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Abstract—We present ACES, an automated server provisioning
system that aims to meet workload demand while minimizing
energy consumption in data centers. To perform energy-aware
server provisioning, ACES faces three key tradeoffs between cost,
performance, and reliability: (1) maximizing energy savings vs.
minimizing unmet load demand, (2) managing low power draw
vs. high transition latencies for multiple power management
schemes, and (3) balancing energy savings vs. reliability costs
of server components due to on-off cycles. To address these
challenges, ACES (1) predicts demand in the near future to
turn on servers gradually before they are needed and avoids
turning on unnecessary servers to cope with transient load
spikes, (2) formulates an optimization problem that minimizes
a linear combination of unmet demand and total energy and
reliability costs, and uses the program structure to solve the
problem efficiently in practice, and (3) constructs an execution
plan based on the optimization decisions to transition servers
between different power states and actuates them using system
and load management interfaces. Our evaluation on three data
center workloads shows that ACES’s energy savings are close to
the optimal and it delivers power proportionality while balancing
the tradeoff between energy savings and reliability costs.

I. INTRODUCTION

As the demand on Internet services increases, the energy
consumed by data centers, particularly the servers hosted
therein, has been skyrocketing. In 2006, servers and data
centers consumed 61 billion kWh at a cost of $4.5 billion
with demand expected to double by 2011 [3]. Recent studies
estimate that a 300W server consumes about $330 of energy
cost per year [25]. Unfortunately, much of this power is
wasted at low utilization: in typical data centers, servers run
at 30% utilization where they consume at least 65% of the
peak power draw [9]. This wastage is compounded by losses
in power delivery, power supply inefficiencies, and cooling
infrastructure costs.

In response, computer vendors are developing power man-
agement techniques for computing [1], storage [14,27], and
networking equipment [5, 19]. These techniques aim to provide
energy-proportional computing [6, 23] by (a) using consolida-
tion to move workloads off under-utilized servers and then
switching them to low power modes, and (b) adapting the rate
of operation (e.g., CPU frequency) of active servers to offered
load. However, three challenges confront operators who want
to manage these techniques to save energy:

o Maximizing energy savings vs. minimizing unmet load
demand: A simple way of resource provisioning is to
keep all servers in the highest performance state. This
approach ensures that the system meets the load de-

mand under specified Service-Level Objectives (SLO) but
consumes excessive energy under low load. A different
approach is to operate all servers at a low enough voltage
and frequency just to meet demand, but this risks SLO
violations. Static or improper provisioning can result
in performance loss and wasted energy under dynamic
workloads, which are typical in data centers [8,9, 12, 17].

« Managing multiple power states: Servers today support
multiple power management schemes such as DVFS
(ACPI P states), sleep or suspend-to-RAM (ACPI state
S3) and hibernate (ACPI state S4). While these states
offer fine-grained control between power and perfor-
mance, they pose software complexity in managing power
draw vs. transition latency tradeoffs—low power modes
minimize power draw of idle servers, but incur a high
delay to boot up the machine e.g., a server in hibernate
mode draws 2W-5W compared to 200W when on, but it
takes 30s-60s to transition into and out of that state.

o Reducing the impact on reliability: Repeated on-off
cycles increase the wear-and-tear of server components
(e.g., disks, fans), incurring costs for their procurement
and replacement. Similarly, the processor lifetime can
be affected by thermal effects due to on-off cycles.
Our conversations with operators indicate that a large
fraction of hardware induced failures are recurrent: a
server crashing due to faulty hardware is highly likely
to crash again. Hence, we need to balance the tradeoff
between energy savings and reliability costs of repairing

faulty server components.
Thus, the key question for server provisioning is: when and

how many servers to transition to each power state to meet
demand while minimizing the energy and reliability costs?

Unfortunately, prior approaches do not address all of these
challenges. Many solutions [11, 12,22] leverage dynamic volt-
age and frequency scaling (DVFS) where processor frequency
and voltage can be controlled to save CPU power consumption.
Although DVFS can be effective in reducing CPU power,
processors account for only 25% power in servers today while
other components still incur many fixed power overheads
when active [17]. Some studies [8, 10,12, 15,20] use on-off
primitives to temporarily shutdown a subset of servers during
periods of low demand. However, on-off based techniques do
not consider reliability costs, and they are typically reactive
resulting in high latency to transition to active state, which
risks performance loss under load spikes [11, 12, 20].

