
Learning Time-Based Presence Probabilities 

John Krumm and A.J. Bernheim Brush 

 

Microsoft Research 

One Microsoft Way 

Redmond, WA  USA  98052 

{jckrumm | ajbrush}@microsoft.com 

Abstract. Many potential pervasive computing applications could use 

predictions of when a person will be at a certain place. Using a survey and GPS 

data from 34 participants in 11 households, we develop and test algorithms for 

predicting when a person will be at home or away. We show that our 

participants’ self-reported home/away schedules are not very accurate, and we 

introduce a probabilistic home/away schedule computed from observed GPS 

data. The computation includes smoothing and a soft schedule template. We 

show how the probabilistic schedule outperforms both the self-reported 

schedule and an algorithm based on driving time. We also show how to 

combine our algorithm with the best part of the drive time algorithm for a slight 

boost in performance. 

Keywords: Location prediction, presence prediction, away prediction, energy 

efficiency, human routines.  

1   Introduction 

Predicting when a person will be at a particular location could be useful in many 

pervasive computing scenarios. For example, a person initiating a spoken or typed 

conversation may want to wait until the other party is at home or in their office if the 

conversation will be sensitive or long. In other situations, someone may want an 

impromptu, face to face meeting. Here, predicted presence would be useful to find the 

best time to drop in, e.g. “She’s nearly always in her office from 8 a.m. to 9 a.m.”. 

Another application is energy savings. Gupta et al. of MIT show that households 

could save up to 7% on their heating bill with a thermostat that knows how far the 

occupants are from home [1]. For electric vehicles, cooling or preheating their 

batteries helps their performance [2], which would be aided by a prediction of when 

the driver will leave his or her current location. Predicted presence can also be used to 

detect anomalous behavior such as when a person is predicted to be somewhere but is 

not. Such behavior could be indicative of cognitive decline or an emergency. 

This paper presents a technique for learning the probabilities, as a function of time, 

that a person will be at a particular place based on observations of their presence 

there. We concentrate on presence at home, but the technique is equally applicable to 

any place where a person’s binary presence (i.e. there vs. not there) can be measured. 

In particular, we demonstrate inferences of an occupant’s home/away schedule based 

on GPS logs of their whereabouts over time. We create a probability distribution 



 

 

giving their probability of being away from home as a function of the time of day and 

the day of the week. In addition, we look at the occupant’s current location as 

measured by GPS. We use this to override our probabilistic prediction if we discover 

the occupant is too far away to drive home within the prediction interval. 

There is other work is aimed at making general predictions about where people 

will be. For instance, Ashbrook and Starner look at GPS traces to find a person’s 

significant locations along with a Markov model to predict which one will be visited 

next [3]. Patterson et al. use GPS to sense activities, including making short term 

predictions about a person’s next destination [4]. Similarly, Krumm and Horvitz look 

at GPS traces to predict a driver’s destination based on their previous habits and 

general driving behaviors [5]. These efforts concentrate on predicting specific 

locations in the future, not the arrival or departure times that we emphasize in this 

paper. In particular, algorithms like this that predict destinations and routes do not 

predict when the trip will start. The results of this paper, instead, can be used to 

predict when occupancy states will change. 

Previous work on time-based presence prediction is normally aimed at thermostat 

control. An early attempt to solve the problem of occupancy prediction for home 

heating was that of Mozer et al. in 1997 [6]. Mozer’s Neural Network House was 

outfitted with sensors - including motion sensors to detect occupancy - and actuators - 

including one to control a central hot air furnace. They trained a neural network to 

predict when the home would be occupied as a function of recent occupancy 

observations. Gao and Whitehouse, of the University of Virginia, present a “self-

programming” thermostat that is sensitive to the home/away schedule of the 

occupants measured, by, for instance, occupancy sensors in the home [7]. Their 

algorithm finds a thermostat schedule to minimize heating and cooling times given 

the occupant’s tolerance for “miss time”, which is the amount of time the house is not 

heated or cooled when it should be. Gupta et al.’s GPS controlled thermostat uses a 

driving time heuristic to conservatively predict that an occupant will be home in a 

given amount of time if it is possible to drive home in that amount of time [1]. 

