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ABSTRACT

Speaker identification is a well-established research problem but has
not been a major application used in gaming scenarios. In this pa-
per, we propose a new algorithm for the open-set, text-independent,
speaker ID problem, applied as an important component (among
other cues) of a game player identification system. This scenario
poses new challenges: far-field, limited training and very short test
data, and almost real-time processing. To tackle this, we introduce
new and more informative feature sets. The scores given by these
feature sets are then combined in an optimal way to construct the
final score. Experimental results on the gaming device’s processed
reverberated-speech show the effectiveness of the new features, and
that reliable decisions can be made after very short (2 - 5 second)
test utterances required by the gaming scheme.

Index Terms: acoustic arrays, games, speaker recognition

1. INTRODUCTION

Recently developed gaming devices for controller-free gaming and
hands-free sound-capturing has made voice-identification of the
game players an important component in building games for a natu-
ral and interactive environment. Speaker identification (speaker ID)
is a well-studied research problem. The main focus of this paper
is to introduce a new application of speaker ID as one of the cues
for game player identification systems, apart from the applications
found in conventional scenarios using recorded telephone speech. In
our gaming scenario, each player registers with the gaming system
by speaking some sentences (training data). In the game stage, a
player speaks briefly for a few seconds (test data). Using the test
data, a score against each model built from the training data is pro-
duced. Based on the scores, the tested player is identified as one of
the registered players or as an impostor. This identification process
can be used in many cases. For example, to prevent unauthorized
players to log in or to participate in the game. In another example,
when the players speak simultaneously in a trivia game, we would
like the gaming system to be able to pick the player whose answer is
correct. In such case, the system separates the players’ voices, runs
through a speech recognizer, and finally applies the speaker ID al-
gorithm. All the speech data is captured by a 4-element microphone
array of the gaming device.

In the conventional scenarios, the speaker population is often
quite large (500+). However, the amount of training data and test
data are abundant (can be a few minutes). Off-line processing and
latency can be acceptable. On the other hand, speaker ID for gaming
scenarios operates on a relatively small speaker population (typically
fewer than 20), has limited training data (≤ 10 seconds), very short
test data (2-5 second test utterances), and demands almost real-time
processing. In addition, the computational resources of the gaming

system are shared by many tasks, such as: sound source localization,
beamforming, noise reduction, speech recognition, and video pro-
cessing, thus, a computationally simple yet effective speaker ID al-
gorithm is desired. The speech data remotely captured by the micro-
phone array also raises the problem of reverberation and background
noise from the gaming environment. These are the challenges that
are not found in the conventional scenarios using telephone speech.
A general speaker ID system often uses Gaussian Mixture Models
(GMM) with the Universal Background Model (UBM) and a scoring
normalization technique, such as the adaptive T-normalization (aT-
norm) [1]. The feature set used in speaker ID typically is the Mel-
frequency cepstral coefficients (MFCC) [2]. In this paper, we inves-
tigate features that are more informative than the traditional MFCC,
and combine their scores in an optimal way that minimizes the iden-
tification error rate. The focus of the proposed method is on the
feature sets, hence, we fix the speaker ID system in both the baseline
and our proposed method to GMM-UBM with aT-norm. Although
GMM-UBM with aT-norm using MFCC as the feature set is not the
top performing system today, it is a relatively simple, yet commonly
used baseline [3].

For experiments we used the TIMIT database and simulated the
effects of reverberation and background noise by convolving with
the carefully measured room’s impulse responses and adding real
background noise. The contaminated TIMIT was then enhanced by
the audio processing tools utilized by the gaming system, and the
output was used as the data for both algorithms (baseline and pro-
posed method). TIMIT was chosen because of its manageable size
and appropriateness to the gaming scenarios:

• Speaker population is small

• Data is sampled at 16 KHz, the sampling rate used by our
gaming device

Experimental results show that our algorithm, using new features,
achieves 5.5% equal error rate (EER) compared to 10.5% of the
baseline GMM-UBM with aT-norm using the traditional MFCC for
2-second test utterances.

2. REVERSED MEL-FREQUENCY CEPSTRAL
COEFFICIENTS (RMFCC)

The traditional MFCC is a representation defined as the real cep-
strum of a windowed short-time signal derived from the FFT of
that signal [2, 4]. This real cepstrum utilizes a nonlinear frequency
scale, Mel-scale, which approximates the behavior of the human
auditory system [2]. The Mel-scale warping is done by using a
Mel-filterbank, where the filters space linearly at low frequencies
(f ≤ fcutoff = 700 Hz) and logarithmically at high frequencies
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Fig. 1. The traditional Mel-filterbank.