We design, implement, and evaluate ACES, an Automated
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Fig. 1: Load patterns for the (a) Messenger, (b) Azure, and (c) SCC traces. We observe highly periodic nature of Messenger, small load
variation for Azure, and a high dynamic range and sharp transient spikes for the SCC trace.

Controller for Energy-aware Server provisioning that provi-
sions servers to meet workload demand while minimizing the
energy cost and the maintenance and reliability cost due to
duty cycling. To balance the tradeoff between unmet load
demand and energy savings, ACES manages server power
states to keep sufficient capacity readily available to cope with
sudden load increase and to maximize energy savings during
the idle intervals.

ACES integrates load prediction, system and load manage-
ment functions, and cost-benefit analysis in three steps. First,
ACES characterizes the input workload and uses regression
analysis to predict workload demand in the near future. We
validated the accuracy of our prediction algorithm against three
workload traces from data centers. Second, ACES models
server power schemes as a Markov state diagram where
each state denotes a server power scheme and edges denote
the transition delay and the dollar cost of energy usage
and server maintenance. Using this model, we formulate the
energy-aware server provisioning problem as an integer linear
programming problem whose goal is to meet the predicted
demand within delay constraints. We approximate the problem
through a linear programming formulation and solve it with an
efficient fast polynomial-time method [7]. Third, ACES uses
the optimization decisions to determine the number of servers
to keep in each power scheme and actuates these decisions
using system management interfaces, for example, by using
load balancers to remove load from servers transitioning from
active to low-power states.

We have evaluated ACES on three workloads: Windows
Azure [26], Live Messenger, and a computing cluster of about
1000 servers. Our results show that ACES adapts to offered
load and provides energy savings close to the offline-optimal
algorithm, for the workloads we considered.

This paper makes the following contributions.

« We analyze workload traces from production servers and
data centers to determine demand variation and power
profiles of servers. We find that servers are over 60%
idle, demand is mostly stable and predictable, but spikes
can be abrupt and the peak workload is 1.7x-6x higher
than the average workload. Therefore, keeping all servers
active wastes energy, yet the likelihood of failing to meet
a sudden load spike must be minimized.

o We present a new automated server provisioning system
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Fig. 3: Cluster utilization histogram for the three traces. For the
SCC trace, the fraction of active servers is below 30% half of the
time but is 100% utilized about 20% of the time. The Messenger and
Azure clusters have about 50% utilization and about 80% utilization
70% of the time, respectively, with high load variation.

that minimizes unmet workload demand while balancing
the tradeoff between energy savings and reliability impact
due to on-off cycles.

¢ Our analysis of three workload traces demonstrates that
compared to the optimal, ACES saves energy within 96%
while a greedy algorithm saves energy within 84%.

II. MEASUREMENT STUDY AND RELATED WORK
A. Analysis of Workload Traces

We begin by analyzing traces collected from two large data
center applications, Windows Live Messenger and Windows
Azure [26], and a shared computing cluster (SCC). Live
Messenger is an instant messaging application and Azure is a
cloud platform that provides services for development, hosting,
and management of cloud applications. SCC is a distributed,
parallel computation platform that runs large-scale scientific
and computational research applications. The Live Messenger
trace contains login rate and number of connections per server
which we scaled down to 25M connections across 300 servers
over two weeks; a prior study presented many aspects of load
and user behavior for this system [9]. The Azure and SCC
traces contain cluster utilization data collected from about 500
servers over three months and from 1008 servers over a week,
respectively.

We analyze load patterns, auto-correlations, and cluster
utilization for these traces. Figure 1(a) shows a pattern of
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Fig. 2: Workload auto-correlation (ACF) for the (a) Messenger, (b) Azure, and (c) SCC traces.

the total number of connections and the login rates collected
every 30s from the Messenger trace. We observe that the
load exhibits diurnal patterns with the peak load being 2.5x-
6x higher than the average load and that the login rate is
noisier (i.e., transient load spikes) than the connection count.
The top curve shows the corresponding load demand in terms
of number of servers calculated using a simple provisioning
model [9]. Figure 1(b) shows the server demand collected
every 15 minutes for an Azure cluster. The peak load is
about 1.7x compared to the minimum load. One reason for
the stable load pattern is that the Azure pricing model that
incentivizes long-term usage. Figure 1(c) shows job requests
for the SCC trace. We observe significant fluctuation in the
server demand from about 10% on the weekends to 100%
during the weekdays corresponding to user job submissions.

