different RNNLMs works bet-
ter than any individual RNNLM. Even if we combine models
that are individually suboptimal, as was the case when we used
large learning rate during adaptation, we observe further im-
provements. This points us towards investigating Bayesian neu-
ral networks, that consider all possible parameters and hyper-
parameters. We actually assume that combination of RNNLMs
behaves as a crude approximation of a Bayesian neural network.
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