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ABSTRACT

In this paper, we propose a framework for practical large-scale face
alignment, based on the recent development of Robust Alignment by
Sparse and Low-rank Decomposition for linearly correlated images
(RASL). Unfortunately, the original implementation is not applica-
ble in large image dataset. We extend this technique to deal with the
situation with millions of images, with the aid of [ -regularized least
squares. Our proposal is applied onto the photo-real talking head, a
challenging application which requires highly precise alignments of
faces from video sequences. We verify the efficacy of our algorithm
with experiments using real talking head data. Our method attains
comparable quality to RASL in the experiments.

Index Terms— face alignment, photo-real, talking head, [;-
regularized least squares

1. INTRODUCTION

Photo-real talking heads have a wide variety of applications in
human-computer interaction (HCI), from entertaining purposes in
video games to educational software assisting language learning.
A vividly lip-sync talking head provides a user-friendly interface,
capable of engaging users in HCIL. Such an animated talking head
can be implemented by selecting an optimal sequence of lips images
from a video training dataset, then stitching them back to a back-
ground head video. This topic has already been studied for a decade,
and many successful models have been proposed and implemented
(1L 120 13].

In this paper, we focus on the alignment of faces in the video
training set which is crucial in synthesizing natural lips and head
movements. Consider the situation where the human subject being
recorded keeps nodding his/her head while speaking, so the head
pose varies among the raw image frames. Without additional treat-
ment, the synthesized lip motion would probably be peculiar due to
significant misalignment. Thus, face alignment is the first step in
generating a talking head.

One way for the purpose is to use 3D model-based head pose
tracking [4} I5]. The method estimates a pose transformation by
matching a 3D mesh model to the 2D image. Although it enables
fast large scale alignment, this method does not satisfy our require-
ment in precision.

Recently, Robust Alignment by Sparse and Low-rank Decompo-
sition for linearly correlated images (RASL) is proposed [6], which
allows a robust and highly accurate batch alignment of faces in im-
ages, despite occlusions, corruptions, and even illumination varia-
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tions. This method formulates the batch alignment problem as the
solution of convex programs, with the aid of latest advances in rank
minimization. It is applicable in our video dataset for synthesis of
talking head. Unfortunately, it has limitation on scalability. The
memory constraint and computational cost restrain its application on
very large dataset. For example in our talking head, several thousand
images have to be aligned. This motivates us to extend the results of
RASL so that it can be employed in large scale situations.

Instead of aligning the images in batch, we propose the one-
by-one approach; we align the images individually using some well
aligned images. In other words, if we are given n RASL-aligned
images, our approach would try to align the (n + 1)th image using
the information provided. One of the advantages is that it relaxes
the constraint of memory; at each time, we only have to store the n
RASL-aligned images and the (n + 1)th image, while for RASL, all
the images have to be taken into the memory for the batch alignment.

This paper is organized as follows. Section 2 gives an overview
of RASL. Section 3 introduces our one-by-one alignment approach.
Section 4 gives the evaluations of our proposed method using several
experiments. Finally, Section 5 concludes with a discussion of future
work.

2. OVERVIEW OF RASL

Robust Alignment by Sparse and Low-rank Decomposition for Lin-
early Correlated Images (RASL) [6] is a scalable optimization tech-
nique for batch linearly correlated images alignment. One of its ap-
plications is to robustly align a dataset of human faces based on the
knowledge that if the faces are well-aligned, they should show good
low-rank structure up to some sparse corruptions. So the idea is to
search for a set of transformation 7 such that the rank of the trans-
formed images becomes as small as possible and at the same time the
sparse errors are compensated. The transformation we apply here is
2D affine transform, where we implicitly assume the face of a per-
son is approximately on a plane in 3D space. The problem can be
formulated as follows.

Given I, - -- , I, € R¥*" as the original misaligned grayscale
images of a person’s face. Define vec : R¥*" — R™ as the operator
that selects an m-pixel region of interest (e.g. the face part with main
features such as eyes, nose and mouths) from an image and stacks
to be a vector. Denote 7 = {71,..., 7.} as the set of transforma-
tion, and D o 7 as shorthand for [vec(I1 o 71)] ... |vec(In o )] €
R™*™, where I o T represents image I after transformed by 7. The
problem is formulated as the minimization in Lagrangian form:

F]%n rank(A)+~||E|l, st. Dot =A+FE (1)



Here, the ||-||, represents the number of nonzero entries in the error
matrix E, and v > 0 controls the weighting between the rank of
solution and the sparsity of the error.