Since transitioning servers to the active state takes time, load
prediction can help us act early depending on the temporal
correlation of load patterns in the workload. Note that the
prediction time intervals can range from tens of seconds to
several minutes to perform proactive provisioning for different
workloads. Figure 2 shows the auto-correlation for these
workloads. We find a strong daily and weekly autocorrelation
for Messenger and a slightly elevated autocorrelation for
Azure. However, the SCC trace has a high variation which
would require short-term prediction scheme to adapt quickly
to dynamic load. Overall, we observe highly periodic nature of
Messenger, stable load patterns for Azure, and a high dynamic
range and sharp transient spikes for the SCC trace.

Figure 3 depicts a histogram of cluster utilization in terms
of number of servers for the three traces. The most significant
feature of the SCC data is that the fraction of active servers
is below 30% half of the time but is also 100% utilized about
20% of the time. The Messenger and Azure clusters have about
50% utilization and about 80% utilization 70% of the time,
respectively, with high load variation.

We make two key observations from these results. First,
the total load exhibits significant fluctuation over time, which
provides the opportunity to dynamically change the number of
active servers. Further, since an active server consumes about
60% of its peak power when idle, turning off servers during
off-peak periods can maximize energy savings. Second, we
want to leverage strong correlations in load patterns to predict
future demand and perform proactive server provisioning to

mask the high latency of transitions between different power
states. Thus, to cope with load variations in dynamic work-
loads, we focus on designing optimization-based algorithms
than ad hoc heuristics, as also advocated by others [16].
Related Work. There is a large body of work on dynamic
server provisioning and energy management in data centers.
Pinheiro et al. presented a simple scheme to power servers on
and off dynamically [20]. Muse uses an economic approach
to allocate servers, where services bid for resources as a
function of required performance, and the system continuously
monitors load and allocates resources based on its utility [8].
Raghavendra et al. propose a power management approach
that coordinates different individual approaches to simulta-
neously minimize peak and average power, and idle power
wastage [21]. Chen et al. use forecast-based and hysteresis-
based techniques for server provisioning and combine it with
load batching for connection-oriented services [9].

Other work based on control theory aims to dynamically
optimize for energy, resources, and operational costs while
meeting performance-based SLOs [10, 11]. Albers et al. pro-
vide a good survey on energy-efficient algorithms from a
theoretical perspective [4]. Gandhi et al. propose combining
dynamic voltage scaling and DVFS techniques to optimally
allocate power in server farms [13].

We differ from prior work in that we integrate forecast-
based provisioning with an optimization-based approach to
maximize energy savings, manage multiple power states to
meet demand while masking transition latencies between
power states, and take into account the reliability costs due
to duty-cycling.

III. DESIGN OVERVIEW
A. System Model

Our hosting site model comprises a large number of iden-
tical servers in a data center, which can be provisioned to
host applications, possibly in a virtualization environment. For
hosted applications, it is important to have sufficient number
of active servers to meet demand at a desired level of SLO
performance. In particular, we analyze the client request rate
a server can process under a bounded response time (or
throughput rate) and use this metric to provision sufficient
number of servers to handle the incoming load.

A server kept active to process workload consumes power,
incurring electricity costs as well as power distribution (con-
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version losses) and cooling costs to ensure stable operation.
Therefore, the goal of the data center operator is to meet
demand under specified SLO while minimizing the operational
energy costs. While server consolidation can increase the
overall utilization and decrease idle power by reducing the
number of active servers, data centers still require sufficient ca-
pacity to handle the peak load. Further, consolidation does not
save energy automatically as administrators need to actively
consolidate services and turn off unneeded capacity. Finally,
service robustness concerns often preclude consolidation of
mission-critical services.

As discussed in Section I, there are two common mech-
anisms to manage server power consumption. First, most
processors support DVFS, which reduces CPU power demand
under light load. While prior studies [12,22] show that DVFS
offers significant CPU power savings, processors are not the
dominant power consumer in servers today and controlling
DVEFS remains an active topic of research [17]. Further, our
analysis in Section II shows that there are several periods of
low cluster utilization during which the whole server can be
switched off to save more energy. Therefore, we focus on
using low power states (off, sleep, hibernate) as they yield
high energy savings during periods of light load. While prior
work [17,22] does not leverage sleep and hibernate states
for interactive services due to their high transition latency,
we proactively provision to effectively mask their transition
delays without reducing server availability. Note that delays
due to software (e.g., migrating load off servers) can be simply
added to the latency in transition between power states of the
underlying hardware.