One innovation in our approach is that our predictions are probabilistic, meaning 

that algorithms that use the predictions can tailor their behavior to the inherent 

uncertainty in people’s future behavior. Our predictions are based on a novel way of 

smoothing and biasing occupancy observations. We combine our learned probabilities 

with the driving time heuristic of Gupta et al. [1] and show how it improves our 

accuracy slightly. We also show how using our algorithm significantly improves 

prediction over users’ own ideas of their home/away schedules. While the previous 

work cited above used data from one (Mozer et al. [6]), two (Gao and Whitehouse 

[7]), and eight (Gupta et al. [1]) individuals, our results are based on surveys and GPS 

data from 34 individuals spread among 11 different households. The next section 

describes our survey and the data we gathered. 

2   Household GPS Survey 

In late 2009, we recruited 12 volunteer households in our area in order to gather data 

for our study for a period of approximately eight weeks each. These households were 



 

 

on a list of user study volunteers maintained by our institution, but not employed or 

otherwise associated with our institution. All the households had either three or four 

participants each, although one participant dropped out at the beginning of the study, 

leaving two participants remaining in one household. Also, one household of three did 

not properly comply with the GPS portion of the survey (explained below), so we 

dropped them, leaving 11 households with a total of 34 participants. One household 

had two child participants, and three households had one child participant. The 

participants were evenly split across genders, and their ages ranged between 21 and 

59, with a median age of 27. Six of the households were families with children living 

at home, and one was a couple without children. In return for participating in our 

survey, each household was offered four products of their choice from our institution 

(maximum value US$ 600 per product) and each participant was offered US$ 0.50 for 

each day of at least two hours of GPS log data. 

We asked each participant to do two main tasks. One of the tasks was to fill in a 

time grid predicting their status among “awake at home”, “sleeping at home”, and 

“away from home” for each hour of each day of a typical week. Data from a grid for 

one participant is shown in Table 1. This is analogous to programming a thermostat, 

where a person might pick different temperatures for each of these three states. We 

used these participant time grids to compare against other algorithms for predicting 

when a person would be home or away. 

The other major task of our survey participants was to carry a GPS logger with 

them during their waking hours. As part of our initial visit to each household, we 

loaned each participant a RoyalTek RBT-2300 GPS logger, equipped with an optional 

1700 milliamp-hour, rechargeable battery, plus a recharger. These loggers fit 

conveniently in a pocket or bag, and we set them to record a time-stamped 

latitude/longitude every five seconds. The larger, optional battery was enough for 

about 18 hours of operation on one charge. We instructed the participants to carry the 

logger with them wherever they went and have it turned off and recharging while they 

were sleeping. We also asked the participants to mail their loggers to us every two 

weeks, switching to a second set of loggers we left with them. When we received the 

 
Table 1: Each of our participants filled out a time grid representing their typical 

week. In each one-hour cell, the participant could indicate sleeping, awake at 

home, or away from home. This is the data provided by one of our participants. 



 

 

loggers, we uploaded and inspected the data to make sure the participants were 

properly complying. We then mailed back the empty loggers to serve as the 

replacement set after the next two-week switch, etc., until the end of the survey. An 

example of the type of GPS data we collected is shown in Figure 1. 

An analysis of the data shows that the average, minimum, and maximum number 

of days we observed the 34 participants were 58, 13, and 95, respectively. The 

participants did not have their GPS loggers on all the time, e.g. normally turned off 

overnight, and sometimes forgotten in the morning. The average, minimum, and 

maximum fraction of time we obtained GPS data from the participants were 38%, 

18%, and 76%. Some of the lower percentages were due to loggers that failed to 

upload their data after two weeks of logging. 

We used this GPS data to devise an algorithm for predicting when our participants 

would be home or away. First, however, we used their survey responses to assess how 

well they could predict their own home/away behavior, described in the next section. 

3   Self-Reported Home/Away Schedules 

It may be that people are quite good at predicting their own home/away behavior. If 

so, there would not necessarily be a strong need to make these predictions 

automatically. Part of our survey asked each participant to fill out a schedule of when 

they are sleeping, at home, or away from home. An example schedule from one of our 

participants is shown in Table 1. For the purposes of this study, we designated 

sleeping times as being at home. 

 
Figure 1: This is an example of the GPS data we gathered. The black circle shows 

the region within 100 meters of one person’s home. Due to GPS noise, points 

within a circle of this size around a participant’s home were considered to be at 

home. 



 

 

  
Inferred 

  
home away 

Actual 
from GPS 

home 76% 24% 

away 68% 32% 
 

Table 2: Participant Self-Report Confusion Matrix. 