The optimization in (I)) is not directly tractable: both rank and
lp-norm are nonconvex and discontinuous and the equality constraint
Dot = A+ Fis nonlinear. [6] introduces two techniques, called
the convex relaxation and the iterative linearization.

The convex relaxation involves the replacement of rank(-)
and ||-||, with the sum of the singular values || A||, =>"7" | 0:i(A),
namely the nuclear norm, and the li-norm ||E||, =", |Eij|
respectively. The problem (1)) becomes:

Xﬂén A, + X||E|, st. Dor=A+E (2)

For the nonlinear constraint D o 7 = A + FE, we can approximate
it by linearizing about the current estimate of 7° for small change of
7. Then () can be written as:

. 0 T
Jmin Al 4Bl st Dor +> LA = A+ E (3)

i=1

where Jiia%vec(li 0 ()|¢=r,; is the Jacobian of the i-th image with
respect to the transformation parameters 7;, 7 = [71|- - |7] and €;
denotes the standard basis for R™.

Although RASL can give a very accurate alignment for faces
as illustrated in [6], it is not applicable when n is very large, say,
n &~ 10°. In many applications, such as the talking head, we have to
deal with thousands or even millions images. Therefore, we extend
the method of RASL to align N face images, where N >> n.

3. ONE-BY-ONE ALIGNMENT APPROACH

We propose an extension to RASL, from n to N >> n, by refor-
mulating the problem with one-by-one alignment approach. First,
we select n frames to align with RASL, just like that described in
Section 2} producing a low rank dictionary A*. Next, the (n + 1)th
image, is aligned with A™ which contains the information for the
previously aligned n images. Finally, we repeat this step to all the
images in the dataset, regardless of the size of the dataset.

3.1. Align n images with RASL

In this step, the procedure is basically the same as described in Sec-
tion 2} Applying RASL on the n images chosen from the dataset
would give us the optimal solutions 7%, A*, E*. We form A €
R *7anR(A™) whose columns consist of rank(A*) (out of n) in-
dependent columns of A*. It acts as a dictionary for the aligned im-
ages, which will be used in the next step. RASL extracts and stores
all the important features of the aligned faces in A*. Therefore, we
can use this set of occlusion-free images to be the basis. We would
like our dictionary to cover as many features and variations as pos-
sible. Empirical results show that uniformly random selection rather
than consecutive sampling can ensure the convergence of 7,1 with
fewer selected images. It is reasonable since consecutive frames usu-
ally have similar features (e.g. the variations in illumination), which
do not provide sufficient variations to form the basis.

In choosing the n input images, there is a tradeoff between qual-
ity of dictionary and computational cost. Selecting more images
(larger n) would probably lead to a better dictionary, however at
the same time increases the speed of computation, mainly due to
increase in size of dictionary.

3.2. From n to n+1

Here we are going to align an additional image with those n images
already aligned by RASL. Let I,,+1 be a new image. We formulate
the problem to the following [l;-regularized Least Squares ([1-LS)
problem:

~ 2
Ly s = Aal| + e, 4

o1 ‘
min —
T, Trn41
Here A is the dictionary we defined in Section The goal of this
optimization is to search for optimal 7,1 such that Az forms the
best~ approximation of I,,+1 07,41 with the least number of columns
of A. z is a vector with dimension rank(A*) which represents the
coefficients of the linear combination by columns of Az. w1 is the
weight that trades off the least square error and the sparsity of x.

However, the above optimization [d] is non-linear which is hard
to solve. Similar to that in RASL, we manage to linearize the op-
timization with iterative linearization. We write I,+1 © Thy1 =
Iny1 0 (’7'2+1 + ATpq1) = Int1 0 T,2+1 + JATp41, where J is
the Jacobian matrix with respect to the affine transform 7,,41. Thus,
the minimization (@) becomes

~ 2
Ly 04y + JATws = Aa| +plall,  ©)

min =
@, ATpq1 2

which can easily be rewritten into the usual form of /;-LS:

min 3 (1241 = By[[3 + iyl ©)
where 19,y = Inpiots, B=[ A —J L,y=[x Arars |",
and C = [ I 0 } .

Since the linearization only holds locally, in order to find the
minimal solution of {#)), we have to repeat (3) about our current esti-
mation of ’7‘,,?+1 for many times until it converges.