B. Algorithm Overview

We propose ACES, an energy-conservation approach where
servers transition between a high-performance state and low-
power states in response to load. Our ACES design has two key
components: a load predictor for proactive provisioning and an
optimizer framework that uses workload prediction to manage
transitions into and out of power states to meet demand while
saving energy and reducing the reliability cost.

First, we employ forecast-based technique based on regres-
sion analysis to predict load in the near future. We quantize
time into discrete time steps, which may be a few seconds
to several minutes, depending on the load variation and the
transition delays associated with changing server power states.

Second, to optimize state transitions to meet demand while
saving energy, we build a Markov state diagram of power state
transition for each server by measuring the power draw in each
power state and the transition latencies in and out of these
states. Figure 4 shows the state diagram for a server with
on-off and on-off-sleep-hibernate power states. The circles
denote the power states and the edges denote the cost of
state transitions. The cost is expressed in terms of latency
(time steps) and the dollar cost of energy usage and the
reliability cost due to the transition. We have developed an
analytical model (Section III-C) based on measurements to
amortize reliability costs per power state transition. For ease

Fig. 4: Markov state diagram of transitions for (a) On-Off and
(b) On-Off-Suspend-Hibernate power schemes. In the On-Off state
diagram, the system can transition from On to Off in one time step
and from Off to On in two time steps.

of illustration, we focus on the on and off states and later
generalize our approach to multiple power states.

We use the Markov state representation of a single server to
develop a state transition graph to manage power transitions
across all servers. At each time step, the predictor estimates
future machine demand for subsequent time steps 1,...,k.
Note that the minimum time step interval should be equal to
the highest common factor (HCF) of the state transition delays.
The parameter k is chosen such that the prediction interval is
at least the maximum transition delay between any two power
states. The state transition optimizer uses the estimated load to
choose a set of power transitions at each time step such that the
predicted machine demand is met as closely as possible, and
the total energy and reliability cost is minimized. The power
transitions that begin in the current time step are executed
and then the entire process repeats. Note that power state
transitions cannot be terminated while they are in progress.

C. Quantifying the Reliability Impact

A key aspect to consider is the impact of transitioning
servers between different power states, as it may significantly
affect the long-term reliability of the system. Past studies have
noted that many server components (e.g., disk drives, fans) can
be susceptible to on-off cycles [10, 17,22], thus increasing the
failure rate when servers are turned off. Similarly, processor
and motherboard reliability can be affected by temperature
gradient and thermal stress, respectively. Note that the failure
behavior of a component may also depend on the operating
conditions e.g., temperature, humidity, and vibration, which
are not considered in our model.

We use a simple analytical model based on [10] to quantify
the reliability impact in terms of its dollar cost. We compute
the amortized cost of a single power state transition as follows:
First, we divide the total cost (procurement and replace-
ment) per component by its MTTF (duty cycles), available
via datasheets or empirical analysis e.g., a disk drive with
datasheet MTTF of 50k boot cycles and cost $200 will incur a
reliability cost of 0.4 cents per cycle. Second, we calculate the
sum of per-cycle costs across all components; the amortized
maintenance costs (e.g., to replace faulty components) can be
similarly added to the model. We annotate each edge in the
state machine diagram with the reliability cost per power state
transition. Though this model is simple, we believe that it
provides a reasonable approximation to model reliability costs.
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Xsiuj Number of servers transitioning from power state s at time 7
to power state u at time j
Psiuj Energy required to make the transition s; to u;
m; Server demand at time step j
On; Number of servers kept on at time step j
ej Absolute value of the difference between server demand and
the number of servers on at time step j
Total error between server demand and the number of on machines
over all time steps j
Total energy and reliability cost over all time steps j
aj Predictor for time step j
A Square sub matrix of equality constraint matrix A

Fig. 5: Notation table.

IV. ALGORITHM DESIGN AND IMPLEMENTATION

In this section we first present our prediction scheme to esti-
mate load and then describe our optimization-based algorithm
for server provisioning.

A. Prediction-based server provisioning

ACES employs a load prediction algorithm to turn on
servers gradually before they are needed and to keep adequate
number of servers available to cope with sudden load spikes.
Since the lead time from starting a server to getting it ready
and moving from active to a low power state (e.g., ACPI S4)
is significant, the prediction scheme needs to conservatively
forecast the anticipated load change to minimize unmet de-
mand and to maximize energy savings.

