Measure Transformer Semantics for
Bayesian Machine Learning

Johannes Borgstrom Andrew D. Gordon
Michael Greenberg James Margetson Jurgen Van Gael

July 2011

Technical Report
MSR-TR-2011-18

Microsoft Research
Roger Needham Building
7 J.J. Thomson Avenue
Cambridge, CB3 OFB
United Kingdom

Publication History

An abridged version of this report appears in the proceedings of the 20th European
Symposium on Programming (ESOP’11), part of ETAPS 2011, held in Saarbriicken,
Germany, March 26—April 3, 2011.

Measure Transformer Semantics for
Bayesian Machine Learning

Johannes Borgstr(jml, Andrew D. Gordon', Michael Greenbergz,
James Margetson', and Jurgen Van Gael'

I' Microsoft Research
2 University of Pennsylvania

Abstract. The Bayesian approach to machine learning amounts to inferring pos-
terior distributions of random variables from a probabilistic model of how the
variables are related (that is, a prior distribution) and a set of observations of vari-
ables. There is a trend in machine learning towards expressing Bayesian models
as probabilistic programs. As a foundation for this kind of programming, we pro-
pose a core functional calculus with primitives for sampling prior distributions
and observing variables. We define combinators for measure transformers, based
on theorems in measure theory, and use these to give a rigorous semantics to
our core calculus. The original features of our semantics include its support for
discrete, continuous, and hybrid measures, and, in particular, for observations
of zero-probability events. We compile our core language to a small imperative
language that in addition to the measure transformer semantics also has a straight-
forward semantics via factor graphs, data structures that enable many efficient in-
ference algorithms. We use an existing inference engine for efficient approximate
inference of posterior marginal distributions, treating thousands of observations
per second for large instances of realistic models.

1 Introduction

In the past 15 years, statistical machine learning has unified many seemingly unrelated
methods through the Bayesian paradigm. With a solid understanding of the theoreti-
cal foundations, advances in algorithms for inference, and numerous applications, the
Bayesian paradigm is now the state of the art for learning from data. The theme of this
paper is the idea of writing Bayesian models as probabilistic programs, which was pi-
oneered by Koller et al. [20] and is recently gaining in popularity [36,35,10,5,18]. In
particular, we draw inspiration from Csoft [44], an imperative language with an infor-
mal probabilistic semantics. Csoft is the native language of Infer. NET [30], a software
library for Bayesian reasoning. A compiler turns Csoft programs into factor graphs [22],
data structures that support efficient inference algorithms [19]. This paper borrows ideas
from Csoft and extends them, placing the semantics on a firm footing.

Bayesian Models as Probabilistic Expressions Consider a simplified form of TrueSkill
[13], a large-scale online system for ranking computer gamers. There is a population of
players, each assumed to have a skill, which is a real number that cannot be directly ob-
served. We observe skills only indirectly via a series of matches. The problem is to infer

the skills of players given the outcomes of the matches. Here is a concrete example: Al-
ice, Bob, and Cyd are new players. In a tournament of three games, Alice beats Bob,
Bob beats Cyd, and Alice beats Cyd. What are their skills? In a Bayesian setting, we
represent our uncertain knowledge of the skills as continuous probability distributions.
The following probabilistic expression models the situation by generating probability
distributions for the players’ skills, given three played games (observations).

// prior distributions, the hypothesis

let skill() = random (Gaussian(10.0,20.0))

let Alice,Bob,Cyd = skill(),skill(),skill()

// observe the evidence

let performance player = random (Gaussian(player,1.0))

observe (performance Alice > performance Bob) //Alice beats Bob
observe (performance Bob > performance Cyd) //Bob beats Cyd
observe (performance Alice > performance Cyd) //Alice beats Cyd
// return the skills

Alice,Bob,Cyd

A run of this expression goes as follows. We sample the skills of the three players from
the prior distribution Gaussian(10.0,20.0). Such a distribution can be pictured as a
bell curve centred on the mean 10.0, and gradually tailing off at a rate given by the
variance, here 20.0. Sampling from such a distribution is a randomized operation that
returns a real number, most likely close to the mean. For each match, the run continues
by sampling an individual performance for each of the two players. Each performance is
centred on the skill of a player, with low variance, making the performance closely cor-
related with but not identical to the skill. We then observe that the winner’s performance
is greater than the loser’s. An observation observe M always returns (), but represents
a constraint that M must hold. A whole run is valid if all encountered observations are
true. The run terminates by returning the three skills.

A classic computational method to learn the posterior distribution of each of the
skills is Monte Carlo sampling [25]. We run the expression many times, but keep just the
valid runs—the ones where the sampled skills correspond to the observed outcomes. We
then compute the means of the resulting skills by applying standard statistical formulas.
In the example above, the posterior distribution of the returned skills has moved so that
the mean of Alice’s skill is greater than Bob’s, which is greater than Cyd’s. To the
best of our knowledge, all prior inference techniques for probabilistic languages with
continuous distributions, apart from Csoft and recent versions of IBAL [37], are based
on nondeterministic inference using some form of Monte Carlo sampling.

Inference algorithms based on factor graphs [22,19] are an efficient alternative to
Monte Carlo sampling. Factor graphs, used in Csoft, allow deterministic but approx-
imative inference algorithms, which are known to be significantly more efficient than
sampling methods, where applicable.

Observations with zero probability arise naturally in Bayesian models. For example,
in the model above, a drawn game would be modelled as the performance of two players
being observed to be equal. Since the performances are randomly drawn from a contin-
uous distribution, the probability of them actually being equal is zero, so we would not
expect to see any valid runs in a Monte Carlo simulation. (To use Monte Carlo methods,

one must instead write that the absolute difference between two drawn performances is
less than some small €.) However, our semantics based on measure theory makes sense
of such observations. Our semantics is the first for languages with continuous or hybrid
distributions, such as Fun or Imp, that are implemented by deterministic inference via
factor graphs.

Plan of the Paper We propose Fun:

— Fun is a functional language for Bayesian models with primitives for probabilistic
sampling and observations (Section 2).

— Fun has a rigorous probabilistic semantics as measure transformers (Section 3).

— Fun has an efficient implementation: our system compiles Fun to Imp (Section 4),
a subset of Csoft, and then relies on Infer. NET (Section 6).

— Fun supports array types and array comprehensions in order to express Bayesian
models over large datasets (Section 5).

Our main contribution is a framework for finite measure transformer semantics, which
supports discrete measures, continuous measures, and mixtures of the two, and also
supports observations of zero probability events.

As a substantial application, we supply measure transformer semantics for Fun,
Imp, and factor graphs, and use the semantics to verify the translations in our compiler.
Theorem 1 establishes agreement with the discrete semantics of Section 2 for Bernoulli
Fun. Theorem 2 and Theorem 3 establish the correctness of the first step, from Fun to
Imp, and the second step, from Imp to factor graphs.

We designed Fun to be a subset of the F# dialect of ML [43], for implementation
convenience: F# reflection allows easy access to the abstract syntax of a program. All
the examples in the paper have been executed with our system, described in Section 6.
We end the paper with a description of related work (Section 7) and some concluding
remarks (Section 8).

Appendix A contains proofs omitted from the main body of the paper. Appendix B
lists the code of an F# implementation of measure transformers in the discrete case.

2 Bayesian Models as Probabilistic Expressions

We introduce the idea of expressing a probabilistic model as code in a functional lan-
guage, Fun, with primitives for generating and observing random variables. For a sub-
set, Bernoulli Fun, limited to weighted Boolean choices, we describe in elementary
terms an operational semantics that allows us to compute the conditional probability
that the expression yields a given value given that the run was valid.

2.1 Syntax, Informal Semantics, and Bayesian Reading

Expressions are strongly typed, with types ¢ built up from base scalar types b and pair
types. We let ¢ range over constant data of scalar type, n over integers, and » over real
numbers. We write ty(c) = 7 to mean that constant ¢ has type ¢. For each base type b,
we define a zero element 0. We have arithmetic and Boolean operations on base types.

Types, Constant Data, and Zero Elements:
I

a,b ::=bool | int | real base type
tu=unit | b| () x12) compound type
ty(()) = unit ty(true) = ty(false) = bool ty(n) =int ty(r) =real
| Opool = true Ojpt =0 Opeql = 0.0

Signatures of Arithmetic and Logical Operators: ® : by,by, — b3

I
&&, ||,= : bool,bool — bool >, =:int,int — bool

+,—,%*, % :int,int — int > : real, real — bool +,—, * : real, real — real
L 1

We have several standard probability distributions as primitive: D : t — u takes parame-
ters in ¢ and yields a random value in u. The names x; below only document the meaning
of the parameters.

Signatures of Distributions: D : (x| : by *---xx, :b,) = b
I

Bernoulli : (success : real) — bool

Binomial : (trials : int success : real) — int
Poisson : (rate : real) — int

DiscreteUniform : (max : int) — int

Gaussian : (mean : real x variance : real) — real
Beta : (a: realxb: real) — real

Gamma : (shape : real x scale : real) — real
| |

The expressions and values of Fun are below. Expressions are in a limited syntax akin
to A-normal form, with let-expressions for sequential composition.

Fun: Values and Expressions

I

Vi=x|c|(V,V) value

M,N ::= expression
1% value
VieV, arithmetic or logical operator
V.1 left projection from pair
V.2 right projection from pair
if V then M, else M, conditional
letx=Min N let (scope of x is N)
random (D(V)) primitive distribution
observe V observation

In the discrete case, Fun has a standard sampling semantics; the formal semantics for
the general case comes later. A run of a closed expression M is the process of evaluating
M to a value. The evaluation of most expressions is standard, apart from sampling and
observation.

To run random (D(V)), where V = (cy,...,c,), choose a value ¢ at random, with
probability given by the distribution D(cy,...,c,), and return c.

To run observe V, always return (). We say the observation is valid if and only if
the value V is some zero element 0p,.

Due to the presence of sampling, different runs of the same expression may yield
more than one value, with differing probabilities. Let a run be valid so long as every
encountered observation is valid. The sampling semantics of an expression is the condi-
tional probability of returning a particular value, given a valid run. Intuitively, Boolean
observations are akin to assume statements in assertion-based program specifications,
where runs of a program are ignored if an assumed formula is false.

Example: Two Coins, Not Both Tails
I

let heads1 = random (Bernoulli(0.5)) in
let heads2 = random (Bernoulli(0.5)) in
let u = observe (headsl || heads2) in
(headsl,heads2)

The subexpression random (Bernoulli(0.5)) generates true or false with equal likeli-
hood. The whole expression has four distinct runs, each with probability 1/4, corre-
sponding to the possible combinations of Booleans headsl and heads2. All these runs
are valid, apart from the one where headsl = false and heads2 = false (representing two
tails), since observe(false||false) is not a valid observation. The sampling semantics
of this expression is a probability distribution assigning probability 1/3 to the values
(true,false), (false, true), and (true, true), but probability O to the value (false, false).

The sampling semantics allows us to interpret an expression as a Bayesian model.
We interpret the distribution of possible return values as the prior probability of the
model. The constraints on valid runs induced by observations represent new evidence
or training data. The conditional probability of a value given a valid run is the posterior
probability: an adjustment of the prior probability given the evidence or training data.

Thus, the expression above can be read as a Bayesian model of the problem: / toss
two coins. I observe that not both are tails. What is the probability of each outcome?
The uniform distribution of two Booleans represents our prior knowledge about two
coins, the observe expression represents the evidence that not both are tails, and the
overall sampling semantics is the posterior probability of two coins given this evidence.

Next, we define syntactic conventions and a type system for Fun, define a formal
semantics for the discrete subset of Fun, and describe further examples. Our discrete
semantics is a warm up before Section 3. There we deploy measure theory to give a
semantics to our full language, which allows both discrete and continuous prior distri-
butions.

2.2 Syntactic Conventions and Monomorphic Typing Rules

We recite our standard syntactic conventions and typing rules.

We identify phrases of syntax (such as values and expressions) up to consistent
renaming of bound variables(such as x in a let-expression). Let fv(¢) be the set of vari-
ables occurring free in phrase ¢. Let ¢ {¥/, } be the outcome of substituting phrase y for
each free occurrence of variable x in phrase ¢. To keep our core calculus small, we treat

function definitions as macros with call-by-value semantics. In particular, in examples,

we write first-order non-recursive function definitions in the form let f x; ... x, = M,
and we allow function applications f M; ... M, as expressions. We consider such a
function application as being a shorthand for the expression let x; = M in ...let x, =
M,, in M, where the bound variables x;, ..., x, do not occur free in M, ..., M,. We

allow expressions to be used in place of values, via insertion of suitable let-expressions.
For example, (M, M>) stands for let x; = M, in let x, = M, in (x1,x;), and M| @ M,
stands for let x; = M in let x, = M5 in x; ® xp, when either M; or M, or both is
not a value. Let M;; M, stand for let x = M; in M, where x ¢ fv(M,). The notation
t =t *---xt, for tuple types means the following: when n = 0, t = unit; when n =1,
t=t;and whenn > 1, =1 % (fp %--- x). In listings, we rely on syntactic abbrevia-
tions available in F#, such as layout conventions (to suppress in keywords) and writing
tuples as My, ..., M, without enclosing parentheses.

Let a typing environment, I', be a list of the form &,x; : t1,...,x, : t,; we say I”
is well-formed and write I" - ¢ to mean that the variables x; are pairwise distinct. Let
dom (I') = {xy,...,x,} if = &,x1 : t1,...,X, : t,. We sometimes use the notation x: 7
forI' =¢€,x; :t1,...,X, : t, where X = x1,...,x, and t =tq,...,t,.

Typing Rules for Fun Expressions: I' - M : ¢
I

(FUN VAR) (FUN CONST) (Fun PAIR). (FTJN OPERATOR)
o (xi)el Tko Frviin @:bib = bs
- 'V, I'EVi:by T'EV,: by
Fhx:t Ire:ty(o) 't (Vi,Va):t1 xtp I'Vi®Vy:bs

(FuN PrOJ1) (FUN PrOJ2) (FUN IF)
I'tV:yxt, TI'EV:tyxta I'FV:bool I'-M;:t I'EM,:t

I'=vil:ny I'-v2:n I' =if V then M| else M, : t

(FUN LET) (FUN RANDOM)
I'-M;:4 D:(xy:by*-%x,:b,) =D (FUNIQ?_S‘EI?\;E)
Fx:ttEMy: 0 CEV:(by*---xby) -

I'Fletx=M;inM;:t, I' Frandom (D(V)) : b I observe V' unit
L

Lemmal. If [x:t,I"+-M:/' andC+V it then T, I = E{V/,}: 1.

Proof. By induction on the derivation of I',x: ¢, I M : t'. O
Lemma?2. IfI'-M:tthenI Fo.

Proof. By induction on the derivationof ' =M : T. a
Lemma 3 (Unique Types). [f I'-M :tand ' =M :t thent =t

Proof. By induction on the structure of M. The proof needs that the result types of the
signatures of overloaded binary operators and of distributions are determined by the
argument types. ad

2.3 Formal Semantics for Bernoulli Fun

Let Bernoulli Fun be the fragment of our calculus where every random expression takes
the form random (Bernoulli(c)) for some real ¢ € (0,1), that is, a weighted Boolean
choice returning true with probability c, and false with probability 1 — c. We show that
closed well-typed expressions induce conditional probabilities P [value = V | valid], the
probability that the value of a valid run of E is V.

