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ABSTRACT 
Personalization of search results offers the potential for significant 

improvements in Web search. Among the many observable user 

attributes, approximate user location is particularly simple for 

search engines to obtain and allows personalization even for a 

first-time Web search user. However, acting on user location in-

formation is difficult, since few Web documents include an ad-

dress that can be interpreted as constraining the locations where 

the document is relevant. Furthermore, many Web documents – 

such as local news stories, lottery results, and sports team fan 

pages – may not correspond to physical addresses, but the location 

of the user still plays an important role in document relevance. In 

this paper, we show how to infer a more general location rele-

vance which uses not only physical location but a more general 

notion of locations of interest for Web pages.  We compute this 

information using implicit user behavioral data, characterize the 

most location-centric pages, and show how location information 

can be incorporated into Web search ranking. Our results show 

that a substantial fraction of Web search queries can be signifi-

cantly improved by incorporating location-based features. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval 

General Terms 
Algorithms, Measurement. 

Keywords 
Location metadata, personalization, Web search. 

1. INTRODUCTION 
Web search personalization has recently received tremendous 

attention from the information retrieval (IR) research community 

(e.g. [10][21][22][23]). Among the many approaches to personali-

zation, the location of the user has been explored as an implicit 

feature of search queries (e.g. [12]). Based on the user’s location, 

search engines commonly select the preferred language of results, 

adapt suggested spelling corrections, and promote search results 

that are near the user. In particular, location-based personalization 

has the benefit that it does not require the IR system to have con-

structed a model of the user in order to adapt search results. 

___________________ 
 

† Authors are listed in alphabetical order. 

Identifying local search results usually implies that the documents 

being ranked (or, occasionally documents dynamically created to 

represent entities such as restaurants or cinemas) must also be 

associated with a specific geographic location. The distance be-

tween the user’s location and that of this document can then be 

taken as a ranking feature when ordering results. Alternatively, if 

the user provides an explicit location in a query (such as [pizza 

new york]), the location specified in the query provides a refer-

ence point from which locations in documents can be measured. 

We propose to address location-based personalization in a more 

general setting. First, consider the geographic sensitivity of a doc-

ument. Rather than estimating the location of the document from 

document content, we propose to observe the locations of users 

who visit this Web page, similarly to Zhuang et al. [35]. However, 

rather than using this to estimate the geographic sensitivity of the 

query used to reach this document, we simply learn a distribution 

over user locations for each document, in the form of a density 

estimate. This density estimate can then be used to recognize the 

location interest of each document, rather than assuming that each 

document is relevant to a single location defined at some fixed 

level of granularity. This approach is beneficial as not all docu-

ments that relate to a specific location are equally location sensi-

tive. For example, if a user searches for [picturehouse cinema], 

they are likely interested in a cinema with that name that is within 

a short drive of their present location. On the other hand, a user 

who searches for [disneyland] is not necessarily interested in the 

closest Disneyland theme park. We argue that usage statistics, 

rather than locations mentioned in document content, best repre-

sent where a document is most relevant. 

Most importantly, this approach is not limited to Web pages that 

represent clearly localized entities. For instance, consider the 

online local news section of the Los Angeles (LA) Times newspa-

per. As expected, Figure 1c shows that this website is of most 

interest to users located in the greater Los Angeles area. However, 

as shown in Figure 1d, the crossword section of the same newspa-

per website is frequently accessed by users from across the United 

States. This indicates that should a user in Miami issue the query 

[la times], it is relatively more likely that they in fact want the 

crossword section instead of the local news section desired by a 

user in Los Angeles. Even more generally, this geographic distri-

bution can tell us that, for instance, service providers’ websites are 

relevant mostly in the areas which they serve, allowing this ser-

vice area to be directly inferred from usage behavior. For instance, 

we see in Figure 1a that Sarasota Memorial Hospital serves cus-

tomers in all of Florida, while the LA Times reviews and recom-

mendations are most relevant in southern California. 

In this paper, we present our approach using generalized Gaussian 

Expectation Maximization to efficiently learn compact density 

estimates of the distribution of user locations for each relevant 

Web site. We then show how to use the estimates obtained in this 

way for both Web documents and search queries to learn a loca-
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tion-sensitive IR system, demonstrating that this approach can 

produce substantially improved search result rankings. 

We start by presenting related work in depth. Following this, we 

describe the data and algorithm used to estimate the location-

interest distribution for each Web document. We characterize 

particularly location-sensitive Web documents and demonstrate 

that different documents exhibit vastly different location-interest 

properties. Next, we describe how the document density estimates 

can be used to infer the likely relevance of documents in response 

to a query, presenting a learning approach to re-rank documents in 

a location sensitive manner. Finally, our results show that this 

approach leads to substantially improved retrieval quality. 