The confusion matrix shows that our participants were 

not good at anticipating when they would be home or 

away, based on ground truth from GPS. They predicted 

they would be home much more often than they 

actually were. 

The participants’ 

GPS data, along with 

knowledge of their 

home locations, gave us 

a simple way to 

measure their actual 

home/away behavior. 

We designated any GPS 

point within 100 meters 

of the participant’s 

home to be at home, 

and designated the 

remaining points as 

away. We chose the 

100 meter radius based on the observed spread of the GPS data as shown in maps 

such as in Figure 1. While a circle of this size could easily include many neighbors, 

we felt compelled to keep the circle this large to account for the occasional drift of 

our GPS logger. 

With the GPS home/away data as ground truth, we can assess how well our 

participants anticipated their own home/away behavior. We note that the quality of 

predictions based on a schedule like this do not vary with the look-ahead time, since 

each participant’s predicted schedule is static. For other predictions we make below, 

the look-ahead time is a factor. 

Table 2 shows the confusion matrix averaged over all our participants. We 

computed this by considering every GPS point as a ground truth point, assigning it a 

label of “home” or “away” depending on its location. We used the GPS point’s time 

stamp to look up the participant’s anticipated home/away state in their self-reported 

home/away schedule. The confusion matrix shows that when a participant was 

actually away (as measured by GPS), they predicted they would be home about 68% 

of the time. We conclude that our participants were not good at anticipating their 

home/away schedules, and we next consider algorithms to automatically infer 

home/away in hopes of improvement. 

We note that the participants were likely not quite as poor at predicting their 

home/away status as the confusion matrix implies. We assessed their home/away 

prediction only when we had GPS data for ground truth, which did not include 

overnights, because we asked participants to turn off their GPS overnight for 

recharging. Thus nighttime data, when the participants were most likely home and 

when they likely correctly predicted they would be home, was not included in the 

calculations. So, we conclude that during waking hours, our participants were not 

good at predicting their home/away pattern. In the following sections, we use the 

same GPS ground truth data to assess other algorithms, so we can directly compare 

performance, despite the lack of nighttime data. 



 

 

3   Drive Time Prediction 

The work in [1] introduces thermostat control based on the location of the home’s 

occupants. They recommend, in the absence of a programmable thermostat, to keep 

the house warm if the time to heat the home is more than the time it would take an 

occupant to drive home. Thus, this algorithm conservatively predicts that a person 

will always be home in the amount of time it would take him or her to drive home. 

We will refer to this algorithm as the “drive time” algorithm, and we will use it to 

measure the relative accuracy of our own presence prediction algorithm and to 

augment our algorithm for more accuracy. 

With our GPS data, we were able to assess the drive time algorithm in terms of the 

  
30 minutes 60 minutes 

  
90 minutes 120 minutes 

Figure 2: These maps show precomputed drive time zones from which a person 

could reach their home by driving for a given amount of time. 

 



 

 

same type of confusion 

matrix presented in the 

last section. However, 

before we present the 

results, we describe one 

modification we made 

to the drive time 

algorithm for 

efficiency. While [1] 

used MapQuest to 

predict driving times 

from each GPS point, 

we instead precomputed 

driving times from 

points sampled on a 

map. In particular, we 

tessellated the map in 

our study region with 

triangles from the 

Hierarchical Triangular 

Mesh (HTM) [8]. From 

the available mesh 

resolutions, we used 

level 12 triangles, 

whose size in our study 

region was about 5.1 

square kilometers (area) 

and 3.4 kilometers 

(length of each side). 

For each triangle, we computed the driving time from the triangle’s center to the 

participant’s home and stored the result. Then, given an arbitrary latitude/longitude, 

we found which triangle contained it and returned that triangle’s driving time as an 

approximation of the driving time from that point. This modification of the algorithm 

in [1] was not designed to increase the accuracy of the algorithm, but rather to 

increase the computational efficiency. Instead of computing a driving time for each 

query, we simply have to look up the precomputed driving time from the relevant 

triangle. Since the triangles are small, the loss in driving time accuracy caused by 

discretization is small. Thresholding the drive times in the triangles is a convenient 

way to show a map of the region over which a participant’s home is reachable in a 

given amount of time, as shown in Figure 2 for an arbitrary home location. 

From Figure 2 it is easy to understand the drive time algorithm. For example, if the 

look-ahead time for the prediction is 90 minutes, the occupant would be predicted to 

arrive at home in at most 90 minutes from anywhere within the 90-minute drive time 

region. We call this region the drive time zone. 