For this calculus, we inductively define an operational semantics, M —” M’, mean-
ing that expression M takes a step to M’ with probability p.

Reduction Relation: M —7” M’ where p € (0,1]

I 1
VioeW, -l cif Vi=ci,Vo=cr,andc=c1 ®cy

(V1,V2).1 -l Vi

(Vl,Vz).Z —>1 %3

if true then M, else M, —' M,

if false then M, else M, —! M,

letx=VinM ' M{V/}

R[M] —P RIM'] if M —P M’ for reduction context R given by

Riu=[|letx=Rin M
random (Bernoulli(c)) —¢ true ifce(0,1)
random (Bernoulli(c)) —!~ false ifce (0,1)

observe V —! ()
1]

Since there is no recursion or unbounded iteration in Bernoulli Fun, there are no non-
terminating reduction sequences M; —P1 ..M, —P" ...
Moreover, we can prove standard preservation and progress lemmas.

Lemma 4 (Preservation). If ' =M :t and M —P M’ thenI" =M’ : t.
Proof. By induction on the derivation of M —? M’. O

Lemma 5 (Progress). If €=M : t and M is not a value then there are p and M’ such
that M =P M'.

Proof. By induction on the structure of M. a
Lemma 6 (Determinism). [fM — M’ and M —" M’ then p = p'.

Proof. By induction on the structure of M. a
Lemma 7 (Probability). If € = M : 1 then X, yyy—rnyp = 1.

Proof. By induction on the structure of M. a

We consider a fixed expression M such that e - M : ¢.
Let the space Q be the set of all runs of M, where a run is a sequence @ =
(My,...,My41) forn >0 and py, ..., p, such that M = My} —P1 .- =P M, =V,

we define the functions value(®) =V and prob(®) = 1p; ... p,, and we define the pred-
icate valid(®) to hold if and only if whenever M; = R[observe V] then V = 0, for
some zero element 0. Since M is well-typed, is normalizing, and samples only from
Bernoulli distributions, €2 is finite.

Let an event, o or 3, be a subset of Q. Let & and B range over events, and let
probability P [a] = ¥ e prob(®).

Proposition 1. The function P[] forms a probability distribution, that is, (1) we have
Pla] >O0foralla, (2)P[R2] =1, and (3)P[aUB] =Pla]+P[B]ifanp =2.

Proof. Ttem (1) follows from the fact that p > 0 whenever M —, N. Item (2) follows
from Lemma 7, Lemma 4, and termination. Item (3) is immediate from the definition.
O

To give the semantics of our expression M we first define the following probabilities
and events. Given a value V, value = V is the event value ™! (V) = {® | value(®) =V }.
Hence, P [value = V] is the odds (or prior probability) that a run terminates with V. We
let the event valid = {® € Q | valid(®)}; hence, P [valid] is the probability that a run is
valid.

If P [B] # 0, the conditional probability of o given B is

Plap= sl

The semantics of a program is given by the conditional probability distribution
P [(value™!(V)) Nvalid]
P [valid] ’
the conditional probability that a run returns V' given a valid run, also known as the
posterior probability.

The conditional probability P [value = V | valid] is only defined when P [valid] is not
zero. For pathological choices of M such as observe false or let x = 3 in observe x
there are no valid runs, so P [valid] = 0, and P [value =V | valid] is undefined. (This is
an occasional problem in practice; Bayesian inference engines such as Infer.NET fail in
this situation with a zero-probability exception.)

P[value =V |valid] =

2.4 An Example in Bernoulli Fun

The expression below encodes the question: /% of a population have a disease. 80% of
subjects with the disease test positive, and 9.6% without the disease also test positive.
If a subject is positive, what are the odds they have the disease? [46]

Epidemiology: Odds of Disease Given Positive Test
I

let has_disease = random (Bernoulli(0.01))
let positive_result = if has_disease
then random (Bernoulli(0.8))
else random (Bernoulli(0.096))
observe positive_result

has_disease
L]

10

For this expression, we have Q = {@y, @, @s,, @y} where each run @, ., corresponds
to the choice has_disease = ¢ and positive_result = ¢;. The probability of each run is:

— prob(@y) = 0.01 x 0.8 = 0.008 (true positive)

— prob(@ys) = 0.01 x 0.2 = 0.002 (false negative)
— prob(@y,) = 0.99 x 0.096 = 0.09504 (false positive)
— prob(@yr) = 0.99 x 0.904 = 0.89496 (true negative)

The semantics P [value = true | valid] here is the conditional probability of having the
disease, given that the test is positive.

Here P [valid] = prob(®y;) + prob(@y;) and P [value = true N valid] = prob(@y), so we
have P [value = true | valid] = 0.008 /(0.008 +0.09504) = 0.07764. So the likelihood of
disease given a positive test is just 7.8%, less than one might think.

This example illustrates inference on an explicit enumeration of the runs in 2. The
size of 2 is exponential in the number of random expressions, so although illustrative,
this style of inference does not scale up. As we explain in Section 4, our implementa-
tion strategy is to translate Fun expression to factor graphs, for efficient approximate
inference.

Bayes’ rule Since our semantics is a conditional probability, Bayes’ rule, stated below,
provides an alternative procedure to compute it.

P[B | a]P[a]
PB]

We define r/0 = 0. Specialized to our semantics we get that

Ploc| B =

P [valid | value = V] P [value = V]

P [value =V | valid] = P [valid]
vali

The quantities in the rule are usually described as follows:

P [value = V] is the prior probability that value =V

P [valid | value = V] is known as the likelihood, the probability of a valid run given
that value =V

P [valid] is the probability of a valid run;

P [value =V | valid] is the posterior probability that value = V.

To apply Bayes rule, we can read off from the expression that P [valid | value = true] =
0.8 (or confirm this by calculating the conditional probability explicitly). The other
quantities needed for the rule are easily calculated:

— P[value = true] =P [{@y, w;s}] =0.01
- P [Valld} = P [{(l)n,(x)ﬂ}] = 0.10304

Hence, by Bayes rule, the overall semantics is:

P [value = true | valid] = (0.8 x 0.01)/0.10304 = 0.07764

11

3 Semantics as Measure Transformers

We cannot generalize the operational semantics of the previous section to continuous
distributions, such as random (Gaussian(1, 1)), since the probability of any particular
sample is zero. A further difficulty is the need to observe events with probability zero, a
common situation in machine learning. For example, consider the naive Bayesian clas-
sifier, a common, simple probabilistic model. In the training phase, it is given objects
together with their classes and the values of their pertinent features. Below, we show
the training for a single feature: the weight of the object. The zero probability events are
weight measurements, assumed to be normally distributed around the class mean. The
outcome of the training is the posterior weight distributions for the different classes.

Naive Bayesian Classifier, Single Feature Training:
I

let wPrior() = random (Gaussian(0.5,1.0))

let Glass,Watch,Plate = wPrior(),wPrior(),wPrior()

let weight objClass objWeight = observe (objWeight—(random (Gaussian(objClass
,1.0)))

weight Glass .18; weight Glass .21

weight Watch .11; weight Watch .073

weight Plate .23; weight Plate .45

Watch,Glass,Plate

Above, the call to weight Glass .18 modifies the distribution of the variable Glass. The
example uses observe (x—y) to denote that the difference between the weights x and y
is 0. The reason for not instead writing x=y is that conditioning on events of zero prob-
ability without specifying the random variable they are drawn from is not in general
well-defined, cf. Borel’s paradox [15]. To avoid this issue, we instead observe the ran-
dom variable x—y of type real, at the value 0. (Our compiler does permit the expression
observe (x=y), as sugar for observe (x—y)).

To give a formal semantics to such observations, as well as to mixtures of contin-
uous and discrete distributions, we turn to measure theory, following standard sources
[4,41]. Two basic concepts are measurable spaces and measures. A measurable space is
a set of values equipped with a collection of measurable subsets; these measurable sets
generalize the events of discrete probability. A finite measure is a function that assigns
a numeric size to each measurable set; measures generalize probability distributions.

We work in the usual mathematical metalanguage of sets and total functions. To
machine-check our theory, one might build on a recent formalization of measure theory
and Lebesgue integration in higher-order logic [29].

3.1 Types as Measurable Spaces

In the remainder of the paper, we let Q2 range over sets of possible outcomes; in our
semantics will range over B = {true,false}, Z, R, and finite Cartesian products of
these sets. A o-algebra over Q is a set M C P () which (1) contains & and 2, and (2)
is closed under complement and countable union and intersection. A measurable space

12

is a pair (£,M) where M is a o-algebra over Q; the elements of M are called measur-
able sets. We use the notation o (S), when S C P(Q), for the smallest c-algebra over
£ that is a superset of S; we may omit £ when it is clear from context. More formally,
0 (S) is the least set closed under the rules: (1) S € 0o (S) if SC P(Q); 2) (Q\A) €
0o (S)ifA € 6a(S); 3) (UiciAi) € 0a(S) if A; € 0q(S) for all i € 1, for countable I.
Given two measurable spaces (21, M) and (£, M,), we can compute their product as
(21, M) x (22, M2) £ (21 X Q,00,x0,{A X B|A € M,B e M,}) If (2,M) and
(', M) are measurable spaces, then the function f : Q — Q' is measurable if and only
if for all A € M/, f~1(A) € M, where the inverse image f~' : P(Q') — P(Q) is given
by f1(A) £ {we Q| f(w) € A}. We write ! (x) for f~!({x}) when x € Q'.

We give each first-order type ¢ an interpretation as a measurable space T[t] =
(V;,M;) below. We write () for &, the unit value.

Semantics of Types as Measurable Spaces:

Tunit] = ({0}, {0}, 2}) Tbool] = (B, P (B))
Tlint] = (Z,P(Z)) T[real] = (R, 0x({[a,b] | a,b € R}))
Tt xull = (Vi X Vy, 0v,xv, ({mxn|meM;, ne M,}))

The set or({[a,b] | a,b € R}) in the definition of T][real] is the Borel c-algebra on
the real line, which is the smallest o-algebra containing all closed (and open) intervals.
Below, we write f : 7 — u to denote that f : V; — V,, is measurable, that is, that £~ (B) e
M, for all Be M,,.

3.2 Finite Measures

A finite measure |1 on a measurable space (2,M) is a function M — R that is count-
ably additive, that is, if the sets Ag,Aq,... € M are pairwise disjoint, then u(U;A;) =
Y u(A;). We write || = p (). A consequence of this definition is that 1 (@) = 0. Let
M¢ be the set of finite measures on the measurable space Tt]. Additionally, a finite mea-
sure 4 on (Q,M) is a probability measure when |it| = 1. We do not restrict M7 to just
probability measures, although one can obtain a probability measure from a non-zero
finite measure by normalizing with 1/|u|. We make use of the following constructions
on measures.

— Given a function f : — u and a measure i € M¢, there is a measure uf~' € Mu
given by (uf)(B) 2 u(f 1 (B)).

— Given a finite measure gt and a measurable set B, we let (t|g(A) = 1 (AN B) be the
restriction of u to B.

— We can add two measures on the same set as (11 + tp)(A) = w; (A) + up(A).

— We can multiply a measure by a positive constant as (r- 1)(A) 2 r- u(A).

— The (independent) product (i; X L) of two measures is also definable, and satis-
fies (U1 X t2)(A x B) = 1 (A) - u2(B). (Existence and uniqueness follows from the
Hahn-Kolmogorov theorem.)

— Given a measure i on the measurable space T[¢], a measurable set A € M; and a
function f : ¢ — real, we write [, fdu or equivalently [, f(x)dp(x) for standard
(Lebesgue) integration. This integration is always well-defined if u is finite and f
is non-negative and bounded from above.

13

— Given a measure {1 on a measurable space T[¢] let a function fi : # — real be a
density for p iff u(A) = [, frdA for all A € M, where A is the standard Lebesgue
measure on J[¢]]. (We also use A-notation for functions, but we trust any ambiguity
is easily resolved.)

Standard Distributions Given a closed well-typed Fun expression random (D(V)) of
base type b, we define a corresponding finite measure Li5,(y/) on measurable space T[b].
In the discrete case, we first define probability masses D(V) c¢ of single elements, and
hence of singleton sets, and then define the measure iy as a countable sum.

Masses D(V) ¢ and Measures Up(v) for Discrete Probability Distributions:
I

Bernoulli(p) true £ p if 0 < p <1, 0 otherwise
Bernoulli(p) false = 1 — p if 0 < p <1, 0 otherwise
Binomial(n,p) i = (})p/n! if 0 < p < 1, 0 otherwise
DiscreteUniform(m) i = 1/m if 0 <i < m, 0 otherwise

Poisson(l) n £ ¢~'1" /n! if I,n > 0, 0 otherwise

tpw)(A) £ X:D(V) ¢; if A = J;{c;} for pairwise distinct ¢;

In the continuous case, we first define probability densities D(V') r at individual ele-
ments r. and then define the measure fip(y) as an integral. Below, we write G for the
standard Gamma function, which on naturals » satisfies G(n) = (n— 1)!.

Densities D(V) r and Measures (i,y) for Continuous Probability Distributions:
I

Gaussian(m,v) r 2 e~ (—m%/2)\ /2y if v > 0, 0 otherwise
Gamma(s,p) r 2 e 7 p* /G(s) if r,s, p > 0, 0 otherwise
Beta(a,b) r 2 r* 1 (1-r)*"1G(a+b)/(G(a)G(D))
ifa,b>0and 0 <r <1, 0 otherwise
Hp(v)(A) £ [,D(V)dA where A is the Lebesgue measure on R

The Dirac d measure is defined on the measurable space T|[b]] for each base type b, and
is given by 8.(A) £ 1 if ¢ € A, 0 otherwise. We write & for & .

The notion of density can be generalized as follows, yielding an unnormalized coun-
terpart to conditional probability. Given a measure y on J[/¢]] and a measurable function
p it — b, we consider the family of events p(x) = ¢ where ¢ ranges over V,. We define
L[A]|p = c] € R (the u-density at p = ¢ of A) following [9], by:

Conditional Density: [t[A||p =]
I

1[Allp = c] £ 1im; s (AN P~ (By))/ [p,1dA if the limit exists

and is the same for all sequences {B;} of closed sets converging regularly to c.
| |

Where defined, letting A € M,, B € M, conditional density satisfies the equation

Al =+l dup™) () = pianp™ (5). ()

14

In particular, we have [1[A||p = ¢] = 0 if b is discrete and u(p~!(c)) = 0. To show that
our definition of conditional density generalizes the notion of density given above, we
have that if i has a continuous density ft on some neighbourhood of p~!(c) then

lallp =l = [&.(p(x) (0 a2 ().

In general, the Radon-Nikodym theorem implies the existence (cf. [4, Ex 33.5])
of a family of finite measures [i[-||p = c] on T[] satisfying equation (1) above. If
up~"(c) = 0 this is not the case; two versions of fi[-||p = -] may differ on a set B with
up~'(B) = 0. For convenience, we have given an explicit construction that works for
many useful cases.

3.3 Measure Transformers

We will now recast some standard theorems of measure theory as a library of combi-
nators, that we will later use to give semantics to probabilistic languages. A measure
transformer is a function from finite measures to finite measures. We let # ~» u be the set
of functions Mt — M u. We use the combinators on measure transformers listed below
in the formal semantics of our languages. The definitions of these combinators occupy
the remainder of this section. We recall that y denotes a measure and A a measurable
set, of appropriate types.