2. RELATED WORK 
Related work can be grouped into three general areas: (i) research 

on personalization of search results, (ii) geographic information 

retrieval, and (iii) inference of Web page locations from various 

sources such as page content and search engine logs.  

Personalized search leverages information about an individual to 

identify the most relevant search results for that person. A large 

number of personalization techniques have been proposed in IR 

research. Some of these methods reside on the server [10] and 

some on the client [22], some leverage long-term query histories 

[15][23], and some use short-term implicit feedback [20][21]. A 

challenge for personalization, especially at Web scale, is in col-

lecting user profiles that are sufficiently rich to be useful in set-

tings such as result ranking, while balancing privacy concerns. 

One way that an individual’s personalized profile can be aug-

mented is by using data from other people. To better understand 

whether groups of people can be used to benefit personalized 

search, Teevan et al. [25] explored the similarity of query selec-

tion, desktop information, and explicit relevance judgments across 

people grouped in different ways. They found that some group-

ings provide valuable insight into what members consider relevant 

to queries related to the group focus, but that it can be difficult to 

identify valuable groups implicitly. Building on their findings, 

Teevan and colleagues show that ranking Web search results 

based on group leads to a significant relevance gains for group-

relevant queries. Along similar lines, Mei and Church [17] pro-

posed a new way to personalize search through back-off based on 

searcher IP address. They suggest that if there are no relevant data 

for a particular user, then we should back off to increasingly larg-

er classes of similar users. As a proof of concept, they used the 

first few bytes of the IP address to define classes and estimated 

the coefficients of each back-off. In their analysis, Mei and 

Church examined the effects of backing off based on day-of-week 

and time-of-day. Our work differs from these personalization 

methods in that we explicitly use location (rather than implicitly 

via IP address) and personalize based on the location of the search 

results, estimated based on usage patterns. Using our approach we 

can infer that proximal users may have similar information needs. 

Similar functionality can only be obtained via IP address if they 

back-off to similar values, but IP addresses can be widely varying, 

even for proximal users, depending on network connection setup, 

service provider, and similar factors. 

Geographic information retrieval (GIR) addresses the retrieval of 

documents according to geographic criteria of relevance. Previous 

GIR research has addressed problems such as the recognition and 

disambiguation of place references in a text [14], the assignment 

of documents to encompassing geographic scopes [1], or the re-

trieval of documents considering geographic relevance [2]. Van  

Kreveld et al. [27] retrieved documents by creating a linear com-

bination of textual and geographic similarity. Purves et al. [19] 

extracted location information from documents and linearly inter-

polated geographic and text-based retrieval scores in the context 

of free text ranking. GeoCLEF research (e.g., [13]) has used geo-

graphic term expansion on the queries and documents and then 

conventional term matching algorithms on the resulting expanded 

texts. Jones et al. [12] examined the effectiveness of geographic 

features of the document, the query, and the document-query 

combined, and trained a ranker to learn to combine textual and 

geographic similarity features. They trained a relevance model 

with both a content-based ranking algorithm and geo-spatial fea-

tures as inputs, and used the learned weights to predict relevance 

and perform ranking. For queries with explicit place names which 

they could extract and use as the basis for matching to document 

mentions, they found that the minimum distance between the doc-

ument locations and query location is the strongest geographical 

predictor of document relevance, and that combining geographic 

features with text features yields a 5% improvement in relevance 

over using text features alone. Yu and Cai [33] proposed a dynam-

ic document ranking scheme to combine the thematic and geo-

graphic relevance measures on a per-query basis. They used query 

specificity to determine how best to combine different sources of 

ranking evidence for each query, and demonstrated relevance 

gains. Research on spatial diversity [24] provides search results 

that are not only relevant but also spatially diversified so that they 

are from many different locations. The work presented in this 

paper differs from previous work in that we do not mine locations 

from Web page or query content, and do not compute distances 

based on distance estimates between locations in the query and the 

content. Rather, we build location-interest models, That is, models 

of the locations from which users view individual Web docu-

ments. We then personalize based on properties of these models 

and how typical the user’s location is for each search result.  

There has also been work on detecting and using locations in non-

retrieval settings. Mehler et al. used locations mentioned in online 

news articles to detect regional biases toward entities such as 

players in local sports teams and local politicians [16]. Mei et al. 

