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ABSTRACT 

 

In this paper, we propose a minimum generation error (MGE) 

training method to refine the audio-visual HMM to improve visual 

speech trajectory synthesis. Compared with the traditional 

maximum likelihood (ML) estimation, the proposed MGE training 

explicitly optimizes the quality of generated visual speech 

trajectory, where the audio-visual HMM modeling is jointly 

refined by using a heuristic method to find the optimal state 

alignment and a probabilistic descent algorithm to optimize the 

model parameters under the MGE criterion. In objective 

evaluation, compared with the ML-based method, the proposed 

MGE-based method achieves consistent improvement in the mean 

square error reduction, correlation increase, and recovery of global 

variance. It also improves the naturalness and audio-visual 

consistency perceptually in the subjective test. 

 

Index Terms— visual speech synthesis, photo-real, talking 

head, trajectory-guided, minimum generation error 

 

1. INTRODUCTION 

 

Talking heads are useful in applications of human-machine 

interaction, e.g. reading emails, news or eBooks, acting as an 

intelligent voice agent or a computer assisted language teacher, etc. 

A lively, lip sync talking head can attract the attention of a user, 

make the human/machine interface more engaging or add 

entertainment ingredients to an application. Our motivation is to 

build a photo-real talking head where the facial animation is video 

realistic: that is, we desire our talking head to look as much as 

possible as if it were a video camera recording of a human subject, 

and not that of a cartoon-like character. In this work, we choose to 

focus our efforts on the issues related to the synthesis of the visual 

speech stream (including lips, teeth, and tongue), which is the most 

eye-catching region on a talking face. 

To synthesize visual speech animations from audio-video 

parallel data, various approaches have been proposed before, like: 

key-frame based interpolation [1], unit selection synthesis [2], 

HMM-based synthesis [3,4], and the recently proposed hybrid 

approach using the HMM predicted trajectory to guide the unit 

selection. In [11], we proposed the trajectory-guided real sample 

concatenating method for generating lip-synced articulator 

movements for a photo-real talking head. In particular, in training 

stage, an audio/visual database is recorded and used to train a 

statistical Hidden Markov Model (HMM). In synthesis, the trained 

HMM is used to generate visual parameter trajectory in maximum 

likelihood sense first. Guided by the HMM predicted trajectory, a 

succinct and smooth lips sample sequence is searched from the 

image sample library optimally and the lips sequence is then 

stitched back to a background head video.  

For both HMM-based parametric and HMM-guided hybrid 

approaches, the statistically trained HMM is crucial since the 

HMM predicted visual trajectories to a large extent determine how 

good the visual lips can be rendered. In our previous work [11], we 

use the maximum likelihood (ML) based estimation for the audio-

visual joint HMM training. One noticeable observation is the 

constrained mouth movement in a much smaller dynamic range 

compared with the recorded one, which is mainly due to the over-

smoothed visual trajectory generated from the ML-trained HMM. 

Since the ML-based training does not explicitly optimize the 

quality of generated trajectory, an audio-visual HMM with 

maximum likelihood on the training data does not necessarily 

result in generated visual trajectories that have minimized error in 

human perception. 

In order to address the above issue, we propose to use the 

minimum generated visual trajectory error approach to improve 

visual speech synthesis. Inspired by minimum generation error 

(MGE) training in HMM-based speech synthesis [9,10], we 

propose further refining the model parameters by minimizing the 

mean square errors between the generated visual trajectories and 

the real ones using a probabilistic descent (PD) algorithm. 

We incorporated the MGE training into our HMM trajectory-

guided photo-real talking head rendering system. Evaluated on the 

LIPS 2009 Visual Speech Synthesis Challenge task [8], the MGE 

approach results in improved visual speech synthesis in both 

objective metric and subjective perception. 

The rest of the paper is organized as follows. Section 2 gives 

an overview of the ML-based synthesis framework. Section 3 

proposes the MGE-based model refinement for visual speech 

trajectory synthesis. Section 4 discusses the experimental results, 

and section 5 draws the conclusions.  

 

2. ML-BASED VISUAL SPEECH TRAJECTORY 

SYNTHESIS 

 

The HMM-based speech synthesis has made a steady but 

significant progress in the last decade [5]. The approach was also 

been tried for visual speech synthesis [3,4]. In HMM-based visual 

speech synthesis, audio and video are jointly modeled in HMMs 

and the visual parameters are generated from HMMs by using the 

dynamic (“delta”) constraints of the features [3].  We propose 

using the same method in ML-based framework. 

We use acoustic vectors       
     

      
    and visual 

vectors       
     

      
    which is formed by augmenting the 

static features and their dynamic counterparts to represent the 

audio and video data. Audio-visual HMMs,  , are trained by 



maximizing the joint probability          over the stereo data of 

acoustic and visual feature training vectors. In order to capture the 

contextual effects, context dependent HMMs are trained and tree-

based clustering is applied to acoustic and visual feature streams 

separately to improve the corresponding model robustness. For 

each AV HMM state, a single Gaussian mixture model (GMM) is 

used to characterize the state output. The state   has a mean 

vectors   
   

 and   
   

  In this paper, we use the diagonal covariance 

matrices for   
    

and   
    

, null covariance matrices for 

  
    

and  
    

, by assuming the independence between audio and 

visual streams and between different components.  