Measure Transformer Combinators:
I 1
pure € (t —u) — (t ~ u)

> € ([1 ~ tz) — (l‘z ~ l3) — (l‘l ~ l3)

choose € (t — (t ~ u)) — (t ~ u)

extend € (V, = Mu) — (¢ ~ (txu))

observe € (t — b) — (1~ 1)

Lifting a Function to a Measure Transformer To lift a pure measurable function
to a measure transformer, we use the combinator pure € (t — u) — (¢ ~> u). Given
f:t—u, welet pure f u A= uf~'(A), where u is a measure on T[t] and A is a
measurable set from T{u] (cf. [4, Eqn 13.7]).

Sequential Composition of Measure Transformers To sequentially compose two
measure transformers we use standard function composition, defining > € (¢} ~
l‘z) — (Izwt3) — (1‘1 Wl‘3) asT>>U=2UoT.

Conditional Choice between Measure Transformers The combinator choose €
(t — (t ~ u)) — (¢t ~ u) makes a conditional choice between measure transformers, if
its first argument is measurable and has finite range. Intuitively, choose K u first splits
V; into the equivalence classes modulo K. For each equivalence class, we then run the
corresponding measure transformer on u restricted to the class. Finally, the resulting

15

finite measures are added together, yielding a finite measure. We let choose K 1 A £
Yrerange(k) T (1] g1 (T))(A). If the range of K is permitted to be infinite, choose K U
might no longer be a finite measure, since the sum may diverge. In particular, if K is a
binary choice mapping all elements of B to T3 and all elements of C = B to T¢, we have
choose K 1 A =Tp(|g)(A) + Te(t|c)(A). (In fact, our only uses of choose in this
paper are in the semantics of conditional expressions in Fun and conditional statements
in Imp, and in each case the argument K to choose is a binary choice.)

Extending Domain of a Measure The combinator extend € (t —Mu) — (¢ ~ (t*u))
extends the domain of a measure using a function yielding measures. It is reminiscent
of creating a dependent pair, since the distribution of the second component depends
on the value of the first. For extend m to be defined, we require that for every A € M,
the function f4 = Ax.m(x)(A) is measurable, non-negative and bounded from above.
This will always be the case in our semantics for Fun, since we only use the standard
distributions for m above. For all of these, all f4 are piece-wise continuous, and thus
measurable. We let extend m t AB = [y m(x)({y | (x,y) € AB})du(x), where we inte-
grate over the first component (call it x) with respect to the measure U, and the integrand
is the measure m(x) of the set {y | (x,y) € A} for each x (cf. [4, Ex. 18.20]).

Observation as a Measure Transformer The combinator observe € (f — b) — (t ~
t) conditions a measure over T[] on the event that an indicator function of type r — b
is zero. Here observation is unnormalized conditioning of a measure on an event. We
define:

L[A||[p=0.0] if b= real

N
observep LA = { w(AN p~1(0p)) otherwise

As an example, if p : + — bool is a predicate on values of type ¢, we have
observe p 4t A= p(AN{x| p(x) = true}).

In the continuous case, if V; = R x R, p = A(y,x).(y — ¢) and u has density f then

observe p 1 A= /u(y,X)d(&- X A)(,x) = / f1(c,x)dA(x).
A {xl(c.x)€A}

Notice that observe p [t A can be greater than p(A), for which reason we cannot
restrict ourselves to transformation of (sub-)probability measures.

3.4 Measure Transformer Semantics of Fun

In order to give a compositional denotational semantics of Fun programs, we give a
semantics to open programs, later to be placed in some closing context. Since obser-
vations change the distributions of program variables, we may draw a parallel to while
programs. There, a program can be given a denotation as a function from variable valu-
ations to a return value and a variable valuation. Similarly, we give semantics to an open
Fun term by mapping a measure over assignments to the term’s free variables to a joint

16

measure of the term’s return value and assignments to its free variables. This choice is
a generalization of the (discrete) semantics of pWHILE [3]. This contrasts with Ramsey
and Pfeffer [39], where the semantics of an open program takes a variable valuation and
returns a (monadic computation yielding a) distribution of return values.

First, we define a data structure for an evaluation environment assigning values to
variable names, and corresponding operations. Given an environment I = x1:1,. .., X, t,,
we let S(I') be the set of states, or finite maps s = {x| — cy,...,x, — ¢, } such that for
alli=1,....n, ty(c;) = t;. We let T[S(I")]] & Tty * - - - #1,,]] be the measurable space of
states in S(I"). We define dom(s) £ {x1,...,x,}. We define the following operators.

Auxiliary Operations on States and Pairs:
I

add x (s,c) = sU{x+> c} if ty(c) =t and x ¢ dom(s), s otherwise.
lookup x s = 5(x) if x € dom(s), () otherwise.
dropX s 2 {(x—c) €s|x¢ X} fst((x,y)) =x snd((x,y)) =y

|

We write s|x for drop (dom(s) \ X) s.We apply these combinators to give a semantics
to Fun programs as measure transformers. We assume that all bound variables in a
program are different from the free variables and each other. Below, V[[V]] s gives the
valuation of V in state s, and A[[M] gives the measure transformer denoted by M.

Measure Transformer Semantics of Fun:

V[x] s = lookup xXs
V[c]s=c

[
VI(Vi.V2)ll s = (V[Vi] 5, V[Va])

A[V] = pure As.(s, V[V] 5)

AVi®V.]] 2 pure As.(s, (V[Vi]) ® (V[V2])))

A[V.1] £ pure As.(s, £st(V[V] 5))

A[V.2] £ pure As.(s,snd(V[V] s))

A[if V then M else N]] £ choose As.if V[V] s then A[M] else A[N]]
A[random (D (V))]] £ extend As.Upv[v])

Alobserve V] = (observe As.V[V] s) = pure As.(s,)

Allet x =M in N] 2

A[M] >=>> pure (add x) >3 A[N] >>> pure A(s,y).((drop {x} 5),y)

A value expression V returns the valuation of V in the current state, which is left un-
changed. Similarly, binary operations and projections have a deterministic meaning
given the current state. An if V expression runs the measure transformer given by the
then branch on the states where V evaluates true, and the transformer given by the
else branch on all other states, using the combinator choose. A primitive distribution
random (D(V)) extends the state measure with a value drawn from the distribution D,
with parameters V depending on the current state. An observation observe V modifies
the current measure by restricting it to states where V is zero. It is implemented with the
observe combinator, and it always returns the unit value. The expression let x =M in N

17

intuitively first runs M and binds its return value to x using add. After running N, the
binding is discarded using drop.

Lemma 8. Ifs:S(I') and ' -V :t then V[[V] s € V,.
Lemma9. IfI"' =M : t then A[M] € S(I') ~ (S(I") x1).

The measure transformer semantics of Fun is hard to use directly, except in the case
of Bernoulli Fun where they can be directly implemented: a naive implementation of
M(S(I')) is as a map assigning a probability to each possible variable valuation. If there
are N variables, each sampled from a Bernoulli distribution, in the worst case there are
2V paths to be explored in the computation, each of which corresponds to a variable
valuation. Our direct implementation of the measure transformer semantics, described
in Appendix B, explicitly constructs the valuation. It works fine for small examples but
would blow up on large datasets. In this simple case, the measure transformer semantics
of closed programs also coincides with the sampling semantics.

Theorem 1. Suppose € =M :t for some M in Bernoulli Fun. If @ = A[M]) &y and
€V it then Py [value=V |valid] = u({V})/|ul.

Proof. In order to generalize the semantics of Bernoulli Fun to measure transformers,
we consider open programs M starting in an initial state measure @ € M(S(I")), written
init(M,). We let init(M,u) —Ps M{V1/, ---Va/y,} when s = {x; = V; | i = l..n} €
S(I") and ps = u({s" | s'[rv(m) = Slrv(an) })-

Ifr-M:t, eV :tand p € M(S(I')), we let v =A[M] p. Then v({V}) =
P [validNvalue = V] and v(V;) = P [valid], where P is relative to the program init(M,).
The proof is by induction on the derivation of I' - M : ¢.

Then, P [value =V | valid] = P [valid Nvalue = V] /P [valid] = v({V }) /v(V}). ad

3.5 Discussion of the Semantics

Discrete Observations amount to filtering. A consequence of Theorem 1 is that our
measure transformer semantics is a generalization of the sampling semantics for dis-
crete probabilities. For this theorem to hold, it is critical that observe denotes unnor-
malized conditioning (filtering). Otherwise programs that perform observations inside
the branches of conditional expressions would have undesired semantics. As the follow-
ing example shows, the two program fragments observe (x=y) and if x then observe
(y=true) else observe (y=false) would have different measure transformer semantics
although they have the same sampling semantics.

Simple Conditional Expression: M;¢
I

let x = random (Bernoulli(0.5))

let y = random (Bernoulli(0.1))

if x then observe (y=true) else observe (y=false)
y

18

In the sampling semantics, the two valid runs are when x and y are both true (with
probability 0.05), and both false (with probability 0.45), so we have P [true | valid] = 0.1
and P [false | valid] = 0.9.

If, instead of the unnormalized definition observe p t A = u(AN{x| p(x)}), we
had either of the normalizing definitions

pAN{x|p(x)}) | |ﬂ(Aﬁ{x|P(X)})

observeppA=" o O n({x|p(x)})

then A[Mi] 8¢y {true} = A[My] 5y {false}, which would invalidate the theorem.

Let M" = M;; with observe (x = y) substituted for the conditional expression. With
the actual or either of the flawed definitions of observe we have A[M'] §(y {true} =
(A[M'] 8¢y {false})/9.

Discrete versus continuous observations. As an example to highlight the difference
between continuous and discrete observations, we first consider the following program,
which observes that a normally distributed random variable is zero. The resulting dis-
tribution of the variable is a point mass at 0.0, as expected.

Continuous Observation:

I let x = random (Gaussian(0.0, 1.0)) in let _ = observe x in x
L 1

The second program instead observes that a Boolean variable is true. This has zero
probability of occurring, and since the Boolean type is discrete, the resulting measure
is the zero measure.

Discrete Observation:

I let x = random (Gaussian(0.0, 1.0)) in let b = (x==0.0) in let _ = observe b in x
L 1

These examples show the need for observations at real type, as well as at type bool.
(This also clearly distinguishes observe from assume in assertional programming.)

Medical trial. As another example, let us consider a simple Bayesian evaluation of
a medical trial [30]. We assume a trial group of nTrial persons, of which cTrial were
healthy at the end of the trial, and a control group of nControl persons, of which cControl
were healthy at the end of the trial. Below, Beta(1.0,1.0) is the uniform distribution
on the interval [0.0,1.0]. We return the posterior distributions of the likelihood that
a member of the trial group (pTrial) and a member of the control group (pControl) is
healthy at the end of the trial.

Medical Trial:

I let medicalTrial nTrial nControl cTrial cControl =
let pTrial = random(Beta(1.0,1.0))
observe (cTrial == random (Binomial(nTrial,pTrial)));
let pControl = random(Beta(1.0,1.0))
observe (cControl == random (Binomial(nControl,pControl)));
pTrial, pControl

19

We can then compare this model to one where the treatment is ineffective, that is,
where the members of the trial group and the control group have the same probability
of becoming healthy. Also here we give a uniform prior to the probability that the treat-
ment is effective; the posterior distribution of this variable will depend on the Bayesian
evidence for the different models, that is, the ratio between the probabilities of the ob-
served outcome in the two models.

Model Selection:

I 1
let modelSelection nTrial nControl cTrial cControl =

let pEffective = random(Beta(1.0,1.0))
if random(Bernoulli(pEffective)) then
medicalTrial nTrial nControl cTrial cControl
0
else
let pAll = random(Beta(1.0,1.0))
observe (cTrial == random (Binomial(nTrial,pAll)))
observe (cControl == random (Binomial(nControl,pAll)))
pEffective

4 Semantics as Factor Graphs

A naive implementation of the measure transformer semantics of the previous section
would work directly with measures of states, whose size even in the discrete case could
be exponential in the number of variables in scope. For large models, this becomes in-
tractable. In this section, we instead give a semantics to Fun programs as factor graphs
[22], whose size will be linear in the size of the program. We define this semantics in
two steps. We first compile the Fun program into a program in the simple imperative
language Imp, and then the Imp program itself has a straightforward semantics as a
factor graph. Our semantics formalizes the way in which our implementation maps F#
programs to Csoft programs, which are evaluated by Infer. NET by constructing suitable
factor graphs. The implementation advantage of translating F# to Csoft, over simply
generating factor graphs directly [26], is that the translation preserves the structure of
the input model (including array processing in our full language), which can be ex-
ploited by the various inference algorithms supported by Infer.NET.

4.1 Imp: An Imperative Core Calculus

Imp is an imperative language, based on the static single assignment (SSA) intermediate
form. It is a sublanguage of Csoft, the input language of Infer. NET [30], and is intended
to have a simple semantics as a factor graph. A composite statement C is a sequence of
statements, each of which either stores the result of a primitive operation in a location,
observes the contents of a location to be zero, or branches on the value of a location.
Imp shares the base types b with Fun, but has no tuples.

20

Syntax of Imp:

I
Lr,... location (variable) in global store
E,F:=c|l|(I®]) expression
I::= statement
I+ E assignment
1< D(y,...,Iy) random assignment
observe;, [observation
if [then C; else C, conditional
local/:bin C local declaration (scope of [is C)
C:u=nil|I]|(C;C) composite statement
L

When making an observation observe;, we make explicit the type b of the observed
location. In a local declaration, local / : b in C, the location / is bound, with scope C.

Next, we derive an extended form of local, which introduces a sequence of local
variables. We also derive an extended conditional, which binds local variables sepa-
rately in its then and else branch. (This extended conditional is the only way to introduce
local variables in the conference version of this article; in this full version, separating
the two features leads to a simpler semantics.)

Some Derived Forms:

I 1
local X in C £ 1local /; : b; in ...local [, : b, in C where X =¢,l; : by,...,l, : by

if / theny, C elsex, C; = if / then (local Z; in C}) else (local X, in C,)

The typing rules for Imp are standard. We consider Imp typing environments X to be
a special case of Fun environments I, where variables (locations) always map to base
types. If X =¢€.,1; : by,...,1, : by, we say X is well-formed and write X I ¢ to mean that
the locations /; are pairwise distinct. The judgment X - E : b means that the expression
E has type b in the environment X. The judgment X - C : £’ means that the composite
statement C is well-typed in the initial environment X, yielding additional bindings X'.

Judgments of the Imp Type System:

I
ko environment X is well-formed

XFE:b in X, expression E has type b
r-C:x given X, statement C assigns to X’
|

Typing Rules for Imp Expressions and Commands:

I
(Imp CoNsT) (IMP LOC) (Imp OP)

XEo Xto (h)eX XFL:by XZbHbhL:by ®:by,by— bs
Zkc:ty(e) XHI1:b HELRL: b

(IMP RANDOM)
D:(x1:by1,....,xp:by) > b 1 ¢ dom(X)
X-lLi:by - XZFI by

SH1ED(l,.) : (g, 1:b)

(IMP ASSIGN)
EHE:D 1 ¢ dom(X)
XHI+E: (g:b)

21

(IMP OBSERVE) (IMP SEQ) (ImP NIL)
XHIL:b XEC X 2YEC: X ko

X I observe, [: € YFC;C X2 X YXFnil:e
(Imp IF) (ImpP LoCAL)
XrHIl:bool XFCi:X XFGC:X X-C:2 (I:b)eXx!
X +-if [then C) else C; : X' Etlocall:binC: (Z'\{l:b})

We define order-preserving merging of typing environments as follows: X € X + X, if
either ¥ =X = X, = ¢, or there are i € {1,2}, X', X/ x,b such that X; = (X£/,x : b) and
=X x:b)and X' € X/ + %5 ;.