We can apply the drive time algorithm to home/away prediction by predicting that 

an occupant will be home in some amount of time if they are within the drive time 

zone associated with that time. Otherwise we predict they will be away. We note that 

  
Inferred 

  
home away 

Actual 
from GPS 

home 100% 0% 

away 90% 10% 
 

30-minute drive time prediction 

  
Inferred 

  
home away 

Actual 
from GPS 

home 100% 0% 

away 93% 7% 
 

60-minute drive time prediction 

  
Inferred 

  
home away 

Actual 
from GPS 

home 100% 0% 

away 94% 6% 
 

90-minute drive time prediction 

Table 3: Drive Time Algorithm. These confusion 

matrices show the performance of an algorithm that 

predicts the user will be home in X minutes whenever 

he or she is within X minutes of driving time from their 

home. Since most people in our study spent most of 

their time close to home, this algorithm almost always 

predicts they will be home within the prediction 

interval. 



 

 

the schedule-based algorithm in the previous section is insensitive to the look-ahead 

time, because its predictions are completely determined by the time of day and day of 

week. The drive time, algorithm, in contrast, depends on the look-ahead time. 

Applying the drive time algorithm to our participants’ data, we get the confusion 

matrices shown in Table 3 for look-ahead times of 30, 60, and 90 minutes. The charts 

in Table 3, Figure 4, and Figure 5 show how the drive time algorithm compared to 

others we tested. The defining aspect of the drive time confusion matrices is that the 

algorithm almost always predicts “home” regardless of the data. This is because our 

participants spent the vast majority of their time near their homes. This is likely true 

of the general U.S. population, whose average commute time from work is about 23 

minutes, and 81% of whom work within 45 minutes of home [9]. 

While this algorithm did not perform well on our participants’ data, we show later 

how to combine it with a more accurate algorithm for a slight improvement in the 

other algorithm’s accuracy. 

4 Probabilistic Home/Away Schedules 

Despite the fact that our participants were not good at anticipating their own 

home/away schedules, we suspect there is much to be gained by looking at their 

regular habits. This section describes how, using their GPS data, we computed the 

probability of them being away from home as a function of the time of day and day of 

week, as shown in Table 4. (We note that if the probability of being away from home 

is      , then              .) In this table the time slots are 30 minutes long. 

This is an arbitrary choice, but we found that 30 minutes worked well for our 

purposes. 

The advantages of using a probabilistic table such as this are: 

 It is based on users’ actual home/away behavior, and thus is a more accurate 

reflection of their schedule than a self-reported one. 

 The probabilities capture the fact that people are not completely predictable. 

 Using probabilities means that algorithms using these predictions can 

explicitly account for the inherent uncertainty. 

 The probabilities can be used as a prior for a more sophisticated Bayesian 

approach to home/away prediction. 

As we did previously, we say that a participant was home when their GPS data 

indicated they were within 100 meters of their home latitude/longitude. 

One way to build a probabilistic home/away schedule would be to create a simple 

histogram of normalized frequencies. For each time/day slot in the schedule, we could 

simply count the number of times the user was away from home, based on GPS 

readings, and divide by the total number of GPS readings in that slot. However, this 

leads to problems when there is no sample data for a slot, and it also neglects the 

opportunity to impose prior assumptions on the schedule. 

Below we describe our procedure for building a probabilistic home/away schedule 

which fills in missing values, smoothes the data, and allows a soft bias in the 

regularity of the schedule. 



 

 

Imposing a Schedule Template 

We formulate the problem of finding a       schedule as a linear matrix problem, 

where the unknowns are the       probabilities in the time slots. Specifically, the 

unknowns form a vector      , where each element is       for a particular time slot 

on a particular day of the week, i.e. 

      (                  )
  ( 1 ) 

This vector is 336 elements long, which is the number of 30-minute periods in 7 

days. The elements are organized in day-major order, so    corresponds to the first 30 

minutes of Sunday after midnight, and      corresponds to the last 30 minutes of 

Saturday before midnight. 

We suspect that people have a somewhat unvarying home/away schedule on 

weekdays, with more variations on weekends. Therefore, we introduce another vector 

of away probabilities that correspond to a generic weekday, Monday - Friday. This 

vector is                 , and there is one element for each 30-minute slot of a single 

weekday, i.e. 