Given a continuous audio-visual HMM  , and acoustic feature 

vectors      
    

      
   , we use the following algorithm to 

determine the best visual parameter vector sequence   
   

    
      

    by maximizing the following likelihood function. 

                                                                       

is maximized with respect to  , where                is the 

state sequence.  
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The complexity of solving Eq. (1) can be significantly 

reduced by the following two reasonable approximations. 

First, the summation over all state and mixture components in 

Eq. (1) can be approximated with a single state sequence, 

          ( ̂|   )   ( |   ̂  )                       

where  ̂ is the optimal aligned state sequence by maximizing the 

likelihood function  ̂                 . With Eq. (5), the 

optimal visual trajectory  ̂          (  |   ̂  ) can then be 

solved in a closed least square solution [5] by setting 
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where   is a transformation matrix and 
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Second, in calculating Eq. (3) and Eq. (4), we may further 

simplify the problem by assuming    

    
  . 

Given a state mixture component  , the full covariance matrix 

in the joint space of V and A can be partitioned into   
    

,   
    

, 

  
    

 and   
    

. In many cases where training data is not 

abundant, it is not easy to obtain robust estimation of all the 

elements in these matrices. When the two signals are in the same 

feature space, the full covariance matrices are usually 

approximated with diagonal matrices. In audio-visual modeling, 

however, A and V are in different spaces with no strong correlation 

between the corresponding dimensions. Therefore, we only 

estimate   
    

 and   
    

, yielding the simplified Eq. (9) and Eq. 

(10). 
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Fig.1: MGE-based visual speech synthesis system. 

 

3. REFINING AV HMM MODELING WITH MGE 

 

The ML-based approach is effective and outperforms previous 

methods. However, maximum likelihood training does not 

optimize directly towards visual generation error. In particular, an 

audio-visual HMM with maximum likelihood for the training data 

does not lead to generated visual trajectories with minimized error. 

Similar problems exist for ML-based speech synthesis. To 

compensate this deficiency, a minimum generation error (MGE) 

[9] criterion had been proposed for HMM training. In particular, an 

appropriate generation error is defined, which is minimized by 

using a probabilistic descent (PD) algorithm to update the 

parameters of the HMMs. 

We propose the Minimum Generated Trajectory Error (MGE) 

method to further refine the audio-visual joint modeling by 

minimizing the error between the generation result and the real 

target trajectories in the training set. 

 

3.1. System framework with MGE 

The proposed visual speech synthesis system with MGE is 

illustrated in Fig. 1. With the approximation using the optimal 

aligned state sequence adopted in Eq. (5), the visual generation 

problem becomes the following two steps. First, given the 

sequence of audio features, the optimal aligned state sequence  ̂ is 

determined by forced alignment with acoustic HMMs. Second, 

given the optimal aligned state sequence, the visual trajectories are 

estimated in a maximum probability sense using the visual HMMs. 

Under MGE criterion, AV HMMs are jointly refined to minimize 

the visual stream generation error.  In particular, acoustic HMM 

parameters are updated towards generating MGE preferred state 

alignment. Meanwhile, visual HMM parameters are refined 

explicitly towards minimizing generation error by using a PD 

algorithm. The two refinement steps are conducted iteratively until 

the generation error reduction converges on training data.  

 

3.2. State alignment under MGE criterion 

Under the MGE criterion, the optimal state sequence determined 

by audio feature input should be in the sense of minimizing visual 

generation error, which is: 

 ̂                     
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However, the parameter generation process depends on the 

whole state sequence, which makes it intractable to search for the 

optimal state sequence directly. Therefore, we adopt the same 

heuristic method in [10] to search for the optimal state sequence 

under MGE criterion and then re-estimate the acoustic model. The 

new state alignment with the refined acoustic model gets closer to 

the MGE preferred state boundary and yields reduced generation 

error.  The process is as follows: 

1) Initialize the state alignment for the input utterance by 

forced aligning the audio feature with the acoustic HMM 

using Viterbi search algorithm; 

2) For each state boundary in the state alignment, try to 

perturb it to the left (or right), and calculate the visual 

trajectory generation errors before and after shifting the 

state boundary; 

3) If the generation errors decrease, keep the new state 

boundary and go back to step 2); otherwise go to step 4); 

4) Update the acoustic HMM parameters with the new state 

alignment; 

          

3.3. Refined visual modeling 

We define the visual generation error as the Euclidean distance 

between PCA vectors of the synthesis result and the real visual 

trajectory in training set,  

     ̂  ∑‖    ̂ ‖

 

   

                                 

Therefore, we can improve the generation performance by 

minimizing the empirical generation error, measured using a cost 

function      similar to MGE in speech synthesis [9]. 
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where N is the number of training utterances.  