Typing Rules for Derived Forms:
I

(IMP LOCALS)

ThC: (ImP IF LOCALS)

Sexr +x X +1:bool EFCI:E{ ZFCZ:Zé 2{621+2’ 25622+2'
1 0
X +local X inC: X/ I kifl theny, C) elser, G : X'

Lemma 10.

(1) If£,X'+ ¢ then dom(X)Ndom(X') = @.
) IFZ - E : b then £+ o and fv(E) C dom(X).
(3) IfE+C: X then £,X' F o.

4.2 Measure Transformer Semantics of Imp

A compound statement C in Imp has a semantics as a measure transformer J[C] gener-
ated from the set of combinators defined in Section 3. An Imp program does not return
a value, but is solely a measure transformer on states S(X) (where X is a special case of
).

Interpretation of Statements: J[[C]),I[{] : S(X) ~ S(X')

nil] £ pure id
I[C1; G £ I[C] = T[C]]

[ni
[
[l + c]] = pure As.add [(s,c)

1+ 1] & pure As.add ! (s,lookup !’ s)

[+ Lokb]2 pure As.add [(s,(lookup /; s®lookup / 5)))

[l « D ll’ 7l)]] = extend (A,S IJD (Lookup /] s,...,Lookup I, s)) > pure (add l)
[observe,, /]| £ observe As.lookup /s

[if { then C) else C,]] £ choose As.if (lookup ! s) then I[[C)] else I[C,]]
local [: b in C]| £ J[C]] > pure (drop {/})

I
[
Il
Il
Il
Il
i
I
J

The main difference to the semantics of Fun is that Imp programs do not return values.

22

Semantics of Derived Forms:
I 1

I[local £ in C] = J[C]| > pure (drop (domZX))
J[if I theny, C elsex, C5] £ choose As.if (lookup !/ s)
then (J[[C}] > pure (drop (domZX))) else (I[Cs]] > pure (drop (domX,)))

4.3 Translating from Fun to Imp

The translation from Fun to Imp is a mostly routine compilation of functional code to
imperative code. The main point of interest is that Imp locations only hold values of
base type, while Fun variables may hold tuples. We rely on patterns p and layouts p to
track the Imp locations corresponding to Fun environments.

Notations for the Translation from Fun to Imp:

I
p:a=1L0|(p,p) pattern: group of Imp locations to represent Fun value
p = (x; = p;)i€ln layout: finite map from Fun variables to patterns
Xkp:t in environment X, pattern p represents Fun value of type ¢
XEp:I' in environment X, layout p represents environment I”
pEM=C,p given p, expression M translates to C and pattern p

|

Rules for Patterns X - p : t and Layouts X -p : I":
I

(LAYOUT)
(PAT LOC) (PAT UNIT) (PAT PAIR) loes(p) = dom(E)
Iro Xkpr:n
(I:t)eX _Ehe Skpin Zto dom(p)=dom(I")
ST ZH():unit ' IThp():t V(x:)erl
Tl I (p1,p2) itixt

Xt-p: I

The rule (PAT LOC) represents values of base type by a single location. The rules (PAT
UNIT) and (LAYOUT) represent products by a pattern for their corresponding compo-
nents. The rule (LAYOUT) asks that each entry in I" is assigned a pattern of suitable
type by layout p.

The translation rules below depend on some additional notations. Let p ~ p’ be the
congruence closure on patterns of the total relation on locations, so that p ~ p’ means
that p and p’ are patterns with the same shape. We write p < p’ for piecewise assign-
ment of p ~ p’. We say p € X if every location in p is in Z. Let locs(p) = U{fv(p (x)) |
x € dom(p)}, and let locs(C) be the environment listing the set of locations assigned
by a command C.

Rules for Translation: p - M = C, p

I (TRANS VAR) (TRANS CONST) (TRANS UNIT)
c#() 1¢locs(p)
prx=nil,p(x) pkc=({+c¢c),l pk()=nil()

23

(TRANS OPERATOR)
p|—V1=>C17ll pFVziCz,lz
1 ¢ locs(p) Ulocs(Cy) Ulocs(C) locs(Cy) Nlocs(Cr) = @

pEVI®V, = (Cl;Cz;l (—11®lz)7l

(TRANS PAIR)
pEVI=Ci,p1r ptEVa=Cypa locs(Cy)Nlocs(Cy) =

pF(V1,V2) = (C1;C2), (p1,p2)

(TRANS PrOJI) (TRANS PRrROJ2)
pFV=C(p,p2) pFV=C(p1,p2)
pEV.1=C,p; pEV2=C,p>

(TRANS IF)

pEVI=C1,l (locs(p)Ulocs(Cy)Ulocs(Cr) Uloes(Cz)) Nfv(p) = &
pEM,=Cy,py C)=local locs(Cy) in (Co;p<—p2) pa~p
pMz=Cs,p;3 C3 local locs(C3) in (Cs;p<—p3) ps~p
p = (if V| then M, else M3) = (Cy;if [then C) else C}), p
(TRANS OBSERVE) (TRANS RANDOM)
pFV =C,l bisthetypeof V pEV=C,p [¢locs(p)Ulocs(C)
p + observe V = (C;observe, [),() pFrandom (D(V)) = (C;l < D(p)),l

(TRANS LET)
pEM;=Ci,p1 x¢dom(p) p{x— pi}FMy=Ca,ps locs(Ci)Nlocs(Cr) =

pFletx=Min M; = (C];Cz),pz

In general, a Fun term M translates under a layout p to a series of commands C and a
pattern p. The commands C mutate the global store so that the locations in p correspond
to the value that M returns. The simplest example of this is in (TRANS CONST): the
constant expression c translates to an Imp program that writes ¢ into a fresh location /.
The pattern that represents this return value is / itself. The (TRANS VAR) and (TRANS
UNIT) rules are similar. In both rules, no commands are run. For variables, we look up
the pattern in the layout p; for unit, we return the unit location. Translation of pairs
(TRANS PAIR) builds each of the constituent values and constructs a new pair pattern.

More interesting are the projection operators. Consider (TRANS PROJ1); the second
projection is translated similarly by (TRANS PR0J2). To find V.1, we run the commands
to generate V, which we know must return a pair pattern (pi, py). To extract the first
element of this pair, we simply need to return p;. Not only would it not be easy to
isolate and run only the commands to generate the values that go in py, it would be
incorrect to do so. For example, the Fun expressions constructing the second element
of V may observe values, and hence have non-local effects.

The translation for conditionals (TRANS IF) is somewhat subtle. First, the condi-
tional and branches are translated, and the commands to generate the result of condi-
tional are run before the test itself. Next, a pattern p of fresh locations is used to hold the
return value ; using a shared output pattern allows us to avoid the ¢ nodes common in
SSA compilers. (We arbitrarily require that p, ~ p, which implies p3 ~ p.) Finally, we

24

use the Imp derived form where the then and else branches of a conditional are marked
with environments for their local variables. In this case, these environments list all of
the locations written in the branch except for the locations in the shared target p.

The rule (TRANS OBSERVE) translates observe by running the commands to gener-
ate the value for V and then observing the pattern. (This pattern / can only be a location,
and not of the form () or (py, p2), as observations are only possible on values of base
type.)

The rule (TRANS RANDOM) translates random sampling in much the same way. By
D(p), we mean the flattening of p into a list of locations and passing it to the distribution
constructor D.

Finally, the rule (TRANS LET) translates let statements by running both expressions
in sequence. We translate M», the body of the let, with an extended layout, so that C,
knows where to find the values written by C1, in the pattern p;.

Proposition 2. Suppose ' =M :tand X+p : T.

(1) There are C and p such that p =M = C, p.
(2) Whenever p+=M = C, p, there is X’ suchthat X+C: X and 2, X'+ p : t.

Proof. By induction on the typing of M (Appendix A.1). a

We define operations 1ift and restrict to translate between Fun variables (S(I"))
and Imp locations (S(ZX)).

1ift p = As.flatten {p(x) — V[x] s | x € dom(p)}
restrict p 2 As. {x— V[p(x)] s | x € dom(p)}

We let flatten take a mapping from patterns to values to a mapping from locations to
base values. Given these notations, we state that the compilation of Fun to Imp preserves
the measure transformer semantics, modulo a pattern p that indicates the locations of
the various parts of the return value in the typing environment; an environment mapping
p, which does the same translation for the initial typing environment; and superfluous
variables, removed by restrict.

Theorem 2. I[fI' =M :tand X +=p: I and p+=M = C,p then:
A[M]] = pure (1ift p) = I[C] > pure (As. (restrict p s,ps)).

Proof. By induction on the typing of M (Appendix A.2). a

4.4 Factor Graphs

A factor graph [22] represents a joint probability distribution of a set of random vari-
ables as a collection of multiplicative factors. Factor graphs are an effective means of
stating conditional independence properties between variables, and enable efficient al-
gebraic inference techniques [32,45] as well as sampling techniques [19, Chapter 12].
We use factor graphs with gates [31] for modelling if-then-else clauses; gates introduce
second-order edges in the graph.

25

Factor Graphs:
I

G:=newx:bin{ey,...,en} graph (variables X distinct, bound in ey, ..., e,;)
X,V 2y nodes (random variables)
en= edge
Equal(x,y) equality (x =y)
Constant,(x) constant (x = ¢)
Binopg (x,y,z) binary operator (x =y ®z)
Samplep (%, Y1, -+, Vn) sampling (x ~ D(y1,...,Yn))
Select, (x,v,y1,...,¥n) (de)multiplexing (x = y,)
Gate(x,G1,G) gate (if x then G else G»)
L 1
Inagraphnewx:bin{ey,..., ey}, the variables x; are bound; graphs are identified up to
consistent renaming of bound variables. We write {ey,...,e,} fornew g in {ey,... e}

We write fv(G) for the variables occurring free in G. If x ¢ {J} we write new x :
b innewy:bin{ey,...,ey} for the graph new x: &',y :bin {ey,...,en}.

As a first example, the coin flipping code in Fun from Section 2.1 corresponds to
the following factor graph:

Factor Graph for Coin Flipping Example:

I
Gr = {Constantgs(p),

Samplegerpoulli(*:)
Samplegerpoulli (v 7);
Blnop” (vaay)a
Constant¢pye(z)}

For a second example, we give a factor graph Gg corresponding to the epidemology
example of Section 2.4 (where B = Bernoulli).

Factor Graph for Epidemiology Example:

I
Gg = {Constantg 91 (ps), Sampleg(has_disease, py),
Gate(has_disease,
new p) : real in {Constantog(p,), Sampleg(positive_result, pp)},
new p, : real in {Constantg o96(pn), Sampleg(positive_result, p,)}),
Constantgpye (positive_result) }

A factor graph typically denotes a probability distribution. The probability (density) of
an assignment of values to variables is equal to the product of all the factors, averaged
over all assignments to local variables. Here, we give a slightly more general semantics
of factor graphs as measure transformers; the input measure corresponds to a prior
factor over all variables that it mentions. Below, we use the Iverson brackets, where [p]
is 1 when p is true and 0 otherwise. We let §(x = y) = & (x —y) when x,y denote real

numbers, and [x = y] otherwise.

26

Semantics of Factor Graphs: J[G]% € S(X) ~ S(X,X')

IIGIE 1A= [,(31G] 5) d(x A)(s)
dlnew ¥ bin {e}] s 2 fy, T1;(@e] (5,)dA()

J[Equal(l,I)] s 5(lookup ls=1lookup!s)

J[[Constant (1)] s 5(lookup Is=c)

J[[Binopy, (1, whwz)]} £ §(1ookup I s = Lookup w; s @ lookup wy s)
al

al

al

SampleD(l Vi,-)H s & Hp(100kup v, 5,...,Lookup vy 5) (IOOkup l S)
Select,,(,v,y1,.. 7y,,)]] s AL 8(1 =y,
Gate(v G17G2)]] Iy (3[[G1]] s)[lookupvs] (3[[G2H s)[ﬂlookupvs]

4.5 Factor Graph Semantics for Imp

An Imp statement has a straightforward semantics as a factor graph. Here, observation
is defined by the value of the variable being the constant 0;,. We require that all local
variables are declared at top-level, i.e. that in a composite statement Cy;Cy, neither C;
nor C; are of the form local / : b in C. Every Imp program can be rewritten in this form
by pulling local variable declarations to the front. Moreover, if p = M = C, p then all
local variables of C are declared at top-level.

Factor Graph Semantics of Imp: G = §[C] and {ey,...e,} = E[C]

S[local I : bin C]| = new : b in G[C]
S[C] £ new € in E[[C] if C #local [: binC'.

nil]| £
C ,Czﬂ EfCiUElC]

[
[
[
[
[l + c]] = {Constant.(I)}
(1 1I]= {Equal (1,1}
[
[
[
[

I+ 1, ® L] £ {Binopg(l,l1,h)}
l<—D(ll7 ’)]] é{sampleD(lJla"'alﬂ)}
observe,, /] = {Constanty, (/)}

Sl

[
€
€
€
€
€
€
€
8[1fl then C) else C>] = {Gate(l,G[C1],S[C2])}

Factor Graph Semantics of Derived Forms:

| G[llocal £ in C]| = new X in G[C]]
G[if theny, C; elses, Co]] = {Gate(l,new Z; in G[C1],new X, in G[C2])}

The following theorem asserts that the two semantics for Imp coincide for compatible
measures, which are defined as follows. If T : t ~~ u is a measure transformer composed
from the combinators of Section 3 and i € M¢, we say that T is compatible with p if
every application of observe f to some pt’ in the evaluation of T'(u) satisfies either that
f is discrete or that u has a continuous density on some &-neighbourhood of £~1(0.0).

27

This restriction is needed to ensure that the probabilistic semantics of the factor graph
is well-defined.

Theorem 3. If X+ C: X' and p € M{S(X)) is compatible with J[C)| then I[C] u =
ISz k-

Proof. By induction on the typing of C (Appendix A.3). a

5 Adding Arrays and Comprehensions

To be useful for machine learning, our language must support large datasets. To this
end, we extend Fun and Imp with arrays and comprehensions. We offer three examples,
after which we present the formal semantics, which is based on unrolling.

