
Steno: Automatic Optimization of Declarative Queries

Derek G. Murray
University of Cambridge Computer Laboratory

Derek.Murray@cl.cam.ac.uk

Michael Isard Yuan Yu
Microsoft Research Silicon Valley
{misard, yuanbyu}@microsoft.com

Abstract
Declarative queries enable programmers to write data manipulation
code without being aware of the underlying data structure imple-
mentation. By increasing the level of abstraction over imperative
code, they improve program readability and, crucially, create op-
portunities for automatic parallelization and optimization. For ex-
ample, the Language Integrated Query (LINQ) extensions to C#
allow the same declarative query to process in-memory collections,
and datasets that are distributed across a compute cluster. However,
our experiments show that the serial performance of declarative
code is several times slower than the equivalent hand-optimized
code, because it is implemented using run-time abstractions—such
as iterators—that incur overhead due to virtual function calls and
superfluous instructions.

To address this problem, we have developed Steno, which uses
a combination of novel and well-known techniques to generate
code for declarative queries that is almost as efficient as hand-
optimized code. Steno translates a declarative LINQ query into
type-specialized, inlined and loop-based imperative code. It elimi-
nates chains of iterators from query execution, and optimizes nested
queries. We have implemented Steno for uniprocessor, multipro-
cessor and distributed computing platforms, and show that, for a
real-world distributed job, it can almost double the speed of end-
to-end execution.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, Optimization

General Terms Design, Performance

Keywords query optimization, abstract machines

1. Introduction
The declarative style of programming has long been proposed as a
superior alternative to imperative programming. Recently, declara-
tive programming has found an important application in data-center
programming: systems such as MapReduce [10], DryadLINQ [32]
and FlumeJava [7] allow users to compose a declarative specifi-
cation of an application’s logic, and execute it across hundreds or
thousands of machines. However, these systems are implemented
in common imperative languages (C++, C# and Java), and simulat-
ing the declarative style results in code that is less efficient than the
equivalent imperative code. In this paper, we focus on one of these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11 June 4–8, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

13.5% 13.6%

LINQ .Sum() for loop Steno .Sum()

Execution
time

Figure 1. Relative execution time for computing the sum of
squares of 107

doubles using LINQ, an imperative loop, and a
Steno-optimized query. Steno achieves a 7.4× speedup over LINQ.

systems—DryadLINQ—and describe a technique for code gener-
ation that significantly improves the end-to-end execution time of
distributed jobs.

DryadLINQ is a system that takes a query written in .NET Lan-
guage Integrated Query (LINQ) syntax, and generates a distributed
query plan for executing the query across compute nodes in a data
center [32]. The main advantage of DryadLINQ is that queries can
include user-defined types and functions, which allows the devel-
oper to use the full .NET type system and class libary. DryadLINQ
divides the query into vertices in a Dryad [19] task dependency
graph: each vertex executes a portion of the query on a partition
of the overall data. The generated code itself uses LINQ queries to
achieve multiprocessor parallelism within a single machine. How-
ever, our experiments have shown that LINQ queries are far slower
than the equivalent imperative code (Figure 1), for four reasons:

1. LINQ queries are lazily evaluated, and use iterators to com-
municate elements between stages of the query [2]. An iterator
imposes the overhead of two virtual function calls per element
per query operator.

2. LINQ queries may be nested, which involves each element
flowing through multiple iterators. The iterator overhead is
therefore multiplied by the number of nesting levels.

3. The lazy iterator implementation includes state machine logic
to simulate coroutine behavior [22], which adds further per-
element overhead.

4. An operator’s behavior—such as a predicate or transformation
function—is specified as a function object, which incurs a fur-
ther virtual call per element per operator.

To address these overheads, we have implemented Steno: an
optimizer for LINQ queries that generates the equivalent loop-
based imperative code. Steno performs two optimizations: iterator
fusion (Section 4), and nested loop generation (Section 5). Similar
optimizers have been developed for functional languages [9, 31]
and relational database query languages [15, 23]. However, Steno
makes several contributions beyond existing work:

Select iterator
MoveNext()

Current

Where iterator
MoveNext()

Current

Source
MoveNext()

Current

Figure 2. Call graph in a chain of query operators. Virtual function
calls are represented by bold arrows.

• Steno integrates with an existing object-oriented language (C#),
and does not require changes to the compiler or standard li-
braries (Section 3).
• Steno uses a novel automaton-based code generator to trans-

form a sequence of query operators into loop-based code (Sec-
tions 4 and 5).
• Steno may be combined with DryadLINQ to generate code

that runs in parallel across a data center, and across multiple
processors on each machine (Section 6).
• We evaluate the performance of Steno-optimized queries run-

ning on a single machine and on a distributed compute cluster
(Section 7).

Steno generates loop-based code, which is simple for a compiler
to optimize and would be simple for a moderately-experienced
programmer to write. The principal advantage of writing queries
in a declarative style is that it is also possible to apply higher-level
optimizations. In particular, DryadLINQ [32, 33], FlumeJava [7]
and Pig [26] optimize many operations, including aggregation,
joins and sorting, by applying high-level transformations on the
query operator graph. The guiding principle in this work is that
code should be written at the highest possible level, so that it can
benefit from multiple levels of optimization. Steno provides further
incentive to write at a high level, because the resulting code is
almost as efficient as low-level imperative code. Our evaluation
shows that, even in a distributed setting, our optimizations can
significantly improve end-to-end execution times (Section 7).

Though this paper focuses on query optimization for LINQ
and DryadLINQ, the techniques can be applied to any system that
uses iterators to process streaming data or simulate lazy evaluation.
However, to motivate our specific implementation, we begin with a
brief description of how LINQ is currently implemented.

2. From queries to iterators
In this paper, we focus on the LINQ extensions that were added to
.NET 3.5. LINQ extends C# with SQL-like query comprehension
syntax, first-class lambda expressions, and a set of generic query
operators that can be applied to any object implementing the enu-
merable interface (IEnumerable<T>) [2].

The following is an example of a simple LINQ query

IEnumerable<int> xs = ...;

var evenSquares = from x in xs
where x % 2 == 0
select x * x;

which the C# compiler desugars into

IEnumerable<int> evenSquares = xs.Where(x => x % 2 == 0)
.Select(x => x * x);

The where and select clauses in the query comprehension are
transformed into calls to the Where() and Select() methods,
which—in this case—operate on and return an IEnumerable<int>.
LINQ defines many other query operators, as we will describe in
Sections 4 and 5.

Enumerable objects expose a single method, GetEnumerator(),
which returns an object of type IEnumerator<T>, with the following
(simplified) interface:

interface IEnumerator<T> {

// Return the element at the current position.
T Current { get; }

// Advance to next element, returning false if no
// more elements remain.
bool MoveNext();

// [Reset() and Dispose() methods not shown.]
}

In this interface, Current is a read-only property, which is syntactic
sugar that allows accessor methods to be written in the same form
as instance field accesses.

An enumerable object can be traversed using the foreach(var

x in xs) statement. Again, this statement is syntactic sugar for
operations on an IEnumerable<T> object (xs), and it translates to:

IEnumerator<T> enum = xs.GetEnumerator();
while (enum.MoveNext()) {

T x = enum.Current;
// foreach loop body...