[18] use the geography of Weblog authors to model spatial pat-

terns of news topics. Zhuang et al. [35] use click information in 

order to determine whether a search query is geo-sensitive, model 

and detect, disambiguate, and visualize the associated geograph-

ical locations. Wang et al. [30] present a method to automatically 

determine the dominant locations of search queries by mining the 

top search results and/or query logs. Wang et al. [28] tackle the 

problem of detecting provider, content, and serving location based 

on content features of Web pages, hyperlinks and queries. In our 

work, rather than modeling locations based on explicit mentions 

of location names in logs, we use implicit location information 

inferred from aggregated locations of users accessing pages. 

It is clear from this section that there is a substantial amount of 

related work in areas similar to that covered by our research. 

However, our work extends previous research in three key ways. 

First, we perform personalization based on location metadata, 

showing how to efficiently and compactly maintain this metadata. 

Second, we use that personalization metadata for the purpose of 

re-ranking search engine results. Finally, we infer our location-

interest models from log data, estimating the location meta-data to 

associate with results based on the aggregated location infor-

mation of those who access the pages, rather than based on con-

tent of the results or the query itself. It is worth noting that alt-



hough the framework of inferring metadata to improve rankings 

that we present in this paper is focused on the use of locations, it 

generalizes to other problem scenarios where metadata is availa-

ble for documents (e.g., readability levels). 

3. ESTIMATING WEBSITE LOCATION 

SENSITIVITY  
In this section, we present the first stage of our approach, namely 

efficiently estimating a geographic distribution for each website. 

In particular, our approach creates a compact model of the loca-

tions in which each website is likely of interest. In the following 

sections, we will then show how this model can be used for in-

formation retrieval in particular. 

3.1 Data Collection 
The primary source of data for this study is a proprietary data set 

consisting of the anonymized logs of URLs visited by users who 

consented to provide interaction data through a widely-distributed 

Web browser add-on. The data set consists of browsing logs (with 

both Web search and general browsing episodes) consisting of 

tuples including a random user identifier, the time and date, and 

the Web page visited. These data provide us with examples of 

real-world searching behavior that may be useful in understanding 

and modeling location-based search. Further, each user’s IP ad-

dress is resolved into geographic location information for the user 

(i.e., city, state, latitude, and longitude) and this geographic loca-

tion is recorded. All log entries resolving to the same town or city 

were assigned the same latitude and longitude coordinates. To 

remove variability caused by cultural and linguistic variation in 

search behavior, we only include log entries generated by users in 

the English-speaking United States locale.  

The models we construct are based on URL visits during three 

months from July through September 2010. The evaluation results 

described in this paper are based on URL visits during the first 

week of October 2010, representing millions of Web page visits 

from hundreds of thousands of unique users. From these data we 

extracted search sessions on a commercial Web search engine, 

using a session extraction methodology similar to [31]. Search 

sessions begin with a query, occur within the same browser and 

tab instance (to lessen the effect of any multi-tasking that users 

may perform), and terminate following 30 minutes of inactivity. 

3.2 Location-Interest Models 
For each URL with more than 50 visits during the three month 

period used to collect model data, we infer a location-interest 

model (referred to as location model or distribution for brevity). 

This model estimates the probability of the location of the user 

given they view this particular URL. For compactness, instead of 

representing each URL by the particular locations from which it 

was visited, we learn a mixture of Gaussians1 that can be written: 
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where      and      are inferred from the data. 

                                                                 

1 For simplicity, capital “P” is used for (continuous) probability 

density functions and (discrete) probability mass functions. 

(a) Sarasota Memorial Health, http://smh.com/ 

(b) Sydney Morning Herald, http://smh.com.au/ 

(c) Los Angeles Times: Reviews and Recommendations 

http://findlocal.latimes.com/ 

(d) Los Angeles Times: Crossword Puzzles and Games 

http://games.latimes.com/ 

 

(e) Background Model 

Figure 1. Example location density estimates. Red indi-

cates higher density, orange and yellow lower density. 

(a), (b): For two results returned for the query [smh]   

(c), (d): For two results returned for the query [la times] 

(e) Population background model. 
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Specifically, for a given URL we start with a set of locations {(lat-

itude, longitude)} from which this URL was viewed. To avoid any 

one user having a large impact on the model, only one location 

data point is allowed for each user for each day for each URL. 

Moreover, if a URL has more than 50,000 (user, day) pairs, we 

uniformly subsample 50,000 location samples.  