5.1 Comprehension Examples in Fun

Earlier, we tried to estimate the skill levels of three competitors in head-to-head games.
Using comprehensions, we can model skill levels for an arbitrary number of players
and games:

TrueSKkill:
I

let trueskill (players:int[]) (results:(boolxintxint)[]) =
let skills = [for p in players —random (Gaussian(10.0,20.0))]
for (w,pl,p2) in results do
let perfl = random (Gaussian(skills.[p1], 1.0))
let perf2 = random (Gaussian(skills.[p2], 1.0))
if w // win?
then observe (perfl > perf2) // first player won
else observe (perfl = perf2) // draw

skills
L 1

First, we create a prior distribution for each player: we assume that skills are normally
distributed around 10.0, with variance 20.0. Then we look at each of the results—this
is the comprehension. The result of the head-to-head matches is an array of triples: a
Boolean and two indexes. If the Boolean is true, then the first index represents the win-
ner and the second represents the loser. If the Boolean is false, then the match was a
draw between the two players. The probabilistic program walks over the results, and
observes that either the first player’s performance—normally distributed around their
skill level—was greater than the second’s performance, or that the two players’ perfor-
mances were equal. Returning skills after these observations allows us to inspect the pos-
terior distributions. Our original example can be modelled with players = [0; 1;2] (IDs
for Alice, Bob, and Cyd, respectively) and results = [(true, 0, 1); (true, 1,2); (true,0,2)].

As another example, we can generalize the simple Bayesian classifier of Section 3
to arrays of categories and measurements, as follows:

28

Bayesian Inference Over Arrays:
I

let trainF (catlds:int[]) (trainData:(int«real)[]) fMean fVariance =
let priors = [for cid in catlds — random (Gaussian(fMean,fVariance))]
for (cid,m) in trainData do observe (m — random (Gaussian(priors.[cid],1.0)))
priors

let catlds:int[] = (* ... %)

let trainingData:(int+real)[] = (* ... *)
L 1

The function trainF is a probabilistic program for training a naive Bayesian classifier
on a single feature. Each category of objects—modelled by the array catlds—is given
a normally distributed prior on the weight of objects in that category; we store these
in the priors array. Then, for each measurement m of some object of category cid in the
trainingData array, we observe that m is normally distributed according to the prior for
that category of object. We then return the posterior distributions, which have been ap-
propriately modified by the observed weights. We can train using this model by running
a command such as classify catlds trainingData 20.0 5.0.

As a third example, consider the adPredictor component of the Bing search engine,
which estimates the click-through rates for particular users on advertisements [11]. We
describe a probabilistic program that models (a small part of) adPredictor. Without loss
of generality, we use only two features to make our prediction: the advertiser’s listing
and the phrase used for searching. In the real system, many more (undisclosed) features
are used for prediction.

The following is an F# fragment of our adPredictor model.

adPredictor in F#:

let read_lines filename count line = (* ... *)

[<RegisterArray>]
let imps = (* ... %)

[<ReflectedDefinition>]

let probit b x =
let y = random (Gaussian(x,1.0))
observe (b == (y > 0.0))

[<ReflectedDefinition>]
let ad_predictor (listings:int[]) (phrases:int[]) impressions =
let Iws = [for | in listings — random (Gaussian(0.0,0.33))]
let pws = [for p in phrases — random (Gaussian(0.0,0.33))]
for (clicked,lid,pid) in Array.toList impressions do
probit clicked (lws.[lid] + pws.[pid])

Iws,pws(lws.[lid]
L 1

The read_lines function loads data from a file on disk. The data are formatted as newline-
separated records of comma-separated values. There are three important values in each
record: a field that is 1 if the given impression lead to a click, and a 0 otherwise; a field

29

that is the database ID of the listing shown; a field that is the part of the search phrase
that led to the selection of the listing. We preprocess the data in three ways, which are
elided in the code above. First, we convert the 1/0-valued Boolean to a true/false-valued
Boolean. Second, we normalize the listing IDs so that they begin at 0, that is, so that
we can use them as array indexes. Third, we collect unique phrases and assign them
fresh, 0-based IDs. We define imps—a list of advertising impressions (a listing ID and
a phrase ID) and whether or not the ad was clicked—in terms of this processed data.
The [<RegisterArray>>] attribute on the definition of imps instructs the compiler to sim-
ply evaluate this F# expression, yielding a deterministic constant. Finally, ad_predictor
defines the model. We use the [<ReflectedDefinition>>] attribute on ad_predictor to mark
it as a probabilistic program, which should be compiled and sent to Infer. NET. Suppose
we have stored the collated listing and phrase IDs in Is and ps, respectively; we can train
on the impressions by calling ad_predictor Is ps imps.

5.2 Formalizing Arrays and Comprehensions in Fun

We introduce syntax for arrays in Fun, and give interpretations of this extended syntax
in terms of the core languages, essentially by treating arrays as tuples and by unfold-
ing iterations. We work with non-empty zero-indexed arrays of statically known size
(representing, for example, statically known experimental data).

There are three array operations: array literals, indexing, and array comprehension.
First, let R be a set of ranges r. Ranges allow us to differentiate arrays of different sizes.
Moreover, limitations in our underlying factor-graph implementation disallow nested
iterations on the same range. Here we disallow nested iterations altogether—they are
not needed for our examples and they would significantly complicate the formalism.
We assign sizes to ranges using the function |-| : R — ZT. In the metalanguage, arrays
over range r correspond to tuples of length |r|.

Extended Syntax of Fun:

I
tu=--|tr] type
M,N = - | expression
Vi5...:V] array literal
Vi.[Val, indexing
[for x in, V — M] comprehension

First, we add arrays as a type: t[r] is an array of elements of type 7 over the range r.
In the array type t[r], we require that the type 7 contains no array type #'[/], that is,
we do not consider nested arrays. Indexing, V;.[Vz],, extracts elements out of an array,
where the index V5 is computed modulo the size |r| of the array V|. A comprehension
[for x in, V — M] maps over an array V, producing a new array where each element
is determined by evaluating M with the corresponding element of array V bound to
x. To simplify the formalism, we here require that the body M of the comprehension
contains neither array literals nor comprehensions. We attach the range to indexing and
comprehensions so that the measure transformer semantics can be given simply; the
range can be inferred easily, and need not be written by the programmer. We elide the
range in our code examples.

30

In this formalism, we do not distinguish comprehensions that produce values—Ilike
the one that produces skills—and those that do not—Ilike the one that observes player
performances according to results. For the sake of efficiency, our implementation does
distinguish these two uses. In some of the code examples, we write for x in V do M to
mean [for x in, V — M]. We do so only when M has type unit and we intend to ignore
the result of the expression.

We encode arrays as tuples. For all n > 0, we define m,(M,N) with M : t" and N : int
and if N%n = i we expect m,((Vo,...,Va—1),N) = V..

Derived Types and Expressions for Arrays in Fun:
I

m(M,N):=M

7y(M,N) := if N%n==0 then M.1 else m,_; (M.2,N — 1) forn > 1
t[r] ;=" where t! := ¢ and 1"+ := 1 x¢"

Vos.sVa—i] := (Vo,-.., V1)

Vi[Val, = (V1,V2)

for xin, V - M =
let yo = (let x =, (V,0) in M) in

let y,—; = (let x = | (V,|r| — 1) in M) in
(Y03+++3¥r=1) whereyy,...,y), are fresh for M and V.

Our derived forms for arrays yield programs that scale with the data over which they
compute—we implement V[i], with O(|r|) projections. To avoid this problem, our im-
plementation takes advantage of support for arrays in the Infer. NET factor graph library
(see Section 5.3).

The static semantics of these new constructs is straightforward; we give the derived
rules for (FUN ARRAY), (FUN INDEX), and (FUN FOR). By adding these as derived
forms in Fun, we do not need to extend Imp at all. On the other hand, our formalism
does not reflect that our implementation preserves the structure of array comprehensions
when going to Infer.NET.

Extended Typing Rules for Fun Expressions: I' - M : ¢

I 1
(FUN ARRAY) (FUN INDEX) (FuN FoRr)

'Vt VieO.n—1 CEviitl] TEVyiint TEVetlr] Tx:itbEM:r
I'F [Vos..; Vo] tr) 'EVi[Va, ot 'k [for xin, V — M] : {'[r]
|

The rule (FUN ARRAY) uses the notation r, for the concrete range of size n; we
assume there is a unique such range for each n > 0. This rule can be derived using
repeated applications of (FUN PAIR). The rule (FUN INDEX) asks for V[V;], to be
well-typed that V| is a non-empty array and V, is an integer; the actual index is the
value of V, modulo the size of the array as in the meta-language. We can derive this
rule for a given n by induction on 7, using repeated applications of (FUN IF); we use
(FUN PRrOJ1) in the then case and (FUN PR0OJ2) in the else case. The rule (FUN FOR)

31

asks for [for x in, V — M] to be well-typed that the source expression V be an array,
and that the yielding expression M be well-typed assuming a suitable type for x. We can
derive (FUN FOR) using repeated applications of (FUN LET), with (FUN PAIR) to type
the final result.

5.3 Arrays in Imp

We now sketch our structure-preserving implementation strategy. We work in a version
of Imp with arrays and iteration over ranges, and we extend both the assignment form
and expressions to permit array indexing. Inside the body of an iteration over a range,
the name of the range can be used as an index.

Extended Syntax of Imp:
I

E =[] |!]r] expression

I:= -] statement
I[r]«+E assignment to array item
for rdo C iteration over ranges

We require that every occurrence of an index r is inside an iteration for r do C. Inside
such an iteration, every assignment to an array variable must be at index r. We also ex-
tend patterns to include range indexed locations, and write (p1, p2)[r] for (p1[r], p2[r])-

Our compiler translates comprehensions over variables of array type as an iteration
over the translation of the body of the comprehension. We add to p the fact that the
comprehension variable corresponds to the array variable indexed by the range. We in-
vent a fresh array result pattern p’, and assign the result of the translated body to p'[r].
Finally, we hide the local variables of the translation of the body of the comprehension,
in order to avoid clashes in the unrolling semantics of the loop. This compilation cor-
responds to the rule (TRANS FOR) below. In particular, the sizes of ranges are never
needed in our compiler, so compilation is not data dependent.

Compilation of comprehensions:

I(TRANS FOR)
plx=p@}EM=Cp plr]~p' (locs(p)Ulocs(C)) Niv(p') =&

p + [for x in, z — M] = for r do local locs(C) in (C;p'[r] < p),p’

6 Implementation Experience

We implemented a compiler from Fun to Imp in F#. We wrote two backends for Imp: an
exact inference algorithm based on a direct implementation of measure transformers for
discrete measures, and an approximating inference algorithm for continuous measures,
using Infer.NET [30]. The translation of Section 4 formalizes our translation of Fun
to Imp. Translating Imp to Infer.NET is relatively straightforward, and amounts to a
syntax-directed series of calls to Infer. NET’s object-oriented API.

32

The frontend of our compiler takes (a subset of) actual F# code as its input. To do so,
we make use of F#’s reflected definitions, which allow programmatic access to ASTs.
This implementation strategy is advantageous in several ways. First, there is no need to
design new syntax, or even write a parser. Second, all inputs to our compiler are typed
ASTs of well typed F# programs. Third, a single file can contain both ordinary F# code
as well as reflected definitions. This allows a single module to both read and process
data, and to specify a probabilistic model for inference from the data.

Functions computing array values containing deterministic data are tagged with an
attribute RegisterArray, to signal to the compiler that they do not need to be interpreted
as Fun programs. Reflected definitions later in the same file are typed with respect to
these registered definitions and then run in Infer. NET with the pre-processed data; we
discuss this idea more below.

Below follows some statistics on a few of the examples we have implemented. The
number of lines of code includes F# code that loads and processes data from disk before
loading it into Infer.NET. The times are based on an average of three runs. All of the
runs are on a four-core machine with 4GB of RAM. The Naive Bayes program is the
naive Bayesian classifier of the earlier examples. The Mixture model is another clus-
tering/classification model. TrueSkill and adPredictor were described earlier. TrueSkill
spends the majority of its time (64%) in Infer. NET, performing inference. AdPredictor
spends most of the time in pre-processing (58%), and only 40% in inference. The time
spent in our compiler is negligible, never more than a few hundred milliseconds.

Summary of our Basic Test Suite:
I 1

‘LOC ‘ Observations ‘ Variables| Time

Naive Bayes| 28 9 3 <Is
Mixture | 33 3 3 <Is
TrueSkill | 68 15,664 84 6s

adPredictor | 78 300,752 {299,594 |3m30s

In summary, our implementation strategy allowed us to build an effective prototype
quickly and easily: the entire compiler is only 2079 lines of F#; the Infer. NET backend
is 600 lines; the discrete backend is 252 lines. Our implementation, however, is only a
prototype, and has limitations. Our discrete backend is limited to small models using
only finite measures. Infer. NET supports only a limited set of operations on specific
combinations of probabilistic and deterministic arguments. It would be useful in the
future to have an enhanced type system able to detect errors arising from illegal combi-
nations of operators in Infer. NET. The reflected definition facility is somewhat limited
in F#. In the example below, a call to Array.toList is required because F# does not re-
flect definitions that contain comprehensions over arrays—only lists. (The F# to Fun
compiler discards this extra call as a no-op, so there is no runtime overhead.)

7 Related Work

To the best of our knowledge, this paper introduces the first rigorous measure-theoretic
semantics shown to be in agreement with a factor graph semantics for a probabilistic

33

language with observation and sampling from continuous distributions. Hence, we lay
a firm foundation for inference on probabilistic programs via modern message-passing
algorithms on factor graphs.

Formal Semantics of Probabilistic Languages There is a long history of formal se-
mantics for probabilistic languages with sampling primitives, often combined with re-
cursive computation. One of the first semantics is for Probabilistic LCF [42], which
augments the core functional language LCF with weighted binary choice, for discrete
distributions. (Apart from its inclusion of observations, Bernoulli Fun is a first-order
terminating form of Probabilistic LCF.) Kozen [21] develops a probabilistic semantics
for while-programs augmented with random assignment. He develops two provably
equivalent semantics; one more operational, and the other a denotational semantics us-
ing partially ordered Banach spaces. Imp is simpler than Kozen’s language, as Imp
has no unbounded while-statements, so the semantics of Imp need not deal with non-
termination. On the other hand, observations are not present in Kozen’s language.

Jones and Plotkin [16] investigate the probability monad, and apply it to languages
with discrete probabilistic choice. Ramsey and Pfeffer [39] give a stochastic A-calculus
with a measure-theoretic semantics in the probability monad, and provide an embedding
within Haskell; they do not consider observations. We can generalize the semantics of
observe to the stochastic A-calculus as filtering in the probability monad (yielding what
we may call a sub-probability monad), as long as the events that are being observed are
discrete or have non-zero probability. In their notation, we can augment their language
with a failure construct defined by P[fail]]p = uo where we define pyp(A) = 0 for all
measurable sets A. Then, we can define observe v = (if v = true then () else fail).
However, as discussed in Section 3.5, zero-probability observations of real variables do
not translate easily to the probability monad, as the following example shows. Let N
be an expression returning a continuous distribution, for example, sample (Gaussian
(0.0,1.0)), and let f x = observe x. Suppose there is a semantics for [[f x]{x + r} for real
r in the probability monad. The probability monad semantics of the program let x = N
in f x of the stochastic A-calculus is [N]] >= Ay.[[f x]{x — y}, which yields the mea-
sure 1(A) = [r M[[f x[[{x — ¥}])(A) dM[N](y). Here the probability (M[[f x[|{x —
y})(A) is zero except when y = 0, where it is some real number. Since the N-measure
of y = 0 is zero, the whole integral is zero for all A (in particular it (R) = 0), whereas the
intended semantics is that x is constrained to be zero with probability 1 (so in particular
p(R) =1).