Once the optimal aligned state sequence  ̂ is determined, the 

visual HMM parameters can be refined by using the PD algorithm. 

Given the     training utterance, the updating rule for the 

parameters of the visual state sequence is: 
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where    is a learning rate that decrease when the utterance index 

  increases.  
 

  
  (    ̂ ( ̂  ))     ̂ ( ̂  )      

 

  
 ̂ ( ̂  )           

In particular, with Eq. (10), the updating rule for the mean 

vector is 
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where                            .  

Similarly, we denote            
  and        

 , the 

updating rule for the covariance parameter is 
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4. EXPERIMENTAL RESULTS 

 

4.1. Experimental setup 

We employ the LIPS 2008/2009 Visual Speech Synthesis 

Challenge data [8] to evaluate the proposed MGE-based method. 

This dataset has 278 video files with corresponding audio track, 

each being one English sentence spoken by a single native speaker 

with neutral emotion. The video frame rate is 50 frames per sec. 

For each image, Principle Component Analysis (PCA) projection is 

performed on automatically detected and aligned mouth image, 

resulting in a 60-dimensional visual parameter vector. Mel-

Frequency Cepstral Coefficient (MFCC) vectors are extracted with 

a 20ms time window shifted every 5ms. The visual parameter 

vectors are interpolated up to the same frame rate as the MFCCs. 

The A-V feature vectors are used to train the ML-based HMM 

models using HTS 2.1[5]. 

 

4.3. Objective evaluation results 

In objective evaluation, we measured the performance 

quantitatively of the ML-based synthesis method (baseline) and the 

proposed MGE-based method using mean square error (MSE), 

correlation coefficient, and global variance as defined in Eq. (18)-

(20).  In open test, leave-20-out cross validation is adopted to avoid 

data insufficiency problem.  
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Fig.2 shows the MSE results of the ML-based baseline system 

and the new MGE-based method. The left two bars represent the 

total MSE of all the PCA components, the rest bars show the MSE 

of the first four PCA components respectively.  We can see that the 

proposed MGE-based method improves the synthesis results, 

especially for the first few dimensions of the PCA vector. We 

observe similar result in ACC as shown in Fig.3. The MGE-based 

method improves the overall correlation comparing with the 

baseline, especially for the first three dimensions of the visual PCA 

vector. Fig.4 shows the global variance of the real trajectories, the 

ML-based synthesized trajectories, and the MGE-based 

synthesized ones. Comparing with the results of real visual 

trajectory, the GV is dramatically reduced in ML-based training 

due to the statistical averaging. The MGE-based method can 

recover the GV and make it closer the natural one. In Fig.5, we 

illustrate the synthesized trajectory by the MGE method and by the 

ML-based method, respectively. The proposed MGE method is 

shown to result in trajectories more similar to the ground truth 

which a human speaker produces.  

 

4.4. Subjective evaluation results 

A subjective MOS “scoring” test is also carried out to compare the 

ML-based baseline, the proposed MGE-based approach and the 

original recording. We select twelve sentences from the LIPS 2009 

test set, where each is constructed by a sequence of words but in a 

semantically meaningless order. These sentences are converted 

into video clips of the lower part of the face using each method. 

The original recordings cropped to the same area and the synthesis 

results are randomly assigned into six subjective test sessions, such 

that each session has two sentences from each method or the 

original recording. Each video clip also includes the ground truth 

input speech audio. The subjects are asked to score the perceived 

“audio-visual consistency” on a 1-5 basis for each sentence in each 

session. Each session is evaluated by three different subjects. 

Fig. 6 shows the averaged subjective scores for “audio-visual 

consistency”. The MGE-based method improves the perceptual 



naturalness of the mouth movement. In particular, it increases the 

mouth dynamic range and makes the photo-real talking head 

speaks like a real human. More rendered full face videos can be 

found on http://dict.bing.com.cn/, where a talking head English 

teacher is built to read the text sample sentences on the website. 

 

 
Fig. 2: Mean square error (MSE) of the synthesized PCA vectors. 

 
Fig. 3: Averaged correlation coefficient (ACC) of the synthesized 

PCA vectors. 

 
Fig. 4: Global variance of each PCA components. 

  

 
Fig. 5: Synthesized trajectories of the 1st, 2nd PCA components.  

 
Fig. 6: Subjective scores for “audio-visual consistency” (with 

standard errors) 

 

5. CONCLUSIONS 

 

We propose the minimum generation error training method to 

refine the audio-visual HMM for improved visual speech trajectory 

synthesis. Under the MGE criterion, the joint audio-visual HMM 

modeling is refined with a heuristic method for finding the optimal 

state alignment and the generalized probabilistic descent algorithm. 

In objective evaluation, comparing with the ML-based method, we 

get consistent improvement in the mean square error reduction and 

increase of correlation, and recovery of global variance. 

Perceptually it increases the mouth dynamic range and makes the 

photo-real talking head speaks like a real human. 
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