Using these location data, we learn a density estimate consisting 

of between 5 and 25 Gaussians (depending on the amount of loca-

tion data available for each URL) using Expectation Maximiza-

tion (EM). The EM algorithm specifically adapted to estimating 

general two-dimensional Gaussians is presented in Algorithm 1, 

where   (   is the inner term of  (          |     and   

   . Intuitively, the algorithm iterates between estimating the 

probability that each point belongs to each Gaussian (    , and 

estimating the most likely mean, covariance and weight of each 

Gaussian (        ). The Gaussian locations are initialized at a 

random observed location, with a high initial variance of 50 de-

grees in each direction (about 5,500km). As the algorithm pro-

gresses, each Gaussian tends to narrow and migrate to a high den-

sity area, or broaden to cover a background probability over large 

geographic areas. Examples of the output of the algorithm can be 

seen in Figure 1. 

In addition, when working at Web scale it is essential to minimize 

the size of metadata used for ranking. As such, Algorithm 1 merg-

es Gaussians that are too similar (i.e., those with means that are 

within one degree of each other and with covariance matrices 

which are also very similar), modifying the EM algorithm (by 

setting       instead of the standard value of 1) to encourage 

Gaussians to be nearby in the E step. 

EM exhibits many additional useful properties making it particu-

larly suitable for this setting – such as being efficient at finding a 

reliable density estimate that dynamically adapts the complexity 

of the model to the data. The precise mathematical properties of 

the algorithm are beyond the scope of this paper. We refer the 

reader to [8] for further details of Gaussian EM and [26] for de-

tails about the modification used. 

In addition to learning a density estimate per URL, we also learn a 

general background model describing the density of all users who 

have opted to provide these interaction data. Aggregating the 

location information for all URLs yields the background model 

( (         ). The background model obtained in this way is 

shown in Figure 1e. From the figure, it can be clearly seen that 

this model is reasonably representative of the population 

distribution in the United States. 

Finally, we also learn a location-interest model for each query. 

For each distinct query observed in our data, we take the locations 

of the users who issued this query, and use Algorithm 1 in exactly 

the same way as for URLs. This provides an estimate 

of  (        |      . 

4. LOCATION SENSITIVE FEATURES 
Given the location model generated for each URL, as well as for 

each query and the background model for the entire population, 

we can now leverage these models for personalized search. We 

now describe the features we use to represent geographic locality 

of search results. 

4.1 Non-Contextual Features 
 The first class of features we investigate involve characterizing 

the query and results without considering the specific user. For 

example: Is the query issued location sensitive? Are these URLs 

location sensitive? These are likely to act as indicators as to when 

location should be taken into account by a ranker. 

4.1.1 Features of the URL alone and the query alone 
Let    be the location model for a given URL u, and     be our 

background model. Our URL features include the aggregate popu-

larity of the URL (    , the number of distinct (user, day) pairs 

observed), as well as the overall entropy of the location distribu-

tion and its KL divergence from the background.  

As computing the entropy of a mixture of Gaussians exactly is 

intractable, we computed the entropy by sampling from the loca-

tion distribution of the URL: 

       (         [     ( (   |   )]  〈     ( (   |   〉 

where     is a location drawn from    and 〈 〉 represents an em-

pirical mean of f across many samples. The KL divergence be-

tween the location model for u and the background location model 

is defined as: 

       (                 (   ||    )

  ∫  (   |       [
 (   |   
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]      

   

 

We computed the KL divergence both using sampling for the 

entropy (KLScore-Sam), and using a simple variational upper 

bound (KLScore-Var) [9].  

Finally, we also compute the mean width of each URL model, 

          (  , by sampling from the distribution and compu-

ting the mean distance from the sampled mean of the distribution. 

Figure 1a shows an example of a low width model, and Figure 1b 

shows an example of a high width model.  

The same features were also computed for each query. 

Algorithm 1: Generalized Gaussian EM. 
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1. X  location data; n  initial number of Gaussians;  

2. For each Gaussian                                      [Initialize model] 

1.     distinct random point      

2.     [  
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3. For iteration = 1 to 10 

1. Until convergence 

1. For every                                                  [E step] 

2. For every    , update parameters concurrently  [M step] 
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2. For every                  [Merge near-duplicate Gaussians] 

If   and    are too close, merge   and    



4.1.2 Features of (URL, query) pair 
We also compute the KL divergence between the URL and query 

location distribution,   (   ||      , again both using sam-

pling and the variational upper bound. Intuitively, if a query and 

URL have a very similar distribution, with low KL divergence, we 

would expect the URL to more likely be relevant to users who 

issue this query. 

4.2 Contextual Features 
Contextual features take into account the user’s particular loca-

tion, and we expect them to be particularly important in personal-

izing search results. We used the following contextual features: 

4.2.1 Features of the user 
The user’s location (latitude, longitude) is included as a feature. 

4.2.2 Features of the (user, URL) pair 
The simplest interesting contextual feature is the probability of the 

user’s location given the URL u,  (   |   , estimated by evalu-

ating the URL location model at the user’s location. We call this 

feature LocUrl. If this user is in a location where this URL is pop-

ular, the feature would be high. 