The probabilistic concurrent constraint programming language pcc of Gupta, Ja-
gadeesan, and Panangaden [12] is also intended for describing probability distributions
using independent sampling and constraints. Our use of observations corresponds to
constraints on random variables in pcc. In the finite case, pcc also relies on a sam-
pling semantics with observation (constraints) denoting filtering. To admit continuous
distributions, pcc adds general fixpoints and defines the semantics of a program as the
limit of finite unrollings of its fixpoints, if defined. This can lead to surprising results,
such as that the distribution resulting from observing that two uniform distributions are
equal may not itself be uniform. In contrast, our goal is an efficient implementation via

34

factor graphs, which led us to work directly with standard distributions and to have a
semantics of observation that is independent of the program text.

Mclver and Morgan [27] develop a theory of abstraction and refinement for proba-
bilistic while programs, based on weakest preconditions. They reject a subdistribution
transformer semantics in order to admit demonic nondeterminism in the language.

We conjecture that Fun and Imp could in principle be conferred semantics within a
probabilistic language supporting general recursion, by encoding observations by plac-
ing the whole program within a conditional sampling loop, and by encoding Gaussian
and other continuous distributions as repeated sampling using recursive functions. Still,
our choices in formulating the semantics of Fun and Imp were to include some distribu-
tions as primitive, and to exclude recursion; compared to encodings within probabilistic
languages with recursion, these choices have some advantages: (1) our measure trans-
former semantics relies on relatively elementary measure theory, with no need to ex-
press non-termination or to compute limits when defining the model; (2) our semantics
is compositional rather than relying on a global sampling loop; and (3) our semantics
has a direct implementation via message-passing algorithms on factor graphs, with ef-
ficient implementations of primitive distributions.

Recent work on semantics of probabilistic programs within interactive theorem
provers includes the mechanization of measure theory [14] and Lebesgue integration
[29] in HOL, and proofs of randomized algorithms in Coq [2].

Probabilistic Languages for Machine Learning Koller et al. [20] pioneered the idea
of representing a probability distribution using first-order functional programs with
discrete random choice, and proposed an inference algorithm for Bayesian networks
and stochastic context-free grammars. Observations happen outside their language, by
returning the distributions P [A A B],P [A A —B],P [-A] which can be used to compute
P[B|A].

Park et al. [35] propose Ao, the first probabilistic language with formal semantics
applied to actual machine learning problems involving continuous distributions. The
formal basis is sampling functions, which uniformly supports both discrete and contin-
uous probability distributions, and inference is by Monte Carlo methods. The calculus
Ao does not include observations, but enables conditional sampling via fixpoints and
rejection.

Infer.NET [30] is a software library that implements the approximate deterministic
algorithms expectation propagation [32] and variational message passing [45], as well
as Gibbs sampling, a nondeterministic algorithm. Infer NET models are written in a
probabilistic subset of C#, known as Csoft [44]. Csoft allows observe on zero proba-
bility events, but its semantics has not previously been formalized and it is currently
only implemented as an internal language of Infer.NET. IBAL [37] has observations
and uses a factor graph semantics, but only works with discrete datatypes and thus does
not need advanced probability theory. Moreover, there seems to be no proof that the
factor graph denotation of an IBAL program yields the same distribution as the direct
semantics, an important goal of the present work. HANSEI [18,17] is a programming
library for OCaml, based on explicit manipulation of discrete probability distributions
as lists, and sampling algorithms based on coroutines. HANSEI uses an explicit fail

35

statement, which is equivalent to observe false and so cannot be used for conditioning
on zero probability events.

FACTORIE [26] is a Scala library for explicitly constructing factor graphs. Al-
though there are many Bayesian modelling languages, Csoft and IBAL are the only pre-
vious languages implemented by a compilation to factor graphs. Probabilistic Scheme [38]
is a probabilistic form of the untyped functional language Scheme, limited to discrete
distributions, and with a construct for reifying the distribution induced by a thunk as a
value. Church [10] is another probabilistic form of Scheme, equipped with conditional
sampling and a mechanism of stochastic memoization. Queries are implemented using
Monte Carlo methods. Blaise [5] supports the compositional construction of sophisti-
cated probabilistic models, and decouples the choice of inference algorithm from the
specification of the distribution. WinBUGS [33] is a popular language for explicitly
describing distributions suitable for Monte Carlo analysis.

Other Uses of Probabilistic Languages Probabilistic languages with formal seman-
tics find application in many areas apart from machine learning, including databases [7],
model checking [23], differential privacy [28,40], information flow [24], and cryptogra-
phy [1]. A recent monograph on semantics for labelled Markov processes [34] focuses
on bisimulation-based equational reasoning. The syntax and semantics of Imp is mod-
elled on the probabilistic language pWhile [3] without observations.

Erwig and Kollmansberger [8] describe a library for probabilistic functional pro-
gramming in Haskell. The library is based on the probability monad, and uses a finite
representation suitable for small discrete distributions; the library would not suffice
to provide a semantics for Fun or Imp with their continuous and hybrid distributions.
Their library has similar functionality to that provided by our combinators for discrete
distributions listed in Appendix B.

8 Conclusion

We advocate probabilistic functional programming with observations and comprehen-
sions as a modelling language for Bayesian reasoning. We developed a system based
on the idea, invented new formal semantics to establish correctness, and evaluated the
system on a series of typical inference problems.

Our direct contribution is a rigorous semantics for a probabilistic programming lan-
guage that also has an equivalent factor graph semantics. We have shown that prob-
abilistic functional programs with iteration over arrays, but without the complexities
of general recursion, are a concise representation for complex probability distributions
arising in machine learning. An implication of our work for the machine learning com-
munity is that probabilistic programs can be written directly within an existing declar-
ative language (Fun—a subset of F#), linked by comprehensions to large datasets, and
compiled down to lower level Bayesian inference engines.

For the programming language community, our new semantics suggests some novel
directions for research. What other primitives are possible—non-generative models,
inspection of distributions, on-line inference on data streams? Can we verify the trans-
formations performed by machine learning compilers such as Infer.NET compiler for

36

Csoft? What is the role of type systems for such probabilistic languages? Avoiding zero
probability exceptions, and ensuring that we only generate factor graphs suitable for
our back-end, are two possibilities, but we expect there are more.

Acknowledgements We gratefully acknowledge discussions with and comments from
Ralf Herbrich, Oleg Kiselyov, Tom Minka, Aditya Nori, Chung-chieh Shan, Robert
Simmons, Nikhil Swamy, Dimitrios Vytiniotis, John Winn, and the anonymous review-
ers.

37

A Detailed Proofs

Our proofs are structured as follows.

— Appendix A.1 gives a proof of Proposition 2.
— Appendix A.2 gives a proof of Theorem 2.
— Appendix A.3 gives a proof for Theorem 3.

A.1 Proof of Proposition 2
We begin with a series of lemmas.

Lemma 11 (Pattern agreement weakening). I[f X - p :t and £, X' - ¢, then £,X' -
p:t.

Proof. By induction on ¢. a
Lemma 12 (Expression and statement heap weakening).

() FEFE:band £,5'F o, then £,X' - E 1 b
Q) IFZFI1:X and .5, 5" o, then £,5" - 1: X'
3) IFEZFC:X and £,X 5" o, then £,5" +C: X'

Proof. By induction on E, I, and C, respectively. a
Lemma 13 (Pattern agreement uniqueness). If X - p:tand X'\ p' 1t then p ~ p'.
Proof. By induction on ¢. a

Lemma 14 (Pattern creation). If X I p : t then there exists X' such that X, X' - o and
X'bp' it and dom(X') = fv(p').

Proof. By induction on ¢, and the assumption that there always exist new, globally fresh
locations. a

Lemma 15 (Pattern assignment). [f X - p:tand X' - p' :t and X,X' o, then X
p—p:X" where X' C X

Proof. By induction on .

— (¢t = unit) Trivial: p’ < p=nil,so X’ =g C X'

— (t =bool) Z [:bool and X' !’ : bool, so [: bool € X and !’ : boolinX’. So
l:boolt !« 1:(I':bool) C X'

- (¢t =int) Similar.

— (¢t =real) Similar.

- (t=t1%tp) ZF pi,pa:ti*ty and '+ pi,p) 1) x1p. Both £ and X’ factor into
contexts that type p; and p> (resp. pj and pj) individually; call them X; and X,
(resp. Z{ and X}). By the IHs, we have X b p} < p; : Z{ C Z{and X, - ph < p> :
X C X). We can then see £ |- p| < p1;ph < p2: 2/, X C X1, XL,

O

38

The purpose of this subsection is to prove the following.
Restatement of Proposition 2 Suppose ' =M :tand X-p : T.

(1) There are C and p such that p =M = C, p.
(2) Whenever p =M = C,p, there is X' suchthat X+=C:X and X, X'+ p:t.

Proof. By induction on the typing of M, leaving X and p general.

(FUN VAR) I' b x:t. For (1), we have C = nil and p = p(x). For (2), let X’ = €. By
assumption, X, X’ p(x) : and X F nil : £’ immediately.
(FUN CONST) I' Fc:ty(c). For (1), we have:

I ¢ locs(p)
ty(c) = b for some base type b
pFc=1<+cl

For (2),let X' =1 :1y(c). Wehave £, X' 1 :ty(c) and ' 1« c: S
(FUN OPERATOR) I V| ®V, : b3, where ® has takes b *x b, — b3. By inversion and
the IH:
I+ V] Ib]
pEVI=C,L1 (IHy)
3 (IHy)
2,21 F l1 . b1
YHEC X
I+ V2 . bz
pEVL =Gk (IH)
1%, (IHy)
2,22 [12 . bz
YHECy: X%,

We have for (1), by (TRANS OPERATOR): p F Vi @V, = C1;Cy;l + 1] ® Iy, 1.
Let X' = X1,X,,1 : b3 - o. By weakening we find for (2): X,X' ~1: b3 and X
Ci;Cl 11 @b : X',

(FUN PAIR) I' + (M),M;) : t; xt,. By inversion and the IH:

I'=M:4

p =M= Cy,,p1 (IH))

%, (IH,)
XX Fpl h
2ECy i Xy

I'EM:1

p =My = Cy,,p> (IH))

5, (1)
2,22Fp2:t2
XECyy: X

We have for (1): p = (M1,M>) = Cy,;Cuy, (p1,p2). Let £’ = X1, %5 - . By weak-
ening we find for (2): Z,X' = (p1,p2) 1 t1 xtx and Z - Cpy,5Cpy, 2 2.

39

(FuN ProOJ1) I'+M.1:t;. By inversion and the IH:

I'EM:t;xtp

p}—M:>CM,p (]Hl)

Ix (IH,)
XX bFpit*ty
FM:S

By inversion, p = (py, p2), such that X, X't py 1t and £, X' p; : 1. We now have
pEM.1= Cy,p; for (1). We use X’ to show X, X' F p; : 1y and X - Cyy : X' for
().

(FuN PrOJ2) T' - M.2: 1. Analogous to the previous case.

(FUN IF) I Fif M, then M, else M3 : t. We have:

I' =M, : bool
p M = Cy,,p1 (THy)
3% (IH2)
Y. %X+ p1:bool
XECy Xy
I'EM;:t
p{x— pi} =My = Cy,,p> (IH;)
%, (IHy)
X% |—p2 ot
2ECyy: X
I'-Ms:t
p{x— p,} - M5 = Cy,,p3 (IH;)
%5 (IHy)
X, X p3t
2ECuyy i X3

By inversion, p; =/ and X, X, - [: bool. By pattern agreement uniqueness (Lemma 13),
p2~p3.LetZ, = p' 1, fordom(Z,) = fv(p) (by Lemma 14). We have (locs(p)U
locs(Cy) Ulocs(C2) Ulocs(C3)) N fv(p) = &. We also have p’ ~ p; and p’ ~ p3. We
now have for (1):

p - if M, then M, else M3 =

Cy, ;if I then local locs(Cy) in Cyy,; [[p’ < p2]] else local locs(C3) in Cug; [[p/ < p3l], P/
Finally, let £y = N X3N X, Foand X' = X;, Xy - o. By pattern assignment, we
cansee Xy b [[p' <= ps]] and Z; F [[p’ < p3]]. By weakening (Lemmas 11, and 12)

we have what we need for (2):

55
X b Cuyy;if i then ... else ... : 2’

40

(FUN LET) I' 1let x =M, in M, : t,. We have:

I'-M:4
pFM1:>CM|,p(IH1)
%, (IHy)
2721|—p11l1
XECy i Xy
Lx:TY-M: 1t

Next, note that £, %, - p{x+ p;} : [',x : T;. We can now apply the TH to M5’s
typing derivation to see:

p{x— p1} -M> = Cy,,p> (IH))

a5 (1H>)
X2 kpin
2ECy,: X

First, we have: p - let x = M in M, = Cy,;Cp,, p2 for (1). For (2), let X' =
X1, %, - ¢. By weakening, we find Z,X" F py :tp and £ - Cpy,;Cuy, = 2.

(FUN OBSERVE) I' I~ observe, E : unit. By the IH, with X’ = € from IH,.

(FuN RANDOM) T+ random(D(V)) : by,1. We have:

D:(x1:by*..xxy:by) = bpyy
T'EV:(bi*..xby)

We have, by the IH:
pEV=C,p (IH)

£} (IH,)
EXbpit ()
rRC: X

So p Frandom(D(V)) = C;l < D(p),!, for (1). We find (2) by (*) and by (Imp
Seq), (Imp Random), and the IH X - C;[: X', [, where X/, -1 : b, 1. a

A.2 Proof of Theorem 2
We use the following lemma.

Lemma 16 (Value equivalence). I[f ' -V :tand X t-p: 1T and pFV = C,p then
A[C]| = pure f, where f is either id or a series of (independent) calls to add :

f=As.addli(add Ir(...(add I,(s,c,))...,c2),¢1)
where each of the I; are distinct, and
A[V] = pure (1ift p) >3 A[C] > pure (As. restrict p s,ps)

Proof. By induction on the derivation of I' -V : ¢.

41

(FUN VAR) 'k x:t,sox:t€land X F p(x) :¢. We have p - x = nil, p(x), so f =

Al
= pure (4s. (s, V[x] s))
= pure (As. (s,lookup x s))
= pure (As. (restrict p(1ift p),p (1ift p s)))
= 1ift p > (As. (restrict ps,ps))
= 1ift p > pureid > (As. (restrict p s,ps))
=1ift p > A[x] >> (As. (restrict ps,ps))

(FUN CONST) I'tc:ty(c). Wehave p - c =1+ c¢,l,s0 f = As. add [(s,¢).
Alc]

= pure (1s. 5,¢)

= pure (As. restrict p(1ift p s),/ (add! (1ift p s,¢)))

= pure (lift p) >>> pure (As. restrict p s,/ (add ! (s,c)))

= pure (1ift p) > pure (As. add ! (s,c)) > pure (As. restrict p s,/ s)
= pure (1ift p) > A[l < c]] >>> pure (As. restrict p s,/ s)

(FUN PAIR) I' V|, V; it *tp. Wehave p =V, Vo = C;C;, (pl ,pz). By the IH,-A[[CI]] =
pure fi and A[[C;]] = pure f>, where f} and f; are either id or add s. We also have:

Alvil
= pure (4s. 5, V[Vi] s)
= pure (1ift p) > A[C;] = pure (As. restrict p s,p; s)
= pure (1ift p) > pure f; 3> pure (As. restrict p s,p; 5)
= pure (As. restrict p(fi(Lift p s)),p;: (fi (1ift p s)))
= pure (As. s, p; (fi (Lift ps)))

So V[Vi]] s = pi(fi(1ift p s)). Let f = fi; f>. We derive:

AV, V2]
= pure (4s. s, (V[Vi] s, V[V2] 5))
= pure (As. s, (p1 (fi (Lift p s)),p2 (f2 (Lift ps))) by weakening/independence

(
=pure (As. s,(p1 ((f1:/2)Qift ps)),p2 ((f1:/f2)(1ift p s)))
= pure (As. restrict p (f1; /2 (1ift p s)),

(p1 ((f1:/2) (it p 5)), p2 ((f15/2)(Life p 5)))
= pure (11ft p) > pure (fl,fz) >3> pure (As. restrict p s,(p1 5,p2 5))
= pure (1ift p) > A[C1] > A[C,]] >35> pure (As. restrict p s,(p1,p2) 5)
= pure (1ift p) > A[C;;C,]] > pure (As. restrict p s,(p1,p2) 5)
Restatement of Theorem2 I'FM:tandXtp:I andp M = C,p then:
A[M] = pure (1ift p) > A[C] = pure (As. (restrict p s,ps))
Proof. By inductiononI" M :t.