For many Internet services, the workload demand has pe-
riodic components in days, weeks, and months, and possibly
a long term growth trend. For server provisioning, however,
it suffices to focus on short-term load prediction. Several
prediction schemes have been proposed on short-term load
forecasting for seasonal time series [9]. We derive a simple
and intuitive linear prediction scheme [24] because it is easy to
implement, has a sound theoretical basis, and works extremely
well on our workload traces. Nonetheless, the following dis-
cussion applies no matter which prediction scheme is used.

In linear prediction, the future demand 7 is predicted by
taking the dot product of coefficient vector a with a vector of
past demand values, m; (2 < 0),

m—p
’I’?L() = [a1 ...(lp] (l)
m_i
where (a1,...,a,) denote the p coefficients of a weighted

linear predictor and are computed by solving the least-squares
problem Ma =m i.e.,

W—r 0 [ m,(Ter) m,(r,l)
a =
0 w1 L m—p m_1
[ w_, 0 m_y,
0o : @
L w—_1 mo

where w_; = a’~!; a = 0.95 in our implementation.

Note that the number of coefficients p and the number of
past samples r are both chosen large enough to capture the

sufficiently long-term trends, with » > p to prevent over-
fitting the predictor to a small sample of past values.

Since we estimate load for k time steps in the future, we
use k predictors, aj ...ax. The coefficients of each of the
k predictors are updated at every time step, which requires
solving k least squares problems. For typical values of p, k,
and r (typically p < 10,k < 20 and r < 100), we employ
the singular value decomposition (SVD) method to solve the
least-squares equations [18] i.e., SVD(M) = UoVT where
U and V are orthonormal matrices and o is a diagonal matrix
with the singular values along the diagonal. To be robust to
noise, we discard small singular values o;

r g if %? < Smazx
' 10 otherwise
before inverting Uo VT to solve for a; we use 5,,4,=100.

The SVD has the advantage of numerical robustness: ac-
curate results will be computed regardless of the rank of the
data matrix M and the effective size of the linear predictor
automatically adapts to the data, assuming p is sufficiently
large. Further, computing the SVD for the maximum values
of p, k, and r given above takes less than 300ms using a single
core of a 2.4 GHz Core 2 Duo processor. For larger values of
p, k, and r, asymptotically faster recursive methods [24] can
be used, but care must be taken to avoid numerical instability.
Evaluating prediction accuracy. We evaluate the accuracy
of our weighted linear prediction scheme by comparing the
predicted values measured every 30s, 15 mins, and 5 mins,
against the actual demand for the number of servers in the
Messenger, Azure, and SCC traces, respectively [2]. Using
this model, we can forecast the smooth trends of Messenger
and Azure traces with good accuracy. The sharp load spikes
are hard to predict, because they are caused by server crashes
that result in re-login bursts for Messenger and by bursty job
arrivals in case of SCC.

We compute the standard deviation o of the relative error
(|Predicted — Actual|/Actual) as goodness of fit metric. We
find that the standard deviation is 0.009, 0.014, and 0.073,
respectively, for the Messenger, Azure and SCC workloads.

Note that the time series can be noisy. One approach would
be to use a longer forecasting interval or do a coarse-grained
prediction, but that may risk long periods of overprovisioning
or underprovisioning. Instead, we predict the load at multiple
time-steps and expect load prediction to work reasonably well
for intervals of tens of seconds to a few minutes.

B. Machine Transition Graph

The first step in formulating the optimization problem is to
unroll in time the Markov state diagram for a single server.
Figure 6 shows the machine transition graph for Figure 4. In
this graph a vertex s; represents a power state s at a given
time step j and an edge represents the transition of servers
from one power state to another. Each edge has a value X,
denoting the number of servers that transition from power state
s at time ¢ to power state u at time j (see Figure 6(b)).
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Fig. 6: (a) State diagram unrolled in time. If the timestamp of the
second vertex of an edge is less than zero it cannot affect the current
state or future decisions; these edges are not shown. For the On-Off
system no states occurring earlier than time step -2 can affect the
current state; these states are not shown. (b) Edge labeling convention.

Assuming that the number of servers in the system is con-
stant with time (we weaken this assumption in Section IV-D),
we can write the conservation equation in terms of the number
of servers as:

Vs, ZXSjUk - ZXms]' =0 3)

k>j 1<j

which denotes that the total number of servers entering power
state s at time j must equal the total number of servers leaving
power state s after time j; note that the servers remaining in
a given power state transition to the same state at time j + 1.