}
enum.Dispose();

Note that since MoveNext() and Current are defined in an inter-
face, they are virtual functions, so each iteration of the while loop
involves at least two virtual calls.

LINQ uses iterators to implement lazy query evaluation. An
iterator (IEnumerator<T>) object is typically implemented as a
state machine that advances through the collection upon calls
to MoveNext(), which update the Current property. Composable
LINQ operators (such as Select(), Where() and GroupBy()) are
implemented as iterators that consume elements from an upstream
iterator, and yield (possibly-transformed) elements to downstream
operators (Figure 2). Aggregate operators—which return a scalar
(such as Sum(), Min() and Average())—are eagerly evaluated and
contain a foreach loop that consumes the upstream iterator.

Due to the use of iterators, each LINQ operator makes at least
two virtual calls for each element that it processes1. A further
virtual call per element is incurred when evaluating the predicate
or transformation function. As Krikellas et al. explain, virtual calls
impose a severe overhead on query execution because they are
difficult to inline automatically [23]. As a result, each call causes an
indirect branch, which inhibits instruction pipelining. Furthermore,
iterators contain state machine logic in the MoveNext() function,
which adds more instructions to the per-element overhead.

Writing the equivalent “hand-optimized” C# code for this query
would be straightforward for most programmers:

foreach (int x in xs) {
if (x % 2 == 0) {

yield return x * x;
}

}

The iterators for the Where and Select operators are fused, by
storing the current element in the loop variable, x, and the predicate
and transformation expressions are inlined. Steno automatically
performs these optimizations on chains of query operators.

1 An alternative approach, as used in Java, combines the MoveNext() and
Current operations into a single virtual call. However, this precludes the
use of non-reference types or null elements in collections, because the
combined method returns null to indicate that there are no more elements.

Method call
Select

Method call
Where

Constant
xs

Lambda
λx.(x % 2 == 0)

Lambda
λx.(x * x)

from x in xs

where x % 2 == 0

select x * x

Figure 3. Translation from LINQ query syntax into AST form.

3. Outline of approach
At a high level, Steno converts queries into efficient, loop-based
imperative code. Our main contribution is a novel technique for
generating the imperative code. In this section, however, we first
put this technique in context, by describing the main steps that
comprise Steno optimization:

1. The query is transformed into an intermediate representation
(QUIL) (§3.1).

2. The query AST is transformed into an equivalent C# AST (§3.2;
see also §4 and §5).

3. The C# AST is compiled, loaded and invoked (§3.3).

Note that our implementation of Steno is a .NET library: it does not
modify the compiler or the .NET core library. To apply Steno to a
query, the WithSteno() extension method is applied to the source
collection, as follows:

var evenSquares = from x in xs.WithSteno()
where x % 2 == 0
select x * x;

Since the C# compiler already performs source-to-source transfor-
mations on LINQ queries [2], Steno’s optimizations could also be
applied at compile-time. We speculate about how this approach
could be taken further in Section 9.

3.1 Query extraction
The optimization process begins with a query expression, which
can be written in query comprehension syntax or as a sequence
of LINQ method invocations. To gain a usable representation of
the query, we use the LINQ query provider facility, which recon-
structs the query AST at run-time. A similar technique is used
in DryadLINQ, which uses the information to build a distributed
query graph [32]; and in LINQ-to-SQL, which turns a LINQ query
into the equivalent SQL database query [25].

The query AST represents each LINQ operator as a method-
call expression, and the operator arguments as lambda expressions
(Figure 3). To simplify the code generation process, Steno trans-
lates this AST into a chain of operators, by post-order traversing
the tree, and yielding a canonical2 operator for each method-call
expression. Steno also traverses the AST of the lambda expressions
to identify nested queries, as we discuss further in Section 5.

3.2 Optimized code generation
The code generation process takes a (possibly nested) chain of
operators and transforms it into optimized imperative code. To

2 For example, there are three overloaded versions of the Aggregate
method, and eight overloaded versions of the GroupBy method.

achieve this, Steno uses an automaton-based approach. Steno tra-
verses the chain of operators (and any nested chains), and emits
one or more symbols of Query Intermediate Language (QUIL) per
operator. The code generator automaton recognizes any valid string
of QUIL, and generates the appropriate C# code for each symbol.
We introduce QUIL in Subsection 4.1.

The code generator automaton performs two principal optimiza-
tions. First, it eliminates the iterators from chains of operators (§4).
It also identifies nested queries, and transforms these into nested
loops (§5). As it parses a sequence of QUIL symbols, the code gen-
erator builds a new C# class with a single method that implements
the optimized query. It builds the class using the .NET CodeDOM
library, which provides an object model for the C# (and other .NET
languages’) AST. The automaton builds up the AST from loops,
conditional statements, declarations and assignments, according to
the QUIL symbols that it receives.

3.3 Final steps
Once the query class has been generated, it must be compiled and
loaded in order to execute the query. This step invokes the C#
compiler to build a dynamic link library (DLL) from the CodeDOM
AST. Steno dynamically loads the resulting DLL, and instantiates
a compiled query object using the reflection API.

Before the query is invoked, Steno must resolve any object ref-
erences that were captured in the query. As a pre-processing step,
Steno replaces all captured object references in the query with
placeholder instance variables. Once the generated code has been
loaded, Steno uses the reflection API to set the relevant fields of the
compiled query object appropriately. Since using the dynamic load-
ing and reflection APIs incurs a relatively high constant cost (§7.1),
the query object may be cached between invocations. However, by
integrating Steno with DryadLINQ, this cost can be eliminated by
performing Steno code generation in the initial DryadLINQ code
generation process (§6), and generating static code that sets the cap-
tured variables.

4. Iterator fusion
Iterator fusion replaces a chain of iterators with a sequence of im-
perative statements in a loop body. To achieve this, Steno generates
type-specialized iteration code for the source collection, and inline
element processing code for each operator in the query.

Table 1 classifies the LINQ operators according to their type,
and maps each to a symbol in our intermediate language, QUIL.
In Subsection 4.1, we describe QUIL, and specify a finite state
machine that can parse QUIL sentences. Then, in Subsection 4.2,
we show how Steno uses the state machine to generate optimized
code without iterators. Finally, in Subsection 4.3, we show how
Steno can use additional information from the operator graph to
generate more-efficient specialized code.

4.1 Query Intermediate Language
The Query Intermediate Language (QUIL) serves three main pur-
poses:

• It simplifies query optimization by reducing the large number
of LINQ operators to six fundamental QUIL operators.
• It simplifies the code generator by allowing it to be structured

as an automaton that recognizes the language.
• It enables extensibility, by specifying the interface that each

operator must provide.

As Table 1 shows, we have defined six symbols, which comprise
the QUIL alphabet and correspond to LINQ operators. In this
subsection, we define the behavior of each operator, and show how
operators may be combined to represent a LINQ query.