(FUN VAR) By the value lemma.

42

(FUN CONST) By the value lemma.
(FUN PAIR) By the value lemma.

(FUN OPERATOR) 'V ®@Va:bzand p =V @V, = C1;Ca, 11 @ 1. We have A[V) ®
V2] = pure (As. 5, V[V1] s ® V[V2] s). By the value lemma (Lemma 16):

AV

= pure (4s. 5, V[Vi] 5)

= pure (1ift p) = A[C;] = pure (As. restrict p s,l; s)

= pure (1ift p) > pure f; >35> pure (As. restrict p s,/; s)

= pure (As. restrict p (f; (Lift p s)),l; (f; (Lift ps)))

= pure (As. s,0; (fi(1ift p s)))

= pure (As. s,0; ((f1;/2)(1ift ps)) by weakening/independence

So V[Vi] s =1 ((fi;/2)(1ift p s5)). We derive:

AV @Va]
= pure (As. 5, V[V|] s@ V[V2])
— pure (As. 5.1y (fus) (1ift p) ©1s (s £2)(1iEE p 5)))
= pure (1ift p) > pure (fi; f») > pure (As. restrict p s,/; s®1 5)))
= pure (1ift p) > A[C1] > A[C,]] > pure (As. restrict p s,l1 sQ 1 5)))
= pure (1ift p) > A[C;;C,] > pure (As. restrict p s,l; s®1L 5)))

(FUNPROJ1) THV.1:fpand ' HV @ty xtp. We have p -V = C,(p1,p2) and p F
V.1 = C, p1. By the value lemma as before, we can conclude V[V] s = (p1,p2) (f (1ift ps)).
Therefore:

A[V-1]

= pure (As. s,fst V[V] s)

]
(
= pure (As. s, £st ((p1,p2)(f (1ift p s)))
= pure (As. s, p; (f (Lift p s))
= pure (lift p) >>> pure f > pure (As. restrict p s,p; s)
= pure (1ift p) > A[C] = pure (As. restrict p s,p; s)

(FUN PrROJ2) Symmetric to Projl.
(FUN IF) I' Fif V| then M, else M3 : t. We have:

pF...= Cy;ifl; thenlocal locs(Cs) in Cy; p < 2 elselocal locs(C) in Cs;p < p3,p

Our Hs are: A[M;]] = pure (1ift p) > A[C;]] >>> pure (As.restrict p s,p;s).
In the case of Vi, we actually have A[C,]] = pure fiV[Vi] s = Li(fi(1ift p s)),

43

by the value lemma. We now calculate (at length):

A[if V| then M, else Mi]|
= choose (As. if V[[V1]] s then A[M;] else A[M3]))

= choose (As.if[; (f1 (L1ift ps))
then pure (1ift p) > A[C,]] >>> pure (As. restrict p s,p;)
else pure (1ift p) > A[C3] > pure (As. restrict p s,p3 s5))

= pure (1ift p) >>> choose (As. if I} (fi)
then A[[C;]] >>> pure (As. restrict p s,ps s)
else A[C3] > pure (As. restrict p s,p35))

= pure (1ift p) > choose (As. if [} (fi s)
then A[Cy]] > A[p < p2]] > pure (As. restrict p s,ps)
else A[C3]| = A[[p « p3]] =>> pure (As. restrict p s,ps))

= pure (1ift p) >> choose (A4s. if [; (fi)
then A[[C:]] > A[[p < p2] > pure (drop locs(Cz)) >35> pure (As. restrict p s,p s)
else A[[C3] > A[p + p3]] > pure (drop locs(C3)) > pure (As. restrict p s,ps))

= pure (1ift p) > choose (As. if [; (f1 s)
then A[C,]] > A[p < p2] > pure (drop locs(C3))
else A[C3] = A[lp < p3]] > pure (drop locs(C3))) >
pure (As. restrict p s,ps)

= pure (1ift p) = A[C}] >3 choose (As. if (/1 s)
then A[[Cy; p < p2] > pure (drop locs(Cs))
else A[[C3; p < p3]] > pure (drop locs(C3))) >
pure (As. restrict p s,ps)
= pure (1ift p) > A[Ci] >>> choose (As. if (11 s)
then Aflocal locs(C,) in Cy; p < p2]
else Afllocal locs(C3) in C3; p + p3]))
pure (As. restrict p s,ps)

(FUN LET) I' Fletx=M; in M5 : t,; by inversion, ' - M| :tj and ', x: t; - M : 1.
Let p’ = p{x > p1}. We have:

pt=M;=Ci,pi

p'=My=Co,p>

p Fletx= M, in My = C1;C2,p2
As our IHs:

A[M,] = pure (1ift p) > A[C|] > pure (As. restrict p s, ps)
A[M;] = pure (1ift p’) > A[C,] > pure (As. restrict p's, pas)

44

We derive:

A[[let x=M;in Mzﬂ

= A[M,] > pure (add x) > A[M2] >3 pure (1s,y. drop x s,y)

= pure (1ift p) > A[C;] =5 pure (As. restrict p s,p; s) >>
A[M2] >=>> pure (As,y. drop x s,y)

= pure (1ift p) > A[Ci] >>> pure (As. restrict p s,p; s) >>
pure (add x) >>> pure (1ift p’) > A[C,] > pure (As. restrict p’s, p2 5s) >>
pure (As,y. drop x s5,y)

= pure (1ift p) >> A[C1]] =>> A[C;] =>> pure (As. restrict p's, py 5) >>
pure (As,y. drop x s,y)

= pure (1ift p) > A[Ci] > A[Cy]] > pure (As. restrict p s, pa s)

= pure (1ift p) > A[C1;C,] >>> pure (As. restrict p s,ps s)

(FUN RANDOM) I'+random(D(V)):b, where D: (by,...,by)— > byy1, I’ FV 1 (by,....by).
We have p 'V = C,p and p - D(V) = C;l + D(p),l. By the value lemma,
A[C] = pure fand V[V] s = p (f (1ift p s)). We derive:

Alrandom(D(V))]
= extend (As. Upv[v]s))
= extend (As. Up(p(aise p 5)))
= pure (1ift p) >3 extend (As. Up(y(ss))) S>> pure (As,v. restrict p s,v)
= pure (1ift p) >> pure f > extend (4s. Up(, 5)) >3 pure (4s,v. restrict p s,v)
= pure (1ift p) >> A[C] >> extend (1s. lp(, 5)) >> pure (As,v. restrict p s,v)
(
(

= pure (1ift p) >> A[C] > extend (As. Up(, 4)) >>
pure (add [) >>> pure (As. restrict p s, s)
= pure (1ift p) > A[C;l < D(p)]] > pure (As. restrict p s,l s)

(FUN OBSERVE) I |- observe V : unit and I' -V : b for some base type b. We have
pFV = C,l. By the value lemma: A[[C]] = pure fand V[V] s =1 (f (Lift p 5)).

Alobserve V]

observe (As. V[V] s) > pure (4s. (s, ())

= observe (As. [(f(1ift p 5))) > pure (1s. 5,())

= pure (1ift p) >>> observe (As. [(f 5)) > pure (As. restrict p 5,() s)

= pure (1ift p) >>> pure f >35> observe (1s. [5) >>> pure (As. restrict p s,() s)
= pure (1ift p) = A[C] =5 observe (As. [s) >3 pure (As. restrict p s,() s)
= pure (1ift p) = A[C;observe []| =5 pure (As. restrict p s,() s)

A.3 Proof of Theorem 3
Restatement of Theorem 3 [f X+ C: X' and u € M{S(X)) is compatible with J[|C]]
then J[Cl p A= H[[S[[C]]ﬂg u A for all measurable A € Mg x 51y

Proof. By inductionon X +C: X'
We write Ar for the standard (Lebesgue or counting) measure over S(I').
We write s(I) £ lookup ! s. By abuse of notation, we let v x Az = v and A = Ay.

45

Base cases:
(1) Xt nil : . We have
I[mil] i A = (pure id) u A = pu(id~'(A)) = u(A)
and

IS mitllE wa = [aleldu= [du=p@)

(2) ZFl4«c:X Here ' =l:ty(c) and A € My j. (e
Let B:= {drop {I} s|s€ AAs(l) =c}.

It] pa
(by def) = (pure As.add! (s,c)) u
(by def of pure) = p((As.add! (s,c))” (A))
(by simpl) = u(B)

and

Sl c}]]]g pA
(by def) = /6 d(px2A)(s)

(by Tonelli’s theorem) = / (/ O(x= c)d,u) dA(x)
{sladd ! (s,x)€A}

(by simpl) = /5(x =c) (/ du) dA(x)
{sladd ! (s,x)eA}
(by def of) — / du
{sladd ! (s,c)eA}

(by defof B) = /du
(by def) =

(B) SE11': 5 As (2).
@ ZHI—LRL:X. As(2).
(5) Z+1<D(,...,1,) : X Here X' = Il:ty(D),

Il <D(ly,.... L) L A
(by def) = (extend As.Up(yy,),....s(1,)) > add) g A
(by def of >>,addl) = extend As.lp(y),.s0,)) 4 {(s',y) [add ! (s',y) € A}

(by def of extend) = /d L Ho @), s'(zn))({y|(addl(sl>y)€A})dM(S/)
rop

46

and
SN+ cIF nA
/A(D(s(ll),...,s(l,,)) x)d(u x A)(s,x)

/d o (/{ I C R (A) xd?L(x)) dp(s)
(by def of up) = /dmpmum))y ({x| add ! (s,x) € A})dpu(s)

(6) X+ observe!l: X Welet B={s € S(X)|s(l)=0}. There are two cases.
(a) : X [:real. By compatibility there is a function m that is a density of i on

some neighbourhood B’ of B. Then
Ilobserve /] u A
(by def) = (observe lookup!/)u A
(by def) [t[A||lookup ! =0.0]
(by additivity) [[ANB'||1ookup [=0.0] + [t[A \ B'||Lookup [=0.0]
(by simpl) = fi[ANB'||Lookup [=0.0]

(by def)

(by Tonelli’s theorem)

(by compatibility) — / m(s)- 8(s(1))dA(s)
ANB/
and
d[Sobserve 5 u A
(by def) = J[Constantg (I)]]2 uA
(by def) — /6 — 0.0)du(s)
(by additivity) = /AmB’ (s(D))du(s +/A\Bl5(s(l))du(s)
Gysimp) = [8(s(1))du(s)

(by density) = / m(s)-6(s(l))dA(s)
ANB'
(b) Otherwise, X [: b for some b # real and
Jobserve /] 4 A = (observe lookup/) u A= u(ANB)
and

g[Sllobserve 5 p A
J[Constanty, (1)]5 u A

150 =0sldu(s)

(by def of Iverson brackets) = / ldu + / 0du
ANB A\B

(by def)
(by def)

(by simpl) = u(ANB)

47

Induction cases:
(1) ZFlocall:binC:X' . Here L+ C: X" and X’ = X"\ {/ : b}. We consider the case

(@)

where X',[: b= X"; other cases can be treated by permuting the dimensions of the
space S(X'.1: b).
Then

A
(by def of choose) = (J[C] > puredrop {I}) u A
(by def of >>>,pure,drop:) = J[C]u (AxV,).

By induction, for all measurable A’ and compatible measures 1’ we have J[[C]| u' A’ =
JISICIE w' A, so

Inew :bin S[CIIFE n A
(by def) = /AH[[neW 1:bin G[C]d(u x Agr)

[(|, stsicmaz) au <z

(by Tonelli’s theorem) = /A><V JISICNT d(p x Agr X Ap)

(by def)

(by simpl) = / AISICTd(k x Az)

JCT w (AxVp)

X +if [then C else C; : X’. Here X + C; : X'. By induction, for all measurable
A1,A; and compatible measures [, 1y we have I[C1]] w1 A1 = J[[S[[C]H]g Ui Ay
and J[C2]) 2 Az = 3[S[C2IF w2 Ao

LetB={s€8(X)|s(l)=true} and B’ = {s € S(X,X') | s(/) =true}. Let vi = |
and v, = p|g. Then I[I] 4 A) = (J[C1]] vi A) + (I[[C2] v2 A) by the definition of
choose, and

(by induction)

dGate(1,S[C1], SICDIE 1A
(by def)

= [TL@Is1cl a6

(by additivity and p —Vvi+ W)
—/ H =501 (v, ¢ Agr) (s)
+ [TL@ISIEN 9™ d(v: x 2z)(6)
i=1,2

(by simplification)

/H C1 V1 XAZ/ —I—/H C2]]d(VQXA,EI)
(by induction)
= I[C1] Vi (A x Vi) +I[Co] va (A x Vi)

48

(3) Assume that X+ Cy;C, : X' by X Cp : Xy and Z; X F Gy : X/ with X2/ = X1, %,.
By induction, for all measurable A;,A; and compatible measures i, W we have

9[C1] A =3[S[CTF i Ar and I[C,]) 2 A2 = F[S[Co] Py, b2 Ao

‘We first show that

[raciciiw = [-a1sIeil i x as,) @

for all non-negative Lebesgue-integrable (d(J[[C;]] 1)) functions f. Let fi, f2,... be
a series of non-negative simple functions converging to f from below. We assume
that fi = Y j<p, aij-1ij where the I;; are indicator functions for the measurable sets
S;j. We then get

[raciciw =tim [siaoic

(by defof i) =1lim [Y a;;-L;d(J[C1] u)

=0 S o<j<n

(by simpl) = lim Z aij- (I[C1] 1 Sij)

i—ee 0<j<n;

(by induction) =1lim Y a;;- (A[SICIIE' 1 Siy)

7% 0<j<ny

(by defy = lim a; / JISICT] d(u x Asz,)

0<]<nl
ysimph) —1lim [¥ ay;-1-3SICI]] (e x 2s,)
e 0<j<n;
(bydefof f) =1lim [£-ISICIT] d(x Ax,)

(by the monotone convergence theorem) = / f-A[S[C]] d(u x Ax,)

49

Using eq. (2), we now derive

JlslcnGalls na
/3 C1 C2 [J X)&Zl)

/3 Cl (.u X)l'):l X 3,22)

/Az;zl @lstal s </{s’es(22>|suS’eA} st dlzz) At > An)(o)

(by def)

(by def)

(by Tonelli’s theorem)

byear) = f (/{S,ESMUS,EA} JISICA] dhs,) dOICT W)
(by Tonelli’s theorem) = / JISICI U)X As,)
(by induction) = / d(I[C]
by simph) = I[C] Ofc H u) A
(by defof >>) = (J[C1] =>>T[C]) uA

50

B Implementation of measure transformers, finite case

We implement finite measures over type a with finite support (o Dist) as finite maps,
when the type o has comparison operators. The function dAdd computes the union of
two measures. The functions dFold, dFlatMap and dFilter are standard. As a base case,
pointMass w a creates a point mass of measure w at a.