                 (  
    

    
     

      
 )

 
 ( 2 ) 

where 48 is the number of 30-minute periods in one 24-hour, generic weekday. After 

solving for       and                 , the final probability for a weekday slot is 

computed as the sum of the relevant element of       (corresponding to a time slot 

on a specific day of the week) and the relevant element of                  

(corresponding to the time slot on a generic weekday). The final probability for a 

weekend slot comes solely from      . 

Introducing                  is a way to impose our bias that people have a 

somewhat regular schedule on weekdays.                  represents the unvarying 

part of a weekday, which is summed with the elements of       that represent the 

variable parts of specific weekdays. There are many such possible decompositions. 

For instance, it may be that only daytime hours of weekdays are unvarying. We 

introduced the generic weekday as the intuitively most likely decomposition, but we 

leave for future work a verification that it improves accuracy. An interesting 

extension to this technique is to examine different types of probability decompositions 

to find which one, if any, works best for an individual. As it stands, our generic 

weekday decomposition is an example of how to impose these types of 

decompositions mathematically. 

The linear matrix equation for computing the probabilities is 
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Here   is a matrix representing constraint equations on the probabilities, with the b 

vector representing the constraints’ constant parts. The unknown vector 
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contains the probabilities we want to compute. The remainder of this section discusses 

how we fill the elements of   and   based on data and other constraints. 

Home/Away Frequencies 

The main influence on the away probabilities is the home/away data itself. We create 

one constraint equation for each 30-minute period of collected GPS data. In these 

periods, we compute the proportion of GPS points outside the 100-meter radius of the 

home compared to the total number of GPS points measured in the time period. If one 

row of matrix   is represented by the row vector  , and one element of vector   is 

represented by  , then the form of this constraint for one observed 30-minute time slot 

is 

 
     

(                     )    
     

            

 ( 4 ) 

 

Here the two 1’s in   are positioned to pick up the time of day and day of week slot in 

      and                  that correspond the time slot in the data. The vertical 

divider in   corresponds to the division between the two parts of  :       and 

                . If the time slot is on a weekend, the second 1 in   is replaced with a 

0, because there is no generic time slot for weekends. The integers       and       

are the counts of GPS points inside and outside the 100-meter circle in the data’s time 

slot. 

There is one (   ) pair, and thus one row of matrix  , for every 30-minute time 

slot in the observed data. We keep appending (   ) pairs to      until we exhaust 

all the participant’s GPS data. With approximately eight weeks of data from each 

participant, there are many more 30-minute data slots than unknowns in  , making the 

matrix equation over-constrained. We eventually use a least squares approach to find 

a solution. 

Generic Weekday Influence 

We want to adjust the magnitude of the probabilities for a generic weekday, 

                , to allow for more or less variation on weekdays. To do this, we 

introduce a regularization factor,    , to potentially reduce the generic weekday 

probabilities. In terms of the growing      equation, we add rows to   and   that 

look like the following: 
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This has the effect driving all the elements of                  to zero. This effect is 

moderated by    . We used           , and we describe subsequently how we 

chose this value. 

 
 

Table 4: This table gives the probability of someone being away from their home 

as a function of the time of day and day of week. In this case, there is a high 

probability of being away during most normal working hours on Monday – 

Thursday. Also, this person appears to be often away from home on Friday nights 

until the first 30 minutes of Saturday. The generic weekday in the last column 

shows a bulge during normal work hours as expected. 



 

 

Smoothing 

We also allow for a degree of temporal smoothing of the away probabilities to 

account for vagaries in the limited observation time. Smoothing is also critical for 

filling in missing data, because sometimes we have no GPS data for certain nighttime 

time slots. For an away probability    from      , we smooth with the probabilities 

of the previous and next time slots, i.e. we want 
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where         controls the amount of smoothing and     ,   , and      are three, 

temporally adjacent away probabilities . This smoothing constraint is moderated by a 

smoothing regularization factor   . For smoothing, we add rows to   and   that look 

like the following: 
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Smaller values of    tend to reduce the effect of smoothing on the final 

probabilities. Likewise, a smaller value of   means less smoothing between 

temporally adjacent probabilities. 

Solving      and Choosing Parameters 

The equation      is built from three parts: away frequencies from GPS data, 

moderating the effect of the generic weekday with    , and smoothing with   and   . 

The equation is over-constrained, so we solve with least squares. We also require the 

resulting probabilities to be between zero and one, so we use a constrained solver. 