If the personalization model were a perfect estimator of the loca-

tion distribution of the URL, and location was the only determin-

ing feature (i.e., there were no query), the best we could do would 

be to rank by  ( |    , the probability of the URL u given the 

user’s location. Using Bayes rule, we can estimate this quantity as 

follows: 

 ( |      
 (   |    (  

 (    
 

Given that the ranking task involves ranking URLs for a user in a 

particular location, we can ignore the  (     term.  (   can be 

estimated from the frequency with which this URL was viewed 

overall. Hence, we use: 

      (             (   |    

However, relying on  (   |    for our features suffers from 

every large population center having a higher probability of loca-

tion for all URLs. As such, when training a ranker, this feature 

will always be large when the user is in a high population region, 

and always small otherwise. To obtain more useful ranking 

scores, we also use a normalized probability of location given 

URL, subtracting the background model: 

          (       
      (      

      (               
 

As an illustration of this feature, consider Error! Reference 

source not found.. It shows the NormLocUrl as a function of 

location for two universities both returned for the query UW, 

namely the University of Wyoming, and the University of Wis-

consin. We see that the popularity of the University of Wyoming 

relative to the background frequency is higher over a larger geo-

graphic area than that of the University of Wisconsin. Note that 

higher popularity relative to the background over a large region 

does not necessarily imply greater popularity in terms of number 

of users: the University of Wyoming is popular in less populated 

areas than the University of Wisconsin. 

In addition, we implemented two variants of this feature. The first 

(NormLocUrl-Thresh) thresholds the normalized feature, setting it 

to 1 whenever the above ratio is less than 1, i.e., whenever the 

user location is less likely under the URL model than under the 

background model. This has the effect of emphasizing URLs that 

are more likely for this query. The second variant (NormLocUrl-

Renorm) renormalizes the background model so that it sums to 1 

over the area where  (   |      , for a small    This in effect 

allows the background normalization to only take into account the 

population distribution where this URL has ever been clicked, 

avoiding URLs that are of limited geographical interest having 

feature values much larger than URLs that are of broad geograph-

ical interest. 

Finally, we compute general properties of the URL distribution in 

the context of the user: (1) TotalVolume(u,loc,d), the percent of 

the URL u probability mass within a particular distance d of the 

user location; (2) DistMean(u,loc), the distance from the user’s 

location to the mean of the URL model; (3) PeakDist(u,loc), the 

distance from the user’s location to the nearest individual Gaussi-

an component of the URL model as well as the weight of this 

Gaussian in the model (PeakWeight). These features attempt to 

capture features of the neighborhood of the URL location model 

close to the user. 

4.2.3 Features of the (user, query) pair 
We also computed exactly the same features taking the query 

location model instead of the URL location model, naming them 

equivalently (e.g., LocQuery instead of LocUrl). These represent 

how typical the user location is of this query. 

4.3 Standard Ranking Features 
As our experiments will involve learning a re-ranking of Web 

results that take user location into account, we also incorporate 

relevance of the URL to the user’s query in the form of two sim-

ple features: 

1. The rank of the URL in the non-personalized results returned 

by an underlying ranking function of the Bing search engine. 

2. The score of this (query, URL) pair as produced by Bing 

(monotonically decreasing with the rank of the URL). 

(a) University of Wisconsin homepage 

 

(b) University of Wyoming homepage 

Figure 2. NormLocUrl for two websites as a function of loca-

tion. Green (red) indicates that the URL is more (less) likely 

than predicted by the background (and also non-trivial). 



5. EXPERIMENTAL METHOD 
Having described our data and features in the preceding sections, 

we now detail the evaluation of our method. We start with an 

analysis of the properties of our dataset, followed by quantitative 

experimentation on learning to rank. 

5.1 Evaluation Dataset Construction 
From the week-long sample of search sessions described in Sec-

tion 3.1, we generate a dataset for our re-ranking experiments. 

The dataset comprises a set of approximately one million queries 

selected uniformly at random from the search sessions. For each 

query, the top ten search results retrieved by the Bing Web search 

engine were included, along with the latitude and longitude of the 

user, any location models available for each of the top ten search 

results, and the location model built for the query, if available. 