This step can be divided into two parts: outer loop and inner
loop. The outer loop is the process of iterative linearization (shown
in Algorithm 1. Inside the outer loop, there is an inner loop for the [; -
LS with split Bregman method which is a fast and efficient algorithm
[7]. As we will see in SectionE], if the initial misalignment is not too
large, this iteration recovers the correct transformations 7,41 in an
efficient manner.

Empirically, we find that [,-LS is more stable than the conven-
tional least squares (LS). LS has similar performance in the case
when only Gaussian noise exists in the image I,,+1. However, even
a small amount of non-Gaussian noise would generate many extra lo-
cal minima in the objective function, leading to an incorrect optimal
solution. The additional /;-regularized term can act as a smoother,
which eliminates the unwanted local minima by penalizing the num-
ber of atoms used in the dictionary A to form the approximation.

3.3. FromntoN

We apply the same step as in Section to all the remaining im-
ages. The A is kept unchanged. Therefore, the memory usage is
independent of the number of images N in the dataset. Empirically,
we obtain comparable results to RASL in a reasonable time for thou-
sands of images (as shown in[&.T).

4. EXPERIMENTS

In this section, we demonstrate the capability and efficacy of our ap-
proach on large image datasets with two experiments. First, we com-
pare our approach with the 3D pose tracking method [4] and RASL



Algorithm 1 (Outer loop)

INPUT: Image 1,11 € R“*" RASL solution A*, initial trans-
formation ’7'2+1 in affine group, weight p
WHILE not converged DO

Step 1: compute Jacobian matrices w.r.t. transformation:

g0 (M)’
¢ [[nt1o0 C”Q (=Tn41

Step 2: warp and normalize the images:

vec(Int1 © Tnyt)
lvec(In+1 0 7'7L+1)H2

In+1 O Tp+l <

Step 3 (inner loop): solve the linearized /,-LS:
(CL'* 5 AT;+1 ) —

.1 < 12
arg min 5 ‘ Iny10mng1 + JATh41 — Ail?HQ + p |zl

T, ATy 41

Step 4: update transformation:
Tn+1l $— Tn+1 + AT;+1

END WHILE
OUTPUT: solution 7,41 of optimization (E:[)

[6] quantitatively. We then test our algorithm on a more challenging
video clip in which the person performs significant head movements.
We present our result by demonstrating mouth replacement, a crucial
step in synthesizing mouth gestures for corresponding speech.

All the following experiments are carried out in Matlab. We
choose 2D affine transform to be our transformation 7 which can
be characterized by 6 parameters. The stopping criterion of outer
loop is when [|A7,41]|, < 107°. For the inner loop in step 3 of
Algorithm 1, the Split Bregman algorithm is applied for solving /; -
LS. The weight  in (4) is set to be 1073,

4.1. Quantitative evaluations with talking head dataset

We verify the accuracy of our algorithm using a dataset with N =
9116 images which is practically being used in synthesizing a talking
head. The images are collected from 35 video sequences of the same
person. The original dimension of each images is 720 x 576. The
size of the face in canonical frame is 200 x 200. To ensure fast
convergence of our algorithm, we apply it on the faces after 3D pose
tracking. Thus it acts as an enhancement of 3D pose tracking.

In this experiment, we choose the n = 100 samples uniformly
in random over the whole dataset to perform RASL in the first step.
The transformation 7,1 converges within 140 iterations for all 9116
images (on average 13.5 iterations per image), while if we choose the
first 100 consecutive frames as the samples, 7,,+1 cannot converge
within 300 iterations for some images.

In the following, we compare our quality of alignment with the
result of 3D pose tracking as well as RASL.

4.1.1. Our approach vs. 3D pose tracking

The comparisons include using the eye corner positions and the ac-
cumulated variances of the mouths as the evaluation quantities.

(i) Eye corners

Here we compare the eye corner positions of the alignments
by the two approaches. To have a fair comparison, we only
count the faces with eyes open, since the eye corners displace
considerably when the eyes are closed. However, this does not
mean that our algorithm is inapplicable to eye-closed case. We
pick out 6633 images with eye-open and detect their eye corner
positions. Table [T] gives the statistics of errors in eye corners,
calculated as the distances from the estimated eye corners to
their center. Our approach produces alignments with one pixel
accuracy, with standard deviations of half a pixel, which im-
proves on the 3D pose tracking.