To choose the parameters    ,  , and   , we used two-way cross validation on 

eight weeks of GPS data taken from a participant outside our study. We made a rough 

sweep through possible values of the parameters. For each set of parameter values, we 

compared the computed probabilities from half the GPS data to the ground truth 

computed from the other half of the GPS data. The best values of the parameters were 

 

            

       

        



 

 

We used these parameters to compute away probabilities for each participant. An 

example result for one of our participants is shown in Table 4. 

Evaluation of Probabilistic Schedule 

The computed away probabilities introduce a convenient parameter into prediction for 

presence. For presenting estimates to other people, such as the probability of a person 

being in their office, a system could simply present the computed presence probability 

and let the other person decide what action to take. For automatic behaviors, such as 

controlling a home’s temperature, we can set a threshold on the away probability to 

decide when to trigger an action. The probability can be combined with perceived 

costs of incorrect predictions, giving a decision-theoretic result. For instance, a low 

threshold on       translates into a high threshold on      , and it means that the 

system would have to be more confident of an impending arrival in order to take any 

action. As an example, for home heating, this threshold translates into a user-

adjustable tradeoff between comfort and energy savings. If comfort is more important, 

the user would set the threshold such that the home would be heated even if there was 

only a relatively small chance of arriving at home at the cost of sometimes heating an 

empty house. To save more energy, the user would adjust the threshold to reduce the 

chance of heating the home unnecessarily at the cost of sometimes arriving home to a 

cold house. With a probabilistic schedule like the one we produce, this tradeoff 

becomes possible. It is similar in spirit to the tradeoff introduced in [7] in which users 

set the “miss time” to control for how long the home’s temperature is miscontrolled. 

The drive time algorithm and the self-reported schedule have no such adjustment 

available. 

 
Figure 3: This is an ROC curve for predicting “away” for one of our participants 

using a probabilistic home/away schedule. In this person’s case, adding the drive 

time algorithm made a noticeable improvement in performance. The diagonal line 

intersects the ROC curves at the equal error rate. 



 

 

We evaluated our probabilistic schedules with 5-fold cross validation. For each 

participant, we split their GPS data into five equal-length parts in temporal order. For 

each of the five validation runs, we tested on one part and trained on the other four 

parts, picking a new test part for each run. 

The probabilistic schedule predictor does not use a specific look-ahead time for 

prediction. Since it assumes that the probabilistic schedule is forever unvarying, it can 

be used to predict ahead any amount of time. This is manifest in our results, because 

we show no look-ahead time for this algorithm, unlike the drive time algorithm which 

considers a specific amount of time for its predictions. 

In evaluating the accuracy of the probabilistic schedule, we account for the 

adjustable probability threshold by creating an ROC curve that demonstrates the 

performance tradeoff at different settings of the probability threshold. An example of 

an ROC curve for one of our participants is shown in Figure 3. This shows the 

performance of predicting if the person will be away from home at different settings 

of the threshold on      . At high settings, the system must be very confident of an 

upcoming departure before it will predict an away state. This corresponds to the lower 

left part of the plot where the chance of a false positive is low, but where the high 

threshold also reduces the chance of a true positive. At the other end of the plot, the 

threshold is low, where the chances of a false positive and true positive are both high. 

Ideally there would be a threshold that gives 100% true positives and no false 

positives, which is the upper left corner of the plot. 

One advantage of our algorithm is that it allows this adjustment, which gives 

higher level algorithms the flexibility to trade off one type of error for another. 

To reduce the ROC curve to a confusion matrix for comparison with the other 

algorithms, we look at the equal error rate, which in Figure 3 is where the diagonal 

line intersects the ROC curve. Using the equal error rate point, the confusion matrix 

associated with home/away prediction using probabilistic schedules from all our 

participants is shown in Table 5. Figure 4 shows how this algorithm’s confusion 

matrix numbers compare with the others. The probabilistic schedule algorithm gives a 

much better balance for predicting home and away compared to participant’s self-

 
Figure 4: This plot shows the performance of all the algorithms we tested. For 

each algorithm, it shows the correct rates (e.g. “inferred away when away”) in the 

left-most two groups. Here a higher bar is better. The error rates (e.g. “inferred 

away when home”) are in the right-most two groups where a lower bar is better. 

The error bars show +/- one standard deviation over our 34 test participants. 



 

 

reported schedules and 

the drive time 

algorithm, both of 

which significantly 

overestimate 

predictions that the 

participants will be 

home. 