Operator class QUIL symbol LINQ operators Haskell equivalent Input type Output type
Source Src Range, Repeat List constructor — IEnumerable<T>

Transform Trans Select map IEnumerable<T> IEnumerable<U>

Predicate Pred Where, Take, Skip, etc. filter IEnumerable<T> IEnumerable<T>

Sink Sink GroupBy, OrderBy, etc. foldl IEnumerable<T> IEnumerable<U>

Aggregate Agg Aggregate, Min, Sum, etc. foldl IEnumerable<T> U

Nested — SelectMany, Join concatMap IEnumerable<T> IEnumerable<U>

Return Ret — — IEnumerable<T> or T —

Table 1. The LINQ operator classes map on to QUIL symbols (§4.1). T and U are generic type variables. Nested operators map to multiple
QUIL symbols, as explained in Section 5.

A QUIL expression begins with a Src symbol, and ends with
a Ret symbol. The Src symbol represents an enumerable source
collection, and may be annotated with the collection’s run-time
type, which enables Steno to produce efficient iteration code for
the collection. LINQ collection generators, such as Range(start,

count) are also represented by Src. The Ret symbol denotes the
end of a query, and may appear after any other QUIL symbol.
Therefore, a query may return either a collection or a scalar value.

The other QUIL operators are analogous to LINQ operators:

• The Trans operator applies an element-wise transformation to
each element in the input collection, yielding a new collection.
Trans is parameterized with a function, f : T → U, that trans-
forms a single input element into an output element.
• The Pred operator applies a predicate to each element in the

input collection, and yields an output collection containing only
elements that match the predicate. Pred is parameterized with a
function, f : T→ B, that performs the predicate test on a single
input element.
• The Sink operator transforms the input collection into an inter-

mediate collection that may be enumerated subsequently. Typ-
ically, Sink builds up the intermediate collection in memory.
Sink is parameterized with two functions. The first function,
f : () → IEnumerable<U>, constructs an empty intermediate
collection; and the second function, g : IEnumerable<U> × T

→ IEnumerable<U>, updates a collection with a new input ele-
ment. Sink may also provide type-specialized iteration code for
the intermediate collection.
• The Agg operator reduces elements into a single, scalar value.

Agg is parameterized with two functions. The first function,
f : () → U, returns the identity scalar value; and the second
function, g : U × T → U, creates a new scalar value of type U

from the current scalar value and a single input element.

For each operator, the function parameters may be specified as
an appropriately-typed lambda expression, delegate function or
functor object. Note that we can assume that the C# compiler
has already type-checked the query expression, so Steno does not
perform additional type-checking.

We now define QUIL by considering what constitutes a valid
query. Every query begins with Src and ends with Ret. The Trans,
Pred and Sink symbols transform one enumerable collection into
another collection. Therefore, it is possible to chain together an
unbounded number of these operators in an arbitrary order. As we
will discuss in Section 5, a nested query may substitute for a Trans
or Pred symbol. Finally, since Agg returns a scalar value, its result
can only be consumed by Ret, and Agg may only appear as the
penultimate symbol. These rules may be stated concisely using the
following grammar:

〈query〉 ::= Src (Trans | Pred | Sink | 〈query〉)∗ Agg? Ret

I S

A R

start
Src

Trans, Pred

Sink

Agg

Ret

Trans, Pred

Ag
g

Sink

Ret

Ret

Figure 4. State machine used to perform iterator fusion in Steno.

To simplify the explanation, we will defer the discussion of nested
queries to Section 5.

If we ignore the possibility of nested queries, QUIL is a regular
language and can therefore be recognized by a finite state machine
(FSM). Steno uses the FSM shown in Figure 4 to perform iterator
fusion on QUIL expressions.

The QUIL FSM has five states. The initial Src symbol, and
the element-wise Trans and Pred symbols cause a transition to
the ITERATING state. The Agg symbol causes a transition to the
AGGREGATING state, and the Sink symbol causes a transition to
the SINKING state. Note that the SINKING and ITERATING states
are separate, because the code generated on a transition from those
states will differ (§4.2). Finally, the Ret symbol causes a transition
to the terminal RETURNING state. In the following subsection, we
show how these transitions can generate optimized code without
iterators.

4.2 Code generation
Code generation is driven by transitions of the FSM shown in
Figure 4. In this subsection, we describe the overall structure of
the generated code, and explain the code that is emitted by each
transition.

All QUIL queries begin with a Src operator, which corresponds
to an enumerable collection, and therefore intuitively causes a
new loop to be generated. Figure 5 shows the structure of the
generated loop code: it contains a linked list of C# statements,
with three internal pointers to positions where statements may
be inserted. Insertion point α is the loop prelude (i.e. the list of
statements immediately preceding the loop); µ is the loop body;
and ω is the loop postlude. The loop prelude contains aggregation
and sink variable declarations, the loop body contains element-wise
operations, and the loop postlude may contain return statements.

The generated loop code depends on the run-time type of the
source collection. For example, if the source is an array or array-
backed collection, it is more efficient to use indexed element access
than an iterator to access an element. The generated code is a loop

// Pre-loop initializers

...

// α1

for (...) {
// Loop body

...

// µ1

}
// Post-loop statements

...

// ω1

α

µ

ω

Figure 5. The generated code is maintained as a linked list of
statements. Steno maintains three insertion points: the loop prelude
(α), the loop body (µ), and the loop postlude (ω).

Select(x => f(x))

↪→µ var elemi+1 = f(elemi);

(a) Trans(f)

Where(x => f(x))

↪→µ if (!f(elemi)) continue;

(b) Pred(f)

Figure 6. Generated code fragments for element-wise operators.
N.B. The ↪→µ symbol denotes that code is inserted at the µ pointer.

through the indices of the array, which also enables the compiler to
hoist the array bounds check. Steno also provides Src implemen-
tations for the Range and Repeat operators, which generate new
collections based on their parameters.

The code generator uses local variables to store intermediate
values, such as the result of a transformation. There are three kinds
of variable in the generated code:

elemi A (possibly-transformed) element in a collection
aggj The current scalar value of the j th Agg operator
sinkk The current sink collection of the kth Sink operator

The code generator maintains the current names for each kind of
variable as an integer index, which some transitions may increment.
In the remainder of the paper, varnamei is the current variable
name, and varnamei+1 is the next variable name.

When the FSM is in the ITERATING state, the Trans and Pred
element-wise operators insert code in the current loop body at
the µ pointer. Figure 6 shows the code that is inserted in each
case. Both operators operate on the current element (elemi), and
Trans creates a new element variable (elemi+1). In addition, Steno
inlines the transformation or predicate function, which eliminates
the overhead of a virtual call on a function object per element.

The Agg and Sink operators reduce the current element into a
scalar aggregate value or a sink collection, respectively. Therefore
the code generator must insert code both for declaring and updating
the reduction variable. Figure 7 shows the code that is inserted for
the Aggregate and GroupBy operators. In both cases, the declaration
is inserted at the α pointer before the loop, and the update statement
is inserted at the µ pointer.

Following a Sink operator, the FSM is in the SINKING state,
which behaves like the ITERATING state with one main excep-
tion: the following operator is applied to the sink collection. For
example, a common pattern is to follow a GroupBy Sink operator
with a Where Pred operator to filter the groups (cf. the GROUP BY

...HAVING pattern in SQL). To handle this, the code generator must
insert a new loop that iterates through the sink collection. The loop

Aggregate(seed, (agg, elem) => g(agg, elem))

↪→α var aggj = seed;

↪→µ aggj+1 = g(aggj+1, elemi);

(a) Agg(f)

GroupBy(x => Key(x))

↪→α Lookup<K, T> sinkk+1 = new Lookup<K, T>();

↪→µ sinkk+1 = sinkk+1.Put(Key(elemi), elemi);

(b) Sink

Figure 7. Generated code fragments for aggregating and sinking
operators. In (b), Lookup<K, T> is a utility class that maintains a
key-value multi-map, implements the IEnumerable<IGrouping<K,

T>> interface, and provides a Put method that returns the updated
collection.