There are two types of edges in the machine transition
graph. The edges X ,,,; with i < 0 represent power transition
decisions in the past and cannot be changed e.g., an edge
Xoff_1ons = 10 represents a decision, made one time step
in the past, to transition 10 servers from the off state to the
on state two time steps in the future. These servers have
already begun the boot cycle and cannot be controlled again
till after they have reached the on state in time step 2. The
other type of edges, Xsi(mj, with ¢ > 0, represent a server
transition in the future; these edges are the variables to be
solved for. Separating out the constants and variables, we get
the following modified conservation equations:

variables past
———
E X5juk - E Xris]' = § XrisJ- = ij (4)
E>j i>0 i<0

There is one such equation for each node in the transition
graph which gives us a set of conservation equations: Ax = b.
Tracking Previous Decisions. Incorporating the results of pre-
vious server transition decisions into the current optimization
step is easily accomplished by moving edge values back one
step in time for every prediction value.

Figure 7 illustrates a sequence of prediction steps for
optimizing state transitions. In the first prediction step, 11
machines are on and 10 are off at time step zero. Based
on predicted future demand, the optimizer computes machine
transitions between time steps 0 and 1, and between time steps
1 and 2. Machine transitions for time step zero are executed,
the machine transition values are moved backward one step in
time, and the system advances one prediction step. The entire
process is repeated for the second and third prediction steps.
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Fig. 7: Moving edge values back in time.

C. State Transition Optimization

Our goal is to meet the machine demand m; at every time
step while minimizing the costs of energy usage and reliability
impact. Therefore, the objective function we want to minimize
has two components. First, the difference E between predicted
server demand m,; at time step j and the number of active
servers On; =) . Ts;on; over all time steps.

E=2 Imj—Onjl =3 Imj =3 @oon,| =3 €5
J J i J

The second component is the total cost C' computed as the

sum over all edges having cost P, and denoting transitions

between power states, times the number of machines X, .,

making the transition.
C = Z Psiqusiuj (6)
i>0

Given these costs, we formulate the optimization problem as
an integer linear program (ILP) of first minimizing the unmet
server demand E and then the transition cost C i.e.,

MIN E then C 7)
st. Ax = b ¥
e;j > m;—On; 9)

ej > —(m; —Ony) (10)

For some applications, server demand and power consump-
tion may be interchangeable, i.e., it is acceptable to have small
unmet demand if enough power can be saved. In this case, we
can formulate the objective function as MIN v+ E + (1—~)xC,
where 7 € [0,1] is a weighing constant.

Integrality of the solution. In general ILP problems can take
exponential time in the worst-case. We make a key observation
about our problem structure that even if the constraint matrix
for this problem is not totally unimodular, the basic feasible
solutions are guaranteed to be integer. This property allows the
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ILP problem to be solved efficiently using linear programming
in polynomial time; details appear in a technical report [2].

Actuation of server provisioning. After computing the num-
ber of servers required to process demand under application-
specific SLO, our system makes two actuations. First, it uses
the power state transitions primitives to switch servers between
different power states to meet load demand while saving
power. Second, it adjusts load dispatching to distribute load
only among the remaining active servers. Further, we combine
load dispatching with server provisioning to intentionally skew
load on servers (instead of load balancing) so as to create tail
servers with relatively low load such that turning them to low-
power states will not affect the application performance [9].

D. Discussion

Heterogeneous servers. Enterprise and data center environ-
ments often host servers with heterogeneous configurations
due to application-specific requirements, equipment upgrades,
legacy systems, etc. To support server heterogeneity, we model
servers with different types, G , with each type governed
by a different state machine diagram. Our goal is to meet
server demand D, for each type g € G while minimizing
the energy and reliability costs over predicted demand at
time steps 1, ..., k. For servers in each server type, we build
their machine transition graph and write the conservation
equations 4 as follows:

A O 0
0 0 X=b arn
0 0 Ag

where X is now a vector containing all the edges in all |G|
graphs. We compute the unmet demand E over all |G| graphs
as the accumulated difference between demand m? of type g
and the number of active servers On? =>.X Lon, 1€,

1G]
— 9 _ 9| — g
Be =3 ) Imi-ag+Onj| = 3 ¢f (12
g=1 J J
where X¢ . is an edge value taken from machine transi-

tion graph g, and o is a weight which represents the relative
importance of meeting server demand for type g. The total
cost Cg over all |G| graphs becomes:

G|

Co=Y. Y L, X,

g=1i>0

13)

and run the state optimization algorithm of section I'V-C using
equations (7), (11), (12), and (13).