For evaluation, we need a personalized relevance judgment for 

each result. Obtaining many relevance judgments from real users 

in a wide range of geographic locations is impractical, and there is 

no known approach to train expert judges to provide reliable loca-

tion-sensitive judgments that reflect real user preferences.  Hence 

we obtained these judgments using a log-based methodology in-

spired by [7]. Specifically, we assign a positive judgment to one 

of the top 10 URLs if it is the last satisfied result click in the ses-

sion. We define a satisfied result click in a similar way to previous 

work [23][29], as either a click followed by no further clicks for 

30 seconds or more, or the last result click in the session. The 

remaining top-ranked URLs receive a negative judgment. This 

gives us one positive judgment and nine negative judgments for 

each of the top-10 URLs for each session. 

The rank position of this single positive judgment is used to eval-

uate retrieval performance before and after re-ranking. Specifical-

ly, we will measure our performance using the inverse of the rank 

of the relevant document, otherwise known as the mean reciprocal 

rank (MRR). Queries for which we cannot assign a positive judg-

ment to any top-10 URL are excluded from the evaluation dataset. 

We also exclude queries for which we cannot assign a location 

model to at least one of the top-10 results (approximately 16% of 

queries were removed in this way), or where one of several high 

precision rich graphical results is shown (for example detailing 

information about a celebrity, corresponding to approximately 2% 

of remaining queries). Note that this means that up to nine of the 

URLs may not have a location model, and thus may have zero 

values for all location features. Additionally, the query may or 

may not have a location model depending on the query frequency 

during the previous three months. 

As the correctness of our evaluation relies on the assumption that 

promoting satisfied click documents improves overall relevance, 

we consider these labels further. Previous work on inferring rele-

vance from clicks has shown that assuming clicks to indicate rele-

vance does provide reliable evaluation metrics (e.g., [29]). Fur-

ther, similar models have also been used to infer relevance direct-

ly from clicks (e.g., [6][34]). Moreover, even if the assumption 

that results lacking satisfied clicks are non-relevant does not hold, 

promoting the satisfied clicked results is still likely to improve 

relevance by displacing higher ranked skipped results, with skip-

ping followed by clicking having been reliably shown to indicate 

that the skipped result is less relevant [11]. More generally our 

labeling method can be considered studying the task of predicting 

only the most relevant item. Furthermore, when we consider all 

satisfied clicks, 97% of the queries in our evaluation set have two 

or fewer satisfied clicks. Thus, considering all satisfied clicks 

does not change a large proportion of the data. Finally, it is also 

worth noting that our approach does not require training data to 

come from documents labeled in this way. If personalized rele-

vance judgments were available, our model could be trained from 

such judgments without any modifications.  

5.2 Labeling Location-Centric Pages 
We next studied our dataset to understand which of the visited 

pages in our sessions are most location centric, and to better un-

derstand the nature of these pages.  

We first ranked all URLs observed in our week-long evaluation 

dataset in descending order based on average log-likelihood of the 

user’s actual location given the URL. After we removed pages 

consisting of search engine result lists and a small number of ob-

viously non-local other URLs (e.g., online gaming sites), the top 

750 remaining URLs were manually labeled by one of the authors 

of this paper, who created a taxonomy to categorize the most loca-

tion-focused URLs based on their subject matter. This process 

involved visiting each URL and assigning it to an existing catego-

ry or creating a new category as appropriate. We iterated and re-

fined the taxonomy, ending up with 56 distinct labels on a broad 

range of location-centric topics ranging from classifieds to educa-

tion. In Figure 3, we show the distribution across the 15 most 

popular categories, capturing 85% of the URLs in the labeled set. 

Remaining URLs were grouped in the category Other. 

The figure shows that Classifieds, News (e.g., online versions of 

local newspapers, local television and radio stations, obituaries), 

and Education (community/technical colleges, school districts, 

smaller universities or outreach campuses of larger universities, 

grade tracking, student portals) are among the most location-

centric URLs. Those labeled as Other in Figure 3 included pages 

associated with Justice (criminal records, court cases, inmate 

searches), Property (appraisals, auditors), Transit (public, traffic, 

tolls), Utilities (power or communication companies) and Gov-

ernment (city or state homepage). It is clear from this analysis that 

 (        |     finds pages with a clear local intent. 

Interestingly, URLs classified as Retail were usually associated 

with items that shoppers would typically be expected to purchase 

in person – such as furnishings, groceries, and medication. Stores 

selling electronics or other items that could easily be obtained 

online did not emerge in our analysis as strongly location centric.  