Measures as finite maps
I 1

type (o) Dist when o :comparison = (o, float) Map
type (.,) DTrans when «:comparison and f3 :comparison = (a Dist) — (8 Dist)

let dFold (f:a¢ —float -+) (g: B—B—B) (s: B) (d:a Dist)=
Map.fold (fun acc k v —g acc (fk v)) sd

let dAdd (acc:B Dist) (m:f Dist) =
let addOne (s: BDist) kv =
match Map.tryFind k s with
| Some(v’) — Map.add k (v+v’) s
| None — Map.add k v s in
Map.fold addOne acc m

let dFlatMap (f:oc — float — B Dist) = dFold f dAdd Map.empty
let dFilter (p:a — bool) = (Map.filter (fun a _ — p a)):(a,a) DTrans

let pointMass w (a:a¢) = (Map.add a w Map.empty):a Dist
L 1

We define the delta, bernoulli and uniform distributions in terms of pointMasses and
union. Function pairDists computes the independent product of two distributions. We
lift a function of type oo — B Dist (cf. Kleisli arrows of the finite measure monad) to a
distribution transformer by rescaleing its value at each element of the input distribution
by the measure of that element. The function getWeight computes |ut|.

51

Helper functions
I

let delta a = pointMass 1.0 a

let discreteUniform (k:int):int Dist = List.reduce dAdd [for xin [1 .. k] — pointMass
(1.0/(float k)) x]

let bernoulli (p:float) = dAdd (pointMass p true) (pointMass (1.0—p) false)

let pairDists (da:a Dist) (db:f Dist) =
dFlatMap (fun a wa — dFlatMap (fun b wb — pointMass (wa*wb) (a,b)) db) da

let rescale (r:float) = dFlatMap (fun a w — pointMass (wsr) a)
let lift (f:a — B Dist) = dFlatMap (fun a w — rescale w (f a))

let getWeight (da:a Dist) = dFold (fun - w —w) (+) 0.0 da

The implementation of the measure transformer combinators is in most cases by lifting
an appropriate function from o to aDist. Observation is directly implemented using
filtering.

Measure Transformer Combinators
I 1

let (>>>): («,$) DTrans —(B,y) DTrans —(«,y) DTrans =
fun t u d — u(t(d))

let pure: (a0 —) — (,B) DTrans =
fun f — lift (fun a — delta (f a))

let (*xx): (or,f) DTrans — (et,y) DTrans — (¢, *y) DTrans =
fun t u d — pairDists (t(d)) (u(d))

let extend:(a¢ — B Dist)— (o ,a*f) DTrans =
fun f — lift (fun a — pairDists (delta a) (f a))

let weight: float — (a¢,a¢) DTrans =
fun r — lift (fun a — pointMass r a)

let choose: (¢ — (,B) DTrans) — (o,3) DTrans =
fun f — lift (fun a —f a (delta a))

let observe: (o —bool) — (o ,a) DTrans = dFilter

(* bind of ”Unnormalized Probability” Monad; return = delta)

let (>>=) m f = (extend f > pure snd) m
L 1

We can express the Monty Hall problem directly via (some of) these combinators.
The function montyHall is parameterized by a pick function, which is called when the
guess of the player is correct, and the host thus has a choice of two doors to open. The
function pick should then return a distribution describing the action of the host. We then
evaluate the program for three different values of pick, and can see if the player is ever
at a disadvantage when switching doors.

52

Monty Hall problem
I

let montyHall pick = (* Door of the car)
extend (fun _ — discreteUniform 3)
> (x Door of the player *)
extend (fun _ — discreteUniform 3)
> (x Host picks a door different from c,p)
extend (fun ((_,c),p) — if c = p then pick c else delta (6—(c+p)))
> (% Should player swap to remaining door? x)
pure (fun (((_,c),p),h) > c <> p && c <> h)

let unif cp = (discreteUniform 2) >>= (fun f — delta (1 + (cp+f—1)%3))
let cycl cp = delta (1 + cp%3)
let least cp = delta (if cp = 1 then 2 else 1)

let t1 = Map.tryFind true (montyHall unif (delta ()))
let f1 = Map.tryFind false (montyHall unif (delta ()))

let t2 = Map.tryFind true (montyHall cycl (delta ()))
let f2 = Map.tryFind false (montyHall cycl (delta ()))

let t3 = Map.tryFind true (montyHall least (delta ()))
let f3 = Map.tryFind false (montyHall least (delta ()))

In this implementation, we use a value language also including records and tagged
unions. A state is an association list from locations to values. Locations are untyped.
An implementation in for instance Coq or Agda could use dependent types to directly
enforce well-typedness of states and programs at the cost of some complexity (cf. [3]).
The functions get and drop apply to the most recently added occurrence of the location.

States and operations
I

type Location = string
type Value = | IntVal of int | FloatVal of float | BoolVal of bool
| UnitVal | LeftVal of Value | RightVal of Value
| PairVal of Value * Value | RecVal of (string*Value) list
type State = (Location*Value) list
let add | ((s:State),v) = ((I,v)::s):State
let get | s = snd (List.find (fun (I’,.) —1=1") s)
let drop | (s:State) =
match s with
| (I",v)::s” —if I=” then s’ else (I’,v)::(drop | s”)
[l —s .

We show here the different clauses of the measure tranformer semantics of an ex-
tended version of Fun. Note that this is not the compiler backend itself. An expression

53

yields a measure transformer from state measures to measures over the return value and
final state. The measure transformer corresponding to a function additionally uses the
argument to the function. Finally, a distribution taking argument of type o is denoted
by a function from « to Value Dist. The semantics of Fun values and expressions corre-
spond to those given earlier in the paper, except that we here do not require A-normal
form.

Semantics of Fun plus sum types and procedures
I 1

type vDenot = (State — Value)

type eDenot = (State,StatexValue) DTrans

type fDenot = (StatexValue,StatexValue) DTrans

type amDenot = (¢ — Value Dist) (x Type of oo —parametrized distribution x)

(x Semantics of values *)

let var (I:Location) (s:State) = get | s

let constant (c:Value) (s:State) = c

let leftVal (vivDenot) (s:State) = LeftVal (v s)

let rightVal (vivDenot) (s:State) = RightVal (v s)

let pairVal (v1l:vDenot) v2 (s:State) = PairVal ((v1 s),(v2 s))

(x Semantics of expressions *)
let valExp (v:vDenot) = pure (fun s —s,v s)
let firstExp (e:eDenot) = e >> (pure (fun (¢’,(PairVal (f,s))) —¢€’,f))
let secondExp (e:eDenot) = e >>> (pure (fun (e’,(PairVal (f,s))) —¢’,s))
let letExp (x:Location) (el:eDenot) (e2:eDenot) =
el >>> (pure (add x)) >35> e2 > (pure (first (drop x)))
let obsExp (e:eDenot) =
e > (observe (fun (_,BoolVal b) — b)) > (pure (second (fun _ — UnitVal)))
let caseExp (e:eDenot) (I:fDenot) (r:fDenot) =
e > (choose (fun(_,v) —
match v with
| LeftVal - — (pure (second (fun (LeftVal v) —v))) > |
| RightVal _ — (pure (second (fun (RightVal v) —v))) >35> r
)
let randomExp (m:Value mDenot) = extend (fun (_,x) — m x) > (pure (first fst))
let appExp (f:fDenot) (e:eDenot) = e >35> f
let funExp (x:Location) (e:eDenot) = (pure (add x)) >3>e > (pure (first (drop x)))

54

The measure transformer semantics of Imp follow the definitions in Section 4.1.

Semantics of Imp

I
type cDenot = (State,State) DTrans (* Type of denotation of a compound stmt x)
let nil:cDenot = pure id
let loc (I:Location) (s:State) = get | s
let const (c:Value) (s:State) = ¢
let pthen (i:cDenot) (c:cDenot) =i >>>c
let assign (I:Location) (e:vDenot) = pure (fun s — add | (s,e s))
let sampl (I:Location) (m:State mDenot) = (extend m) > (pure (add |))
let ifthenelse (e:vDenot) (cl:cDenot) (c2:cDenot) =
choose (fun s — if (e s = BoolVal(true)) then c1 else c2)
let obs (I:Location) = observe (fun s — get | s = BoolVal(true))

55

References

1.

2.

10.

11.

12.

14.

15.

16.

17.

19.
20.

21.
22.

23.

M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). J. Cryptology, 15(2):103-127, 2002.

P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms in Coq. Sci. Comput.
Program., 74(8):568-589, 2009.

. G. Barthe, B. Grégoire, and S. Z. Béguelin. Formal certification of code-based cryptographic

proofs. In POPL, pages 90-101. ACM, 2009.

. P. Billingsley. Probability and Measure. Wiley, 3rd edition, 1995.
. K. A. Bonawitz. Composable Probabilistic Inference with Blaise. PhD thesis, MIT, 2008.

Available as Technical Report MIT-CSAIL-TR-2008-044.

. J. Borgstrom, A. D. Gordon, M. Greenberg, J. Margetson, and J. Van Gael. Measure trans-

former semantics for Bayesian machine learning. Technical Report MSR-TR-2011-18,
Microsoft Research, 2011.

. N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt. Commun.

ACM, 52(7):86-94, 2009.

. M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic functional programming

in Haskell. J. Funct. Program., 16(1):21-34, 2006.

. D. A. S. Fraser, P. McDunnough, A. Naderi, and A. Plante. On the definition of probability

densities and sufficiency of the likelihood map. J. Probability and Mathematical Statistics,
15:301-310, 1995.

N. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum. Church: a
language for generative models. In UAI pages 220-229. AUAI Press, 2008.

T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich. Web-scale Bayesian click-through
rate prediction for sponsored search advertising in Microsoft’s Bing search engine. In Inter-
national Conference on Machine Learning, pages 13-20, 2010.

V. Gupta, R. Jagadeesan, and P. Panangaden. Stochastic processes as concurrent constraint
programs. In POPL, pages 189-202, 1999.

. R. Herbrich, T. Minka, and T. Graepel. TrueSkill(TM): A Bayesian skill rating system. In

Advances in Neural Information Processing Systems 20, 2007.

J. Hurd. Formal verification of probabilistic algorithms. PhD thesis, University of Cam-
bridge, 2001. Available as University of Cambridge Computer Laboratory Technical Report
UCAM-CL-TR-566, May 2003.

E. T. Jaynes. Probability Theory: The Logic of Science, chapter 15.7 The Borel-Kolmogorov
paradox, pages 467—470. CUP, 2003.

C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations. In LICS, pages
186-195. IEEE Computer Society, 1989.

0. Kiselyov and C. Shan. Embedded probabilistic programming. In Domain-Specific Lan-
guages, pages 360-384, 2009.

. O. Kiselyov and C. Shan. Monolingual probabilistic programming using generalized corou-

tines. In UAI, 2009.

D. Koller and N. Friedman. Probabilistic Graphical Models. The MIT Press, 2009.

D. Koller, D. A. McAllester, and A. Pfeffer. Effective Bayesian inference for stochastic
programs. In AAAI/IAAI pages 740-747, 1997.

D. Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328-350, 1981.
F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algo-
rithm. IEEE Transactions on Information Theory, 47(2):498-519, 2001.

M. Z. Kwiatkowska, G. Norman, and D. Parker. Quantitative analysis with the probabilistic
model checker PRISM. ENTCS, 153(2):5-31, 2006.

56

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

G. Lowe. Quantifying information flow. In CSFW, pages 18-31. IEEE Computer Society,
2002.

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. CUP, 2003.

A. McCallum, K. Schultz, and S. Singh. FACTORIE: Probabilistic programming via imper-
atively defined factor graphs, 2009. Poster at 23rd Annual Conference on Neural Information
Processing Systems (NIPS).

A. Mclver and C. Morgan. Abstraction, refinement and proof for probabilistic systems.
Monographs in computer science. Springer, 2005.

F. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. In SIGMOD Conference, pages 19-30. ACM, 2009.

T. Mhamdi, O. Hasan, and S. Tahar. On the formalization of the Lebesgue integration theory
in HOL. In Interactive Theorem Proving (ITP 2010), 2010.

T. Minka, J. Winn, J. Guiver, and A. Kannan. Infer.NET 2.3, Nov. 2009. Software available
from http://research.microsoft.com/infernet.

T. Minka and J. M. Winn. Gates. In NIPS, pages 1073—-1080. MIT Press, 2008.

T. P. Minka. Expectation Propagation for approximate Bayesian inference. In UAI pages
362-369. Morgan Kaufmann, 2001.

I. Ntzoufras. Bayesian Modeling Using WinBUGS. Wiley, 2009.

P. Panangaden. Labelled Markov processes. Imperial College Press, 2009.

S. Park, F. Pfenning, and S. Thrun. A probabilistic language based upon sampling functions.
In POPL, pages 171-182. ACM, 2005.

A. Pfeffer. IBAL: A probabilistic rational programming language. In B. Nebel, editor, IJCAI,
pages 733-740. Morgan Kaufmann, 2001.

A. Pfeffer. Statistical Relational Learning, chapter The design and implementation of IBAL:
A General-Purpose Probabilistic Language. MIT Press, 2007.

A. Radul. Report on the probabilistic language scheme. In Proceedings of the 2007 sympo-
sium on Dynamic languages, pages 2—10. ACM, 2007.

N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of probability distribu-
tions. In POPL, pages 154-165, 2002.

J. Reed and B. C. Pierce. Distance makes the types grow stronger: A calculus for differential
privacy. In ICFP, pages 157-168, 2010.

J. S. Rosenthal. A First Look at Rigorous Probability Theory. World Scientific, 2nd edition,
2006.

N. Saheb-Djahromi. Probabilistic LCF. In MFCS, volume 64 of LNCS, pages 442-451.
Springer, 1978.

D. Syme, A. Granicz, and A. Cisternino. Expert F#. Apress, 2007.

J. Winn and T. Minka. Probabilistic programming with Infer NET. Machine Learning
Summer School lecture notes, available at http://research.microsoft.com/~minka/
papers/mlss2009/, 2009.

J. M. Winn and C. M. Bishop. Variational message passing. Journal of Machine Learning
Research, 6:661-694, 2005.

E. S. Yudkowsky. An intuitive explanation of Bayesian reasoning, 2003. Available at http:
//yudkowsky.net/rational/bayes.

57

http://research.microsoft.com/infernet
http://research.microsoft.com/~minka/papers/mlss2009/
http://research.microsoft.com/~minka/papers/mlss2009/
http://yudkowsky.net/rational/bayes
http://yudkowsky.net/rational/bayes

	Measure Transformer Semantics forBayesian Machine Learning