Dynamic server availability. In practice, the number of
available servers can vary over time due to failures, upgrades,
addition of new servers, etc. Our algorithm can be easily
extended to accommodate dynamic server membership: if the
number of machines that enter a power state at a given time
is not equal to the number that were commanded to enter that
state then the edge value can simply be updated to reflect the
current, true situation. The state transition optimization can

then be run with the updated edge values. Further, operators
may always want to keep an additional buffer capacity (e.g.,
10% servers) over the predicted demand to handle failures.
Selecting servers for power state transitions. There are
several criteria to consider when deciding which servers to
power on or off. The decision can be based on a combination
of factors such as load, trying to equalize power-on cycles
across all servers (e.g., using round-robin scheduling based
on keeping count of on-off cycles per server), preferentially
powering off servers in hot spots or those that require service
or upgrades, or based on server hardware and reliability
characteristics.

V. EXPERIMENTAL EVALUATION

In this section we compare the performance of our server

provisioning algorithm to the offline optimal algorithm and
a greedy algorithm, based on three data center workloads
described in Section II-A.
Alternative server-provisioning algorithms. The offline op-
timal algorithm executes the state transition optimization as
in our approach, but it has the complete knowledge of the
server demand at all future time steps. The greedy heuristic we
consider is to order power states by decreasing power footprint
and increasing latency to transition from that state to the active
state. If the load prediction results in capacity increase, then
transition the required number of servers to active in sequence
of ordered power states. On decrease, transition the excess
number of servers evenly among the low-power states. This
heuristic represents a reasonable approach to optimize energy
savings and, indeed, performs fairly well.

A. Methodology

For evaluating these algorithms, we replay the workload
traces to a centralized machine emulating the cloud setup with
knowledge of the request (or job) demand and the current
cluster utilization. To calculate energy savings, we assume that
when we turn on a server, it consumes power immediately but
delivers no capacity until the boot-up latency. This assumption
may overestimate the unmet demand since it is likely that a
server may be available in a shorter time. Similarly, when
a server is commanded to a low power mode, it consumes
power of the active state during the transition but provides no
capacity. This simplification is conservative since the server
may shutdown faster or may consume less energy over the
transition period. Given that CPUs only account for 25%
power in servers today [17], we do not consider the variation
in the power usage of a server at different CPU utilizations.

The total power usage of the system is computed as the
sum of the power drawn by a server in a given power state
times the number of active servers in that power state, across
all power states. We compare performance along the metrics
of energy savings (with respect to keeping all servers in the
highest active state), power proportionality, and the reliability
impact.

We assume the following configuration based on server
power measurements: each server consumes 200W, 11W, 2W,

708



350 20

—Load Marlowe - - Heuristic

Optimal

3

—Load ——Optimal --Marlowe - -|Heuristic

>

©
8
3
&

W A g T

S

]

IVWUUWWVVWV

Wy
|

=
a
g

i AT

Number Of Servers
5

Power Savings (KW)

Number Of Servers
«
8

&
&

m—

N
8
3

Power Savings (KW)
Number Of Servers
«

8
8
Power Savings (KW)

w
8
3

\\: "
. i
A
i
5 & 3

il T 1}1 v

i i 35

'
~ —Load Optimal

lijy
Marlowe - - Heuristic | l i

o N & 0 ®
N
S
8

26Jan  9-Feb 23-Feb 9-Mar 23-Mar 6-Apr  20-Apr

. =il .
. 0 1 Y

Thur Fri Sat  Sun  Mon Tue Wed Thur Fri

Fig. 8: Input demand (number of servers) and the power consumed by the three algorithms for (a)Messenger, (b)Azure, and (c)SCC traces.

and zero watts in on, sleep, hibernate, and off power states,
respectively. For SCC, the on to off, off to on, on to sleep,
sleep to on, on to hibernate, and hibernate to on transition
latencies are 45s, 45s, 5s, 15s, 30s, and 60s, respectively. For
Azure, the corresponding latencies are 60s, 1200s, 5s, 1200s,
30s, and 1200s, respectively. For Messenger, the corresponding
latencies are 2 hours, 90s, 2 hours, 15s, 2 hours, and 60s,
respectively. Since Messenger is a stateful service, we use a
high delay (2 hours) to transition from active to a low power
state in order to emulate the natural departure rate caused
by normal user logoffs [9]. Using our analytical reliability
model, market cost of server components and MTTF (based
on conversations with data center operators), we calculate the
amortized reliability cost due to power state transitions as 6
cents per transition from active to a low-power state.