Also, we observe that knowing the address associated with the 

URL does not always equate to knowing the locations from which 

  

Figure 3. Distribution of topics in most location-centric URLs. 
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people would want to access that URL. One solution to identify-

ing locations from URLs would be to simply extract addresses 

directly from Web page content, and use these to build the loca-

tion model for the page. For example, from parsing Web pages, 

we would establish that the Massachusetts Institute of Technology 

(MIT) is located in Boston, MA. However, that does not tell us 

whether or not only people located in the Boston area would want 

to access the MIT page. The website of the university Boston 

College, which is less than five miles from MIT, has a much dif-

ferent location-interest profile with a much higher proportion of 

visits being from local users rather than distant users. This 

demonstrates the value of our method for inferring location 

metadata for URLs from usage patterns (rather than page content).  

5.3 Learning to Rank 
We next turn to the motivating task of personalizing Web search 

results based on the user location. For all the labeled rankings 

observed during the week of training, we compute all the features 

described in Section 4. From this dataset we then subsampled 

approximately half a million queries by uniformly randomly 

choosing one query per session. This was done to avoid giving 

extra importance to long sessions where the same user location 

would be seen repeatedly. The queries were then partitioned into 

ten parts in order to conduct ten-fold cross validation. For each 

fold, 10% of the training set is used as a validation set for model 

selection. All results presented below are the means of perfor-

mance on the ten folds. 

Using this dataset, we train a ranking model using the Lambda-

MART learning algorithm [32] for re-ranking the top ten results 

of the query. LambdaMART is an extension LambdaRank [3] 

based on boosted decision trees. LambdaMART has recently been 

shown to be one of the best algorithms for learning to rank. In-

deed, an ensemble model in which LambdaMART rankers were 

the key component won Track 1 of the 2010 Yahoo! Learning to 

Rank Challenge [4]. In our experiments, we use LambdaMART 

with 500 decision trees. However, we also note that the choice of 

learning algorithm is not central to this work, and any reasonable 

learning to rank algorithm would likely provide similar results. 

Our baseline is the original ranking of the top-10 provided by the 

Bing search engine, presenting a very competitive baseline. Be-

cause of the proprietary nature of its performance, we do not re-

port absolute MRR, but instead we report the change in MRR 

value in the scale of 0 to 100, i.e., 100 × (   (         

   (         )  

6. RESULTS AND DISCUSSION 
We now present results from our learning experiments, both in 

terms of ranking performance, and analyzing the impact of the 

different classes of features proposed. 

6.1 Ranking Performance 
Table 1 shows the summary results for LambdaMART versus the 

baseline ranker performance. In the first row, we see that the 

learned model improves by 1.9 (on a scale of 0 to 100) over the 

baseline ranker in terms of MRR. All the improvements in the 

table are statistically significant with 95% confidence according to 

the Wilcoxon sign-rank test. The learned model changes the posi-

tion of the relevant item for 16.8% of the queries and improves 

10.4% of the queries. This shows that the location of the user is 

important for a substantial fraction of Web search queries. The 

learned model boosts the position of the relevant item in 61.8% of 

queries where the relevant item’s position changes. On average, 

over the queries where the relevant item shifts, the learned model 

boosts the relevant item by 0.54 positions. In other words, every 

other query experiences an improvement of about one position in 

rank. Given the importance of the first position on user satisfac-

tion, it is worth considering impact on that position separately. 

The learned model moves a relevant item out of position one 2.3% 

of the time and moves a relevant item into position one 4.3% of 

the time. 

6.2 Effect of Query Type 
Next, we break down our results by separating out navigational 

queries. We define navigational queries as queries that are particu-

larly frequent and where one popular URL dominates user clicks. 

In our dataset, 34% of the queries are marked as navigational in 

this way. We find more substantial improvements for navigational 

queries than the remaining queries. This is particularly interesting 

as most clicks on the navigational queries are the same for all 

users, suggesting that some of the improvements are on queries 

issued predominantly in a confined geographic area, where the 

original ranker is not taking this location into account. 

As an example of this, consider the query [rta bus schedule]. In 

our dataset, this query was issued by a user in New Orleans in the 

state of Louisiana. Figure 4 shows the location distribution of this 

query. We see that it is most frequently issued in Southern Cali-

fornia, in Ohio and in Louisiana. The top result returned by the 

baseline system for this query was most relevant in Ohio, as can 

be seen in Figure 5a. However, in this case the user clicked on an 

Table 1. Summary learning results, split between navigational 

and other queries as well as by click entropy (CE). 
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Figure 4. Query location model for the query [rta bus schedule]. 

We see three peaks: in Ohio, Louisiana, and California. 