Figure 5 shows how 

the probabilistic 

schedule algorithm 

compares to the 

previous algorithms in 

terms of accuracy, 

where accuracy is in 

our case simply the 

mean of the diagonal 

elements of the 

confusion matrix. The 

probabilistic schedule 

algorithm is 

significantly more 

accurate than the 

previous algorithms, 

although the accuracy 

figure hides the fact 

that the previous 

algorithms 

(participants’ self-

reported schedule and 

drive time) get most of 

their accuracy from 

over-predicting when 

the participant will be 

home. Note that the 

minimum accuracy in 

the plot in Figure 5 is 

½, since this is trivially achievable by guessing “home” or “away” 100% of the time. 

5   Combining Probabilistic Schedule and Drive Time Algorithms 

 

Figure 5: This chart shows the accuracy of each 

algorithm, which in our case is the average of the true 

positive rates in the confusion matrices. The error bars 

show +/- one standard deviation across our 34 

participants. The minimum accuracy is ½, because that 

is achievable by simply guessing “home” or “away” 

100% of the time. The maximum possible accuracy is 

1.0. 



 

 

There is an easy way to combine the drive time algorithm with the probabilistic 

schedule algorithm. The strength of the drive time algorithm is that it will never 

predict that a person can arrive at home in less time than it would take to drive home. 

Unless the person is traveling home faster than normal vehicular traffic, this heuristic 

will almost always be correct. Thus, we modified our probabilistic schedule algorithm 

to always predict “away” if the participant was outside the relevant drive time zone, 

regardless of the probability in the schedule. If the participant was within the drive 

time zone, we resorted to the probabilistic schedule instead. This combination of the 

algorithms takes the best part of the drive time algorithm and ignores its rule to 

predict “home” whenever a participant is within the drive time zone. We found that 

this addition improved the probabilistic schedule algorithm slightly but noticeably. 

The confusion matrices are shown in Table 6, and Figure 4 & Figure 5show how this 

algorithm compares to the others. Figure 3 shows the improvement in the ROC curve 

for one of our 

participants. In all 

cases, there is a slight 

improvement. 

6   Discussion and 

Summary 

With the goal of 

predicting a home’s 

occupancy for energy 

efficiency, this paper shows that a probabilistic home/away schedule derived from 

GPS data works much better than peoples’ self-reported schedules and much better 

than making predictions based purely on the time it would take to drive home. Our 

study was based on approximately two months GPS data from each of 34 participants. 

We introduced a matrix-based method to compute probabilistic schedules that 

allows for the application of a soft schedule template on the data. In our case, we used 

a template that emphasizes a similar schedule on weekdays. Our method also 

smoothes the data. 

We also showed how to increase the performance of our probabilistic schedule 

algorithm by adding the best part of the drive time algorithm. 

Our probabilistic schedule proved much more accurate than our participants’ own 

impression of their weekly home/away schedules. One possible objection to this result 

is that our participants filled out a schedule with time discretized to 1-hour pieces, 

while our probabilistic schedule worked with 30-minute pieces, allowing more 

accuracy in transition times. However, we found our participants were so poor at 

predicting home/away, that higher resolution discretization would not help much. For 

instance, as shown in Table 2, for 68% of the time when participants predicted they 

would be home, they were actually away. With only a few home arrivals and 

departures per day, adjusting these times by 30 minutes would not be enough to 

eliminate an error this large. 

 
 

Inferred 

  
home away 

Actual 
from GPS 

home 64% 36% 

away 35% 65% 
 

Table 5: Probabilistic Schedule. The confusion matrix 

shows the performance of prediction for the 

probabilistic schedule we derived from participants’ 

GPS data. 



 

 

In practice, these 

probabilistic schedules 

could be kept up-to-date 

by processing only the 

most recent location 

traces of an individual, 

thus staying more 

current as weekly 

schedules inevitably 

change. It would be 

interesting to investigate 

more sophisticated 

methods for maintaining 

a probabilistic schedule, 

perhaps by assembling 

chunks of previous 

schedules. Recent work 

has shown that only 

about 38% of a family’s 

travel activities are 

routine, implying that 

there is an opportunity 

for improved 

predictions beyond a 

derived schedule like 

ours [10]. Another 

promising research 

question is whether or not a system like ours could use a coarser, more energy 

efficient location system like WiFi or cell tower positioning instead of GPS. 
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