↪→ω return aggj;

(a) AGGREGATING

↪→ω return sinkk;

(b) SINKING

↪→µ yield return elemi;

(c) ITERATING

Figure 8. Generated code fragments for the Ret operator, which
depend on the current state.

is inserted at the current ω insertion point, and the insertion pointers
are reset relative to the new loop.

Finally, the Ret symbol causes a transition to the terminal RE-
TURNING state, which generates code that returns one or more val-
ues to the caller (Figure 8). If the FSM is in the SINKING or AG-
GREGATING states, this inserts a return statement (with the sinkk
or aggj variable respectively) at the ω insertion point. If it is in the
ITERATING state, the transition inserts a yield return statement at
the µ pointer: this turns the optimized query into an iterator, which
enables the query to be lazily evaluated3.

4.3 Operator specialization
By analysing the intermediate query representation, Steno can
make high-level optimizations that are not possible when dealing
with abstract iterators. In this subsection, we consider one concrete
example: the GroupBy-Aggregate optimization.

The GroupBy operator (Figure 7(b)) is a Sink operator that builds
a mapping from keys to bags of values, and is analogous to the
GROUP BY clause in a SQL statement. LINQ provides several im-
plementations of GroupBy, including some that allow the caller to
specify a result selector, which applies a function to each key and
the collection of values associated with that key.

The result selector is often used to aggregate—or reduce—the
set of values associated with a key into a single scalar. Indeed, the
reduce() function in MapReduce [10] has the same signature as the
GroupBy result selector, and performs the equivalent operation [33].
If the result selector is an Agg operator (such as Aggregate, Sum or
Min), we can save memory by storing per-key partial aggregates
instead of the group of values.

To implement this optimization, Steno identifies GroupBy oper-
ators with an aggregating result selector when building the operator
chain (§3.1), and inserts a specialized GroupByAggregate Sink op-
erator in place of a conventional GroupBy. The GroupByAggregate

operator performs the aggregation as each element is processed,
and updates an intermediate hashtable sink object.

3 It is often more efficient to store the elements in an array and return this
to the caller, but it is unsafe to do this for some queries where the collection
may be very large (or unbounded). Therefore, the caller can use the explicit
ToArray Sink operator to enable this optimization.

The memory requirements can be decreased further (to O(1)
keys and reduction variables) if it is known that the collection is
ordered by the same key as the grouping. DryadLINQ implements
this optimization in order to aggregate key sets that are too large to
fit in memory [33].

5. Nested loop generation
We now consider the case where a QUIL expression may contain
a nested query. As defined in Subsection 4.1, a nested query may
substitute for the transformation and predicate functions of Trans
and Pred operators, respectively. In this section, we explain how
Steno generates efficient nested loops for nested queries.

At first, it might seem that nested queries can be trivially sup-
ported by running a second instance of the optimizer on the nested
query, and inserting a call to the optimized subquery in the par-
ent. In fact, this is an appropriate solution if the nested query has
a scalar result (i.e. if it contains an Agg operator). However, if the
nested query returns an enumerable collection, this solution is in-
efficient, because the outer query obtains an opaque collection, and
can only access the result elements through the iterator interface,
which incurs two virtual calls per element (§2). The SelectMany

operator illustrates this point:

int[] xs = ..., ys = ..., zs = ...;

int result = xs.SelectMany(x =>
ys.SelectMany(y =>

zs.Select(z => F(x, y, z)))
.Sum();

This query computes the Cartesian product of three arrays—xs, ys
and zs—applies F to each resulting element, and sums the results.
The equivalent loop-based code is simple to write:

int total = 0;

for (int i = 0; i < xs.Length; ++i) {
for (int j = 0; j < ys.Length; ++j) {

for (int k = 0; k < zs.Length; ++k) {
total += F(xs[i], ys[j], zs[k]);

}
}

}

However, a naı̈ve implementation using nested FSM-based opti-
mizers would not generate this code, because the Sum operator is
part of the outermost query, yet it must inject code into the loop
body of the innermost query. Without this ability, the Sum and
nested SelectMany operators must consume from iterators, which
limits the potential performance improvement.

The SelectMany operator flattens a collection of collections
(one per original element) into a single collection. It is a funda-
mental operator in MapReduce, in which the map() function trans-
forms a single element into zero or more key-value pairs [10].
DryadLINQ implements this functionality using SelectMany [32],
and similar operators exist in FlumeJava [7] and Pig Latin [26],
both of which execute on a MapReduce cluster. Furthermore, since
it can implement the Cartesian product, SelectMany can also be
used to implement joins across multiple collections:

int[] xs = ..., ys = ...;

var zs = xs.SelectMany(x => ys.Where(y => x == y)....);

The above example shows an equi-join on two arrays of integers.
However, in practice, this is an inefficient way to implement joins
on two large data sets, and partitioning or sorting is used to reduce
the necessary amount of processing, I/O and/or memory [13, 32].

α1

...

αi

αi+1

µ1

...

µi

µi+1

ω1

...

ωi

ωi+1

α µ ω

...

// αi
for (...) {

...

// αi+1

for (...) {
...

// µi+1

}
// ωi+1, µi

}
...

// ωi

α

µ

ω

Figure 9. In the nested case, insertion pointers are arranged in
a stack, with the innermost nesting level at the top. The current
(α, µ, ω) pointers are read from the top of the stack.

Having motivated the need for nested query support, we now
discuss how Steno uses QUIL to support nested queries (§5.1), and
their effect on code generation (§5.2).

5.1 Adding a stack
Since a QUIL query can recursively contain another query, the lan-
guage is context-free. Therefore, the FSM in Figure 4 is not pow-
erful enough to recognize all valid QUIL queries. To recognize the
full context-free language, we must add a stack to the code gener-
ator, making it a (deterministic) pushdown automaton. In order to
reuse the iterator fusion optimization, the pushdown automaton is
exactly equivalent to the FSM in the non-nested case. Therefore,
in this subsection, we reintroduce the nested query transitions and
how these manipulate the stack.

Recall that the code generator has α, µ and ω insertion pointers,
which correspond to the current loop’s prelude, body and postlude,
respectively (Figure 5). Since all queries—nested or otherwise—
involve iterating through a collection, a nested query will create a
new loop, with a different prelude, body and postlude. After exit-
ing a nested query, it may be necessary to recover the outer query’s
insertion points, so that code for subsequent operators may be in-
serted. Therefore, we define the stack, S, as containing (αi, µj , ωk)
triples, where i, j, k ≥ 1 are the nesting levels of each insertion
point. The code generator uses the topmost triple as the current val-
ues for α, µ and ω.
S is initially empty. When a Src operator is encountered at

nesting level i = length(S), a new loop is inserted at position µi,
and insertion points (αi+1, µi+1, ωi+1) are pushed onto the stack.
Figure 9 shows the state of the stack and the generated AST after
entering nesting level i+ 1.