 



appropriate result for Louisiana, with the location model shown in 

Figure 5b. The original ranking for this query, as well as the re-

ranked results produced by our learned model are shown in Table 

2. For each of the original top ten results, we see the URL, our 

estimate of the most relevant location (through manual inspection 

of the page), the approximate location of the largest Gaussian 

peak in the URL model, as well as the distance between the model 

peak and the manually determined URL location. We see that 

overall the URL models reflect the true page location reasonably 

well. In the case of the user in New Orleans, we also see that the 

correct result was moved from position 8 to position 2, resulting 

in a large improvement in the quality of the results for this par-

ticular user. 

Returning to the summary results in Table 1, we show the results 

for navigational and other queries broken down further. In particu-

lar, we study improvements as a function of query click entropy 

(CE) [5] over a sample of queries with sufficient frequency to 

estimate click entropy. This sample constituted 3% of our data. 

The query click entropy measures the distribution of URLs previ-

ously clicked by users, where a high value indicates that many 

different URLs are frequently clicked by different users, while a 

low value indicates that the same URL is clicked reliably. Note 

that the values of click entropy we report have been scaled by a 

factor of 50 to simplify presentation. 

In general, navigational queries are expected to have low click 

entropy as there is usually one destination URL that is clicked by 

most users. A navigational query with high click entropy is likely 

to be affected by user location: the destination URL is different 

for users from different locations, hence different URLs are 

clicked by different users. Thus, one would expect the learned 

model to achieve higher gains for these queries. As expected, we 

see that queries where many different URLs are frequently clicked 

show the largest improvement in performance due to location-

based personalization.  

Considering the click entropy in more detail, Figure 6 shows the 

MRR improvement of the learned model for the same query types 

as a function of click entropy. Overall, the performance numbers 

are higher than for all queries due to this analysis being limited to 

queries with known click entropy. We see that the small fraction 

of navigational queries improve more at all click entropy levels, 

but that click entropy is a good indicator of potential for personal-

ization (as also noted by [5]). However, we also see that even 

queries with little or no variation in the URL clicked (CE ≈ 0) 

benefit from our approach. 

As a further analysis, we measure how often location based per-

sonalization hurts or helps on a per query basis, across all queries. 

Figure 7 shows the number of queries for which the satisfied 

clicked result moved up, or down, by the given number of posi-

tions. We see that ranking changes are most often of one or two 

positions, with improvements substantially more frequent than 

degradation of performance. We also note that results are some-

times promoted by more than 5 positions, moving search results to 

substantially more prominent positions. Such high impact changes 

have a more substantial effect on user satisfaction.  

 

Figure 6. MRR improvement as a function of query click 

entropy for frequent queries. 
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Figure 7. Positions by which clicked item in evaluation data 

moved up or down due to personalization. 
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Figure 5. User location model for (a) the top original result for 

the query [rta bus schedule], and (b) for the result eventually 

clicked by a particular user in New Orleans, LA. 

 



6.3 Feature Analysis 
Next we turn to analysis of the features contributing to the results 

in the previous section.  

In our ranking model, we found that the most important feature is 

the initial rank determined by the original ranking function. This 

may be because the location features do not depend on the match 

between the query and the URL. The second most important fea-

ture is UrlLoc, which estimates the probability of the URL given 

the user’s location. This suggests that the feature is indeed provid-

ing a reasonable estimate of the utility of each URL at each user 

location. We also saw that URL popularity plays a strong role, 

followed by the KL divergence of the URL model from the back-

ground model. This indicates that URLs whose popularity merely 

mirrors the background distribution are less likely to be good 

candidates for promotion or demotion based on user location. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we presented an approach for inferring the locations 

of interest for URLs based on user browsing behavior. We 

showed that these models are more informative than content 

alone. We showed how locations can be efficiently encoded as a 

Gaussian model describing the probability of the location given a 

URL, and further how this basic model can be transformed into a 

number of informative features. We demonstrated that these fea-

tures allow location based personalization of search results, lead-

ing to significant gains in offline evaluation, changing the position 

of the relevant item in 16.8% of the queries, improving it for 

10.4% of queries, and improving overall MRR by 1.9%. 

Natural next steps include a comparison with content-based meth-

ods, and further validation of our approach in an online setting by 

dynamically re-ranking search results, and evaluating with an 

appropriate online metric. Additionally, although 84% of queries 

return results where at least one in the top-10 has a location mod-

el, smoothing approaches could allow location information to be 

shared between related URLs and allow this approach to be ex-

tended to URLs which are visited less frequently or are entirely 

new. However, this work also suggests broader applications. Lo-

cation-based personalization is applicable beyond standard Web 

search, also encompassing advertising, product recommendation, 

and social networking. Similar models can also be constructed of 

locations of interest to individual user or specific user cohorts. 
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