B. Evaluating energy savings

The first experiment evaluates the savings from energy-
aware server provisioning for the three workloads. Figure 8
shows the workload demand in terms of number of servers
and the power consumed by optimal, Marlowe, and greedy
algorithms. For all three traces, we observe that the power
curve usage follows variation in the workload. Since the Mes-
senger trace exhibits a predictable load pattern, both Marlowe
and greedy approaches consume power closer to the optimal.
For the Azure trace, however, the load variation results in
the greedy approach incurring significant delay in meeting the
demand initially while Marlowe still performs close to the op-
timal. Finally, for the SCC trace, the performance gap between
Marlowe and the greedy approach increases significantly as the
high load variation results in excess capacity or high unmet
demand using the greedy algorithm.

Figure 9 shows the bar graph denoting the normalized
energy savings per day of ACES and the greedy algorithm
compared to the offline optimal algorithm. We observe that
compared to the optimal, ACES saves 96%-99.5% energy
whereas the greedy approach saves 23%-84% energy for the
three workload traces.

Power proportionality. Next, we compute the power propor-
tionality of our algorithm. Figure 10 shows the corresponding
results. The x-axis denotes the fraction of servers kept active
by ACES and the y-axis denotes the fraction of energy
consumed to total energy used when all machines are powered
on. For the Messenger and Azure workloads, we observe that
ACES consumes power proportional to load. For the SCC

H Optimal Marlowe ® Heuristic

35

Avg Daily Energy Savings (MWh)
~

Azure MSGR scc

Fig. 9: Comparing normalized daily energy savings for ACES and
greedy algorithms compared to the offline optimal.

4 state system

---- 2 state system

56

112 224
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Fig. 11: LP solve time versus the number of time steps for the on-off
power states and the on-off-sleep-hibernate power states.

trace, the dynamic load patterns result in high variation in
the power consumption, but overall, the total power usage is
proportional to the input server demand.

C. Micro-benchmarks

Finally, we evaluate the execution time to solve Equation
(7) in computing optimal server state transitions in the state
transition graph. In Figure 11, we plot the execution time
on the y-axis and the number of lookahead timesteps on
the x-axis. The two lines in the graph denote the number
of server power states: two (on-off) and four (on-off-sleep-
hibernate) corresponding to figure 4. We find that the time
taken to solve (7) scales both with the size of the state diagram
and with the size of the machine demand prediction window.
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As an example, if we assume each time step is 5 seconds,
the longest prediction window would be approximately 20
minutes. Further, the computation time is scaling slightly less
than quadratically with the size of the prediction window,
and approximately linearly with the number of states; it is
noteworthy that the execution time is independent of the
number of servers in the system.

VI. CONCLUSIONS AND FUTURE WORK

A dual strategy is needed to solve the energy problem: (1)
maximize energy efficiency and decrease energy use; (2)
develop new sources of clean energy. No. 1 will remain
the lowest hanging fruit for the next few decades.
—Steve Chu, U.S. Secretary of Energy

In this paper we presented ACES, an automated system
for energy-aware server provisioning that minimizes unmet
demand while reducing energy and reliability costs in hosting
clusters. Our results show that the system can quickly identify
the optimal assignment of servers to power schemes thereby
significantly saving energy while meeting workload demand.
While this paper focuses on server power management at the
ensemble layer, we believe that new hardware designs with
finer levels of power control for individual components such
as disks, memory, and power supplies can be incorporated for
both local and global energy efficiency.

Further research is needed to expand the generality of
our approach. First, centralized server provisioning systems
considered in this paper, typically scale to few hundreds
of nodes and are limited to a single administrative domain.
Therefore, hierarchical approaches are needed to scale to large
systems comprising tens of thousands of servers. Second,
for global energy management in data centers, coordinated
management is needed between compute, storage, and network
resources. Further, we need to coordinate server provisioning
across computing, storage, and networking equipment as well
as scheduled repair and maintenance tasks in data centers.
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