5.2 Code generation
Following a nested Src operator, the automaton is in the ITERAT-
ING state. Subsequent Trans, Pred, Sink and Agg operators behave
as in the non-nested case, though code is inserted at the nested in-
sertion points. In addition, the nested query may refer to the current
element in the outer query, as in this example:

xs.SelectMany(x => ys.Select(G(x, y)));

Therefore, before generating any code for the nested query, all
occurrences of x in the nested query are rewritten with the current
elemi variable name in the outer query.

The behavior on encountering a nested Ret operator depends on
the current state of the automation. The SINKING and AGGREGAT-
ING cases are simpler. If the code generator is in either of these

↪→ω var elemi+1 = aggj;

(a) AGGREGATING

↪→ω var elemi+1 = sinkk;

(b) SINKING

Figure 10. Generated code fragments for the nested Ret operator,
in the AGGREGATING and SINKING states.

α1

...

αi

αi+1

µ1

...

µi

µi+1

ω1

...

ωi

ωi+1

α µ ω

α1

...

αi

µ1

...

µi+1

ω1

...

ωi

α µ ω

Figure 11. Code generator stack contents before and after encoun-
tering a nested Ret operator in the ITERATING state. After the tran-
sition, the α and ω pointers point to positions in the outer query,
and the µ pointer is unchanged.

states, it assigns the current aggregation or sink variable to a new
element variable in the nested loop postlude (Figure 10), then pops
the current insertion pointer triplet from the stack.

If the code generator encounters a nested Ret operator while
in the ITERATING state, the stack management is slightly more
complicated. Recall that, in the non-nested case (§4.2), encounter-
ing Ret while ITERATING causes a yield return statement to be
emitted. In this case, we want the code for subsequent operators to
be inserted in the current nested loop body. Therefore we pop two
insertion pointer triples from the stack, and push back the triple
(αouter, µnested, ωouter) (Figure 11). This ensures that the element-
wise code for each operator (transformation, predicate testing and
reduction variable updating) will be inserted in the nested loop,
while any declarations or return statements will be placed in the
outer scope.

This formulation means that nested Select and SelectMany

have the same representation in QUIL. In a Select operator, the
nested query will typically end with a Agg operator and return a
scalar value; by definition, a SelectMany operator will yield many
values. However, instead of creating an iterator using a yield

return statement, the Ret in a nested query moves the insertion
pointers so that subsequent operators consume the results of the
nested query directly.

6. Optimizing parallel queries
A principal advantage of expressing a computation as a LINQ
query is that it may be executed in parallel across multiple pro-
cessors [29] or multiple machines in a data center [32]. However,
the optimizations described above generate sequential code. In this
section, we explain how Steno can be combined with DryadLINQ
in order to improve the performance of distributed queries.

To execute a query on a large data set, a common strategy is to
divide the data set into partitions, and execute the query in parallel
on each partition [12]. If the query operators are homomorphic (i.e.
apply to each element independently), the query may be applied to
each partition in parallel, to yield a new set of partitions. Trans,
Pred and nested queries are homomorphic. However, if a query
operator performs an aggregation (Agg) or builds a sink collection
(Sink), this requires coordination between the partitions.

To optimize a query that can execute in parallel, Steno traverses
the QUIL representation of the query and identifies the homomor-
phic operators. Contiguous subsequences of homomorphic opera-
tors are combined into subqueries, and the subqueries are optimized

Src Trans Agg Ret

Src Src2 Trans Agg2 Agg* Ret

Src1 Trans Agg1

Src3 Trans Agg3

parallelizes as

Figure 12. Parallel optimization of a Select-Aggregate query.
Steno applies optimization to the Srci-Trans-Aggi subquery, which
executes in parallel on the partitions of the data.

separately. Note that, if an associative Sink or Agg operator follows
a subquery, a partial Sinki or Aggi operator can be appended to the
ith subquery, which reduces the amount of coordination between
partitions. For example, if the Agg operator represents Sum, the cor-
responding Aggi operator computes a partial sum for each parti-
tion. Figure 12 shows how a simple query is parallelized. In that
example, a special Agg* operator collects the partially-aggregated
results from each partition.

We have integrated Steno with DryadLINQ, which executes
queries in parallel across a compute cluster. DryadLINQ also
identifies homomorphic query operators, and transforms a LINQ
query into a directed acyclic graph of query operators, which the
Dryad executes as a collection of parallel tasks [19]. In addition,
DryadLINQ performs various static and dynamic optimizations on
the query before generating the code for each task: for example, it
transforms a OrderBy Sink operator into a distributed sort, which
samples the data to estimate an appropriate partitioning, range-
partitions the data based on that estimate, and sorts each resulting
partition in parallel [32]. DryadLINQ also optimizes distributed
aggregation where the aggregation function is commutative and
associative [33]. After optimization, a DryadLINQ may contain a
sequence of query operators: our modified version of DryadLINQ
applies Steno-optimization to the subsequences of homomorphic
operators in each task.

DryadLINQ can also execute subqueries in parallel within a sin-
gle task. Previously, it used Parallel LINQ (PLINQ) to execute ho-
momorphic subqueries using a thread-pool [29]. PLINQ provides
the same operators as LINQ, but operates on a ParallelEnumerable
collection, which uses a Partitioner object to assign elements to
each thread. PLINQ uses iterators to compose query operators,
and therefore suffers from similar virtual call overheads to sequen-
tial LINQ. To ameliorate this, we created a new PLINQ operator,
called HomomorphicApply, which maps a function across partitions
in parallel (as opposed to each element), and returns a new set of
partitions. Our modified version of DryadLINQ invokes this oper-
ator with the compiled query method, which allows the optimized
code to execute in parallel.

7. Evaluation
We now evaluate the performance improvement that Steno can
achieve. We first evaluate a collection of single-machine mi-
crobenchmarks, which operate on in-memory data (§7.1). We then
evaluate the impact of applying Steno to a real-world application
that uses DryadLINQ on a distributed compute cluster (§7.2).

All experiments described in this paper were performed on
our research cluster, from which we use up to 100 nodes. Each
computer has two dual-core AMD Opteron 2218 HE processors
running at 2.6 GHz, 16 GB of DDR2 RAM, and four 750 GB SATA
hard drives in a RAID 0 (striped) configuration. The computers
are connected using gigabit Ethernet, in a three-level tree topology.

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

Sum SumSq Cart Group

R
el

at
iv

e
d

u
ra

ti
o

n

Benchmark

0.083 0.185 217 68.0

LINQ

Steno+compiler

Steno

Hand−optimized

Figure 13. Relative performance of LINQ, Steno-optimized and
hand-optimized queries for sequential microbenchmarks. Lower
values are better. Each query is annotated with the absolute LINQ
execution time, in seconds.

All computers run the 64-bit version of Microsoft Windows Server
2003, and the 64-bit version of Microsoft .NET Framework 3.54.

7.1 Sequential microbenchmarks
We evaluated the performance of sequential Steno optimization
using the following four queries on in-memory arrays:

Sum Calculate the sum of 10 million double values.

SumSq Calculate the sum of squares of 10 million double values.