(i) Accumulated variances of mouths

Here we compare the two methods using PCA of the mouths.
For better alignments, the first few principal components of
mouths should be in larger portions as they capture more mean-
ingful features rather than those caused by misalignment. Fig.
[T shows the first 20 principal components have a larger accu-
mulated variance proportion and a smaller total variance after
our alignment (about 20% less), which verifies our enhance-
ment over 3D pose tracking.

4.1.2. Our approach vs. RASL

We compare the eye corners positions, memory and speed of our
method with RASL.

(i) Eye corners
We choose 250 images with eye-open faces for the test. Table
[2)gives the statistics of errors in eye corners, which reveals that
our extension has comparable performance to RASL.

(ii)) Memory and speed

Our experiments are carried out on a 2.33GHz Intel Core 2
Duo machine with 2 GB RAM and 32-bit Operating Systemﬂ
The problem of limited memory always exists due to physical
constraints. RASL requires to store all /N images in memory
during alignment. It may be practical for hundreds of images,
but not for thousands or millions of images. In comparison,
our algorithm only have to store n + 1 frames in memory at
a time, and n can be flexible depending on the dataset and the
maximum memory size.

The speed of RASL depends much on the number of outer loop
iterations as the inner loop algorithm for sparse and low rank
decomposition is extremely slow (becasue of Singular Value
Decomposition). For images with large misalignments, the
time required would increase significantly as more outer loop
iterations are needed. In contrast, we employ fast split Breg-
man algorithm in the inner loop of our algorithm. Its speed is
much faster than sparse and low rank decomposition. Assume
we are given a dictionary with all necessary features captured
within, then the number of outer iterations are similar for each
images, thus the overall computational time is linearly propor-
tional to the number of images NN in the dataset. In experiment
[E.T] it spends an average of 4 seconds for each frame.

4.2. Mouth replacement

We test our method with an interview video obtained from the inter-
neﬂ Totally there are 921 frames. 100 random images were selected

IThis is a standard specification of personal computer nowadays.
2The video is obtained from http://www.beet.tv/2008/09/
microsofts—-crai.htmll
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Lefteye | Righteye | Average
Mean error (a) 1.80 1.53 1.67
(b) 0.97 1.08 1.03
Standard error | (a) 1.09 0.86 0.98
(b) 0.58 0.56 0.57
Maximum error | (a) 8.76 7.93 8.35
(b) 4.31 5.50 491

Table 1. Eye corners comparison of (a) 3D pose tracking and (b) our
approach using 6633 frames with eye open. Here the distances are
measured from the estimated eye corners to their center.
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Fig. 1. Accumulated variances of mouths for first 20 principal com-
ponents. The total variances of 3D pose tracking and our approach
are 1.89 x 10'* and 1.51 x 10",

to go through RASL in the first step. Fig. 2] demonstrates the mouth
replacement for 20 of the 921 frames. We employ the poisson image
editing [8] in stitching the mouth. Fig[2(a) shows the input, while
Fig. PJb) is the result after alignment. Fig. [2Jc) gives the output with
new lip shapes stitched on Fig. 2b). It shows our method is able to
change the lip shapes while maintaining natural head movement.

5. CONCLUSIONS AND FUTURE WORK

While 3D pose tracking cannot get accurate alignment and RASL
cannot deal with large scale, we have proposed a framework for
practical and efficient face alignment that compensates for both of
the above disadvantages, based on sparsity and low-rank structures
in the linearly correlated face images. One possible future direc-
tion is to exploit the smoothness or small changes of adjacent frames
of video sequence. For example, to use the video property to wisely
choose a small set of images for RASL, or to achieve faster computa-
tion. Another future direction is to generate natural head movements
using transformation parameters calculated by our method.
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Lefteye | Righteye | Average
Mean error (a) 0.94 0.90 0.92
(b) 0.94 0.86 0.90
Standard error | (a) 0.56 0.46 0.51
(b) 0.53 043 0.48
Maximum error | (a) 2.30 2.40 2.35
(b) 2.40 2.29 2.35

Table 2. Eye corners comparison of (a) RASL and (b) our approach
with 250 frames. Here the distances are measured from the estimated
eye corners to their center.
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(a) 3D pose tracking
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(c) Mouth replaced with other hp shapes

Fig. 2. Demostration with mouth replacement (illustrated here with
20 frames)
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