Cart Calculate the Cartesian product of 10 million and 1000
doubles, multiply together each pair, and sum.

Group Randomly generate 10 million double values according
to a one-dimensional mixture-of-Gaussians distribution, and
compute a binned histogram of the data.

Figure 13 shows four quantities for each benchmark: LINQ, Steno
including compilation, Steno excluding compilation, and hand-
optimized. In order to allow comparison of different benchmarks,
the results are normalized to the LINQ execution time.

For all of the microbenchmarks, the Steno-optimized query is
faster than the equivalent LINQ query. The speedup ranges from
3.32× for Sum to 14.1× for Group. As expected, the nested queries
(Cart and Group) yield a bigger speedup due to the LINQ code us-
ing nested iterators. Compared to the hand-optimized, loop-based
code, the worst overhead is 53%—for Sum, the simplest query—
due to the .NET JIT compiler missing a possible temporary variable
elimination in the Steno-generated code, which leads to two extra-
neous movsd instructions in the loop body. For the other queries, the
overhead (compared to hand-optimized) is less than 3%.

However, Steno optimization carries a one-off cost per query,
which is dominated by invoking the C# compiler and dynamically
loading the optimized query class. The compiled query object can
then be cached by the application. In our experiments, this cost was
69 milliseconds on average. Therefore, if an application contains
mostly short, infrequently-executed queries, it is not worth invok-
ing Steno at run-time. Summing 10 million doubles with LINQ
takes approximately 83 ms, whereas with Steno it takes 25 ms plus
69 ms for compilation. The break-even point is approximately 12
million doubles. Note that, if the optimization were added to the C#
compiler, this cost would be paid at compile-time. In addition, the
optimized query object may be stored and reused in order to amor-
tize the cost of compilation. In the current implementation, the user
must explicitly instruct Steno to compile a given expression, but a
query caching approach (based on Nectar [18]) could be added.

4 The current version of DryadLINQ is not compatible with .NET 4.0. Steno
is compatible with .NET 3.5 and 4.0. We confirmed that microbenchmark
performance is the same using both versions.

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

1 10 100 1,000

R
el

at
iv

e
d

u
ra

ti
o

n

Dimension

201 68.6 24.2 33.5

Unoptimized

Optimized

Figure 14. Relative performance of unoptimized and Steno-
optimized k-means algorithm, running on DryadLINQ. Each query
is annotated with the absolute unoptimized execution time for one
iteration, in seconds.

7.2 Distributed k-means
We now evaluate the performance of Steno-optimized code for a
representative distributed query: k-means clustering. A distributed
cluster is a more challenging environment for Steno: since the data
set is too large to fit in memory, it must be read from disk, and net-
work communication is required to coordinate between partitions.
By contrast, the microbenchmarks operate on in-memory arrays.

The k-means algorithm groups a set of data points into k clus-
ters by estimating the centroid of each cluster, and iteratively up-
dating the centroids by averaging the points in each cluster. The
main computational step involves computing the (e.g. Euclidean)
distance from each point to each centroid, and assigning each point
to the cluster whose centroid is closest. We implemented the algo-
rithm in DryadLINQ, and each iteration comprises two steps:

1. In parallel, for each data point (nested Select), compute the
distance to each centroid (Select), and choose the cluster with
the closest centroid (Aggregate). Then group these results by
cluster ID (GroupBy) and compute partial sums of the points in
each cluster (Aggregate).

2. Group the partial sums from each partition by cluster ID
(GroupBy), add them together (Aggregate), and compute the
new cluster centroids by taking the mean (Select).

This query exploits iterator fusion (§4), GroupBy-Aggregate spe-
cialization (§4.3) and nested loop generation (§5).

The benefits from Steno-optimization are greatest when (i) a
large number of elements are processed, and (ii) the amount of
work that each operator performs is small. The k-means algorithm
offers us the opportunity to vary both quantities, but (since k-means
has O(n) complexity for n data points) it is more meaningful to
vary to amount of work per element. We achieve this by varying the
number of dimensions in each point, which is directly proportional
to the number of floating-point operations in the Euclidean distance
calculation. Figure 14 shows the effect of varying the dimension
on the performance of unoptimized and Steno-optimized k-means.
The overall size of the input data (number of points × dimension)
is held constant at 109

doubles (≈ 8 GB).
The most notable result is that Steno achieves substantial speed-

up over LINQ for dimensions less than 1000, which demonstrates
that iterator overheads can have a large effect on the performance
of distributed query execution. Larger speedups are achieved for
smaller dimensions: for example, 1.9× for 10-dimensional points.
However, as the dimension increases, Steno manages to speed up
execution, and it achieves a 19% improvement for 100-dimensional
data. Eventually, however, the execution converges with the unop-
timized case, as the fraction of time spent in the distance computa-
tion becomes closer to 100%.

8. Related work
There is a large volume of related work on the optimization
of declarative programs. Steno combines ideas from database
systems, functional programming, XML processing and object-
oriented programming to optimize the execution of declarative
data-parallel programs. In this section, we survey the related work
in each of these fields, and compare it to Steno.

8.1 Relational databases
The stated aim of Codd’s relational algebra was to hide details of
“how the data is organized in the machine (the internal represen-
tation).” [8] This set the precedent for database access using SQL,
a declarative query language, which in turn influenced the design
of LINQ [2]. Query evaluation can be implemented using itera-
tors [3], which motivates use of IEnumerator objects to compose
LINQ operators. Because relational databases are designed to hold
large volumes of data, research into query efficiency has been car-
ried out since the earliest implementations of the relational model.

IBM’s System R implemented SEQUEL (a precursor of SQL)
query evaluation by assembling fragments of System/370 machine
code in a query-specific subroutine [6]. System R used a preproces-
sor to extract SEQUEL queries from COBOL or PL/1 source code,
and replace them with calls to the generated machine code. How-
ever, the use of pre-defined code fragments led to overhead from
procedure calls, and poor portability [15].

Freytag and Goodman refined this method by transforming a
query into iterative C or Pascal code, which is then compiled
by an existing compiler [15, 16]. Their system compiles queries
written in a dialect of SQL—comprising operators for projection,
filtering, left-join and aggregation—into iterative code, using rule-
based transformations.

Most recently, Krikellas et al. revisited the problem of effi-
cient query executed, and analysed the costs of the iterator model
at the computer-architectural level [23]. They propose “holistic
query evaluation” (HQE), which uses a code generator to turn SQL
queries into C code, and then compiles it using an existing optimiz-
ing compiler. Like System R, HQE relies on a library of templates
to provide the generated code. It offers a restricted form of nested
loop generation for table joins, but does not support arbitrarily-
nested query expressions such as those described in Section 5.

The techniques for optimizing query execution are similar to
Steno, in that they propose generating lower-level code, which can
be compiled or executed directly. However, all of these techniques
target SQL, which is less general than LINQ (it lacks a SelectMany

operator), and does not—at least, in the database systems described
above—integrate with user-defined code in a general-purpose lan-
guage. Furthermore, none of these techniques are shown to apply
to nested queries. The automaton-based approach that we describe
in this paper could be applied to SQL query optimization and may
be useful in extending these systems with nested query support.

8.2 Functional programming
The LINQ execution framework shares several features with lazily-
evaluated functional languages: in particular, the Select, Where,
Aggregate and SelectMany operators correspond to Haskell’s map,
filter, foldl and concatMap functions [25]. Therefore, techniques
for efficiently compiling a lazy functional program are related to
(and can inform) our technique for efficiently compiling a LINQ
expression.

Lazy evaluation can reduce the storage cost of some programs
by only evaluating the values in a collection when they are needed
by a consumer. However accessing the not-yet-evaluated portions
of intermediate collections imposes a hidden cost that is analo-
gous to the iterator overhead in LINQ. Wadler developed the “de-
forestation” algorithm to eliminate intermediate lists (and trees)

from programs written in a restrictive, first-order, lazy functional
language [31]. However, deforestation is considered impractical
because it restricts programs to a “treeless” form that prohibits,
amongst other things, intermediate data structures [17].

Practical versions of deforestation include “build/foldr” [17],
“destroy/unfoldr” [28] and stream fusion [9]. These techniques
use equational transformations in Haskell to transform functions
that produce and consume lists into fused code that does not use
intermediate lazy lists. Of the three techniques, stream fusion is the
most powerful, and can optimize the nested concatMap function,
which is analogous to SelectMany in LINQ. However, stream fu-
sion is not well-suited to deeply-nested list computations because
the Glasgow Haskell Compiler’s optimizer cannot always generate
efficient code from the fused intermediate form [9]. By contrast,
Steno generates simple nested for loops that the C# compiler can
easily optimize.

8.3 XML processing
The growing popularity of XML as a data interchange format has
prompted research into efficient processing of XML documents
and streams. XML query languages such as XQuery and XPath
provide declarative syntax for computations over XML documents,
and early query processing systems used an iterator-based approach
for query evaluation [14].

Li and Agarwal developed a code generation technique called
“Generalized Nested Loops” (GNLs), which can be used to opti-
mize the evaluation of XQuery expressions on large data sets [24].
Although superficially similar to nested queries in QUIL (§5),
GNLs can only represent nested loops that perform an associa-
tive aggregation function. Therefore, the GNL code generation
technique could not be applied to nested queries that flatten a col-
lection, such as SelectMany and Join.

Reichenbach et al. have studied the optimization of XML-
processing computations that are embedded in the XJ imperative
language, which is based on Java [27]. They developed a pro-
gram analysis that identifies potential XPath queries that are latent
in imperative code, and exploits opportunities for sharing results
between queries. By contrast, Steno attempts to optimize the exe-
cution of explicit queries. However, since XJ supports LINQ-like
query syntax, it may be possible to apply this analysis to C# pro-
grams, and identify opportunities for common subexpression eval-
uation between Steno-optimized queries.

8.4 Object-oriented programming
In an object-oriented programming language, virtual calls are ex-
pensive because the compiler does not have enough information to
generate inline code at the call site: the receiver method is only
known at run-time. To solve this problem, various devirtualization
techniques have been proposed.

Calder and Grunwald proposed a simple transformation for
C++ code that inlines the code for the most likely receiver of
a virtual call, guarded by a run-time type check [5]. Since the
guard code contains a simple branch instruction, hardware branch
prediction can ameliorate the overhead of the type check. However,
a LINQ operator may be used to consume from different iterator
implementations at different points in the same program (or even
in the same query), so the receiver for a particular call site is not
usually predictable.

Dean et al. developed static class hierarchy analysis, which per-
forms static analysis on the inheritance hierarchy and intraproce-
dural data-flow analysis to identify the precise type of an object
(and hence potentially eliminate a virtual call) [11]. This technique
is less useful for C#, which allows dynamic classloading, though
a just-in-time approach that “revirtualizes” methods as appropriate
has been developed [20]. Furthermore, since the IEnumerator<T>

interface has many implementing classes, it is rarely possible to
make a precise static judgement about the run-time type of an iter-
ator, without expensive interprocedural analysis.

Although devirtualization could improve the performance of
LINQ queries, it is not implemented in the current version of the
.NET Common Language Runtime (CLR). Furthermore, even if
perfect devirtualization were achieved, the resulting inlined code
would include the state machine logic from each iterator, which
would be less efficient than the simple for loops generated by
Steno. We are not aware of a compiler that could eliminate this
semantically redundant logic and yield code that is as efficient as a
Steno-optimized query.

8.5 Data-parallel computing
Steno was originally developed to optimize the performance of
DryadLINQ programs, which run in parallel on a distributed com-
pute cluster. The restrictions imposed by the declarative style of
programming make it simple to parallelize a program written as
a declarative query (§6), and several systems use this approach to
exploit the computational resources of large compute clusters.

Dean and Ghemawat’s MapReduce is an influential system
for data-parallel programming [10]. In MapReduce, developers
specify their computations by providing two functions: a mapper,
which transforms input records into lists of key-value pairs (cf.
SelectMany, §5), and a reducer, which aggregates all of the val-
ues corresponding to a single key (cf. GroupBy-Aggregate, §4.3).
MapReduce uses an iterator in the reducer to provide access to
the values corresponding to a single key; the open-source Hadoop
implementation of MapReduce uses iterators extensively in the pro-
cessing of records [1]. We expect that generating specialized code
to eliminate iterators would yield a performance improvement sim-
ilar to what Steno achieves.

Chambers et al. described FlumeJava, which (like DryadLINQ)
uses lazy evaluation to build a distributed execution plan from a
graph of operators [7]. In FlumeJava, however, the execution engine
is Google’s MapReduce implementation. We note the similarity of
FlumeJava’s parallelDo(), groupByKey(), combineValues() and
flatten() functions to LINQ’s Select, GroupBy, Aggregate and
SelectMany operators, respectively. The optimizations that we have
developed in Steno apply equally to FlumeJava programs. How-
ever, whereas LINQ uses Expression objects with an in-memory
AST, FlumeJava uses classes that implement a functor interface to
encapsulate operator behavior. This is less amenable to run-time
optimization, and bytecode rewriting techniques would be neces-
sary to eliminate virtual function calls from the optimized code.

Two contemporary projects have performed static analysis on
(Hadoop) MapReduce programs in order to derive an optimized
program. Manimal [4] and HadoopToSQL [21] analyse the Java
bytecode of MapReduce programs in order to generate an equiva-
lent relational algebra expression. The expression is then converted
to SQL, and passed to a cluster of SQL databases. The interme-
diate representation bears some similarity to the LINQ expression
tree that Steno uses. Therefore, the analyses that these systems per-
form could be combined with Steno-style code generation in order
to generate optimized query execution code.

Since Steno integrates into DryadLINQ, it can take advan-
tage of higher-level optimizations. For example, Yu et al. added
a transformation to DryadLINQ that optimizes distributed aggre-
gation (GroupBy-Aggregate) by partially performing associative
and commutative aggregation functions before the communication
step [33]. Gunda et al. developed a system called Nectar, which
caches the results of previous DryadLINQ jobs, and uses the cached
data to achieve common subexpression elimination across multiple
DryadLINQ jobs [18]. Steno is applied after these transformations,
which further improves the performance of DryadLINQ queries.

9. Conclusions
In this paper, we have presented Steno: an automatic optimizer for
declarative queries that generates efficient, loop-based, imperative
code. Our automaton-based approach provides a useful abstraction
for structuring the code generator, and made it straightforward to
implement support for our two key optimizations: iterator fusion
and nested loop generation. Though these optimizations generate
sequential code, we have integrated Steno with DryadLINQ, which
extends the optimization to code running in parallel on a distributed
compute cluster. Our evaluation showed that, even in the challeng-
ing distributed case, Steno can almost double the performance of
real-world DryadLINQ jobs.

Our approach in developing Steno has been conservative. We
did not modify the C# compiler or the .NET core libraries, and
we faithfully reproduced the semantics of unoptimized LINQ. This
leaves scope for further optimization. First, we can apply such
optimizations as common subexpression elimination only if it is
possible to prove that the subexpression has no side effects, and
that materializing the subexpression does not exhaust memory.
The difficulty of this problem suggests that there are opportunities
for developer-guided optimization. Also, we have hitherto only
considered C# as the target language, but it may be possible to gain
more efficiency by directly generating bytecode, C or even native
machine code. We note that many operators could benefit from
vectorization, so SIMD execution using instruction-set extensions
or GPGPUs would achieve greater efficiency [30].

The implementation of Steno as a library is a mixed blessing.
The main advantage is that Steno works with a standard .NET
toolchain, but as we have shown in Section 7, invoking the C#
compiler at run-time introduces a one-off overhead of tens of mil-
liseconds. As a result, the developer must be judicious in deciding
when to optimize a query, by identifying frequently-executed or
long-running queries. This problem could be addressed by modi-
fying the C# compiler to perform Steno optimizations at compile-
time. The compiler already desugars LINQ queries that are written
in query comprehension syntax [2], and it would be conceptually
straightforward to extend this compiler pass to use Steno.

The current implementation of Steno can only optimize the
standard LINQ queries. Steno cannot optimize user-defined itera-
tors that are created with the yield return statement, because this
statement is syntactic sugar that is transformed into an iterator state
machine at compile-time [22]. A typical user-defined iterator con-
tains a loop over some internal data structure that yields one or
more elements. If Steno were able to access the original syntax tree
for the iterator method, it could perform more-aggressive iterator
fusion and nested loop generation, which would further improve
the performance of iterator-based programs.

The overall lesson that we draw from this work is that it is ad-
vantageous to write in the declarative style wherever possible. The
main benefit is simpler code, which is easier to develop, and which
systems like PLINQ and DryadLINQ can automatically transform
and optimize for parallel or distributed execution. Previously, de-
velopers were forced to choose between efficient serial execution
and access to these transformations. Steno demonstrates that this
is a false dichotomy, by making the performance of declarative
queries competitive with hand-optimized code, while still exploit-
ing higher-level transformations.

Acknowledgments
We wish to thank Frank McSherry, Mihai Budiu and the PLINQ
team for helpful discussions during the development of Steno. We
would also like to thank Steve Hand and the anonymous reviewers,
whose comments on earlier drafts of this paper have been invalu-
able for improving the presentation of this work.

References
[1] Apache Hadoop. http://hadoop.apache.org/, accessed 17th

November, 2010.

[2] G. M. Bierman, E. Meijer, and M. Torgersen. Lost In Translation:
Formalizing Proposed Extensions to C]. In Proceedings of OOPSLA,
2007.

[3] P. Buneman, R. E. Frankel, and R. Nikhil. An implementation tech-
nique for database query languages. ACM Trans. Database Syst., 7(2),
1982.

[4] M. J. Cafarella and C. Ré. Manimal: Relational Optimization for Data-
Intensive Programs. In Proceedings of WebDB, 2010.

[5] B. Calder and D. Grunwald. Reducing indirect function call overhead
in C++ programs. In Proceedings of POPL, 1994.

[6] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F.
King, B. G. Lindsay, R. Lorie, J. W. Mehl, T. G. Price, F. Putzolu, P. G.
Selinger, M. Schkolnick, D. R. Slutz, I. L. Traiger, B. W. Wade, and
R. A. Yost. A history and evaluation of System R. Commun. ACM, 24
(10), 1981.

[7] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum. FlumeJava: easy, efficient data-parallel
pipelines. In Proceedings of PLDI, 2010.

[8] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6), 1970.

[9] D. Coutts, R. Leshchinskiy, and D. Stewart. Stream fusion: from lists
to streams to nothing at all. In Proceedings of ICFP, 2007.

[10] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. In Proceedings of OSDI, 2004.

[11] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Proceedings of
ECOOP, 1995.

[12] D. DeWitt and J. Gray. Parallel database systems: the future of high
performance database systems. Commun. ACM, 35(6), 1992.

[13] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stone-
braker, and D. A. Wood. Implementation techniques for main memory
database systems. In Proceedings of SIGMOD, 1984.

[14] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. West-
mann, M. J. Carey, A. Sundararajan, and G. Agrawal. The BEA/XQRL
streaming XQuery processor. In Proceedings of VLDB, 2003.

[15] J. C. Freytag and N. Goodman. On the translation of relational queries
into iterative programs. ACM Trans. Database Syst., 14(1), 1989.

[16] J. C. Freytag and N. Goodman. Translating aggregate queries into
iterative programs. In Proceedings of VLDB, 1986.

[17] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to
deforestation. In Proceedings of FPCA, 1993.

[18] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang.
Nectar: Automatic Management of Data and Computation in Data
Centers. In Proceedings of OSDI, 2010.

[19] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Dis-
tributed data-parallel programs from sequential building blocks. In
Proceedings of EuroSys, 2007.

[20] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A
study of devirtualization techniques for a Java Just-In-Time compiler.
In Proceedings of OOPSLA, 2000.

[21] M.-Y. Iu and W. Zwaenepoel. HadoopToSQL: a MapReduce query
optimizer. In Proceedings of EuroSys, 2010.

[22] B. Jacobs, E. Meijer, F. Piessens, and W. Schulte. Iterators revisited:
proof rules and implementation, 2005.

[23] K. Krikellas, S. D. Viglas, and M. Cintra. Generating Code for Holistic
Query Evaluation. In Proceedings of ICDE, 2010.

[24] X. Li and G. Agrawal. Efficient evaluation of XQuery over streaming
data. In Proceedings of VLDB, 2005.

[25] E. Meijer. Confessions of a used programming language salesman.
SIGPLAN Not., 42(10), 2007.

[26] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: a not-so-foreign language for data processing. In Proceedings
of SIGMOD, 2008.

[27] C. Reichenbach, M. G. Burke, I. Peshansky, and M. Raghavachari.
Analysis of imperative xml programs. Information Systems, 34(7),
2009.

[28] J. Svenningsson. Shortcut fusion for accumulating parameters & zip-
like functions. In Proceedings of ICFP, 2002.

[29] R. Tan, P. Nagpal, and S. Miller. Automated black box testing tool for
a parallel programming library. In Proceedings of ICST, 2009.

[30] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data parallelism
to program GPUs for general-purpose uses. In Proceedings of ASP-
LOS, 2006.

[31] P. Wadler. Deforestation: transforming programs to eliminate trees. In
Proceedings of ESOP, 1988.

[32] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda,
and J. Currey. DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language. In Proceedings
of OSDI, 2008.

[33] Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for data-
parallel computing: interfaces and implementations. In Proceedings
of SOSP, 2009.