(700 Hz to the Nyquist frequency), see Eq. 1 and Fig. 1.

fMel = 2595log10

(
1 +

flinear

700

)
. (1)

The design of this filterbank benefits speech recognition tasks [2],
where the first and second formant frequencies (F1 & F2) carry the
most important information of what is being said. It has a high reso-
lution for lower formant frequencies, and a low resolution in the up-
per frequency range. The implicit effect of the Mel-filterbank is that
it enhances the most useful spectral information (lower formant fre-
quencies) that a speech recognizer needs, and smears out the differ-
ences (upper formant frequencies) among different speakers so that
the same content spoken by anyone would be perceived similarly,
and thus, can be recognized easier. On the other hand, a speaker
identification system aims to extract as much speaker-dependent in-
formation as possible from the speech representation. It has been
shown that the upper formant frequencies carry a lot of speaker-
dependent characteristics, which are very beneficial to speaker iden-
tification tasks [5, 6, 7, 8]. Hence, the MFCC obtained from the tra-
ditional Mel-filterbank is not the optimal feature set for such tasks.
Recently, Lu and Dang [9] proposed using a non-uniform filterbank
based on the F-ratio and achieved 20.1% error rate reduction. How-
ever, the F-ratio-based training process to construct the filterbank is
quite computationally expensive. In 2009, Lei and Gonzalo [10] pro-
posed an antiMel filterbank in which the Mel-filters from 300 Hz to
3400 Hz were flipped about 1550 Hz. However, the reported perfor-
mance was poorer than using the traditional MFCC on all speech.
We suppose this poor performance is due to the limited bandwidth
of the telephone speech, in which the upper formant frequencies are
not fully present.

Taking advantage of the 16 KHz sampled speech signal given by
the gaming device’s microphone array, we propose a reversed Mel-
filterbank similar to the idea of [10]. In this filterbank, we would
like to have more resolution in the mid-to-upper high frequencies,
say 5000 Hz to the Nyquist frequency, 8000 Hz. To fulfill this
goal, we first design a traditional Mel-filterbank with fcutoff =
8000 − 5000 = 3000 Hz. This filterbank will be linearly scaled
from 0 to 3000 Hz (high resolution) and logarithmically scaled (low
resolution) in the rest. We then flip the filterbank about its center
frequency, i.e., fcenter = 4000 Hz. The result is a reversed Mel-
filterbank, which scales linearly from 5000 Hz to 8000 Hz, and log-
arithmically scaled in the lower frequencies, see Fig. 2. Thus, the
reversed Mel-filterbank, which is very simple to design, enhances
the resolution for the upper formant frequencies which are more in-
formative to speaker recognition. The Mel-frequency cepstral co-
efficients obtained from this reversed Mel-filterbank are labeled as
rMFCC.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

(Hz)

Fig. 2. The reversed Mel-filterbank.

3. LINEAR PREDICTIVE CODING (LPC) COEFFICIENTS
AND FUNDAMENTAL FREQUENCY (F0)

A simple yet effective model of speech production is the source-filter
model [11], in which the combination of the source (vocal folds) and
the linear filter (vocal tract + radiation characteristics) produces the
speech signal. In this section, we present the use of two features:
the fundamental frequency (F0), which indicates the vibration rate
of the vocal folds (source), and the linear predictive coding (LPC)
coefficients, which models the vocal tract’s transfer function (filter),
to represent the speech information of a speaker, which are beneficial
to speaker ID tasks.

3.1. Linear predictive coding (LPC)

As we discussed in Sec.2, the upper formant frequencies carry im-
portant speaker-dependent information. Roughly speaking, formant
frequencies are the vocal tract’s resonances. Hence, the LPC co-
efficients, which model the vocal tract, are good representations of
the formants. Using all-pole autoregressive modeling [11], the vocal
tract’s transfer function in the z-domain, H(z), is:

H(z) =
X(z)

E(z)
=

1

1 − ∑p
k=1 akz−k

=
1

A(z)
, (2)

where X(z), E(z) are the z-domain representations of the output
and excitation signals respectively, p is the LPC order, and A(z)
is the inverse filter. Taking the inverse z-transform and after some
algebraic manipulation, we have:

e[n] = x[n] −
p∑

k=1

akx[n − k]. (3)

From this, we can estimate the LPC coefficients ak, k = 1, ..., p by
minimizing e[n], using the autocorrelation method [4].

3.2. Fundamental frequency (F0)

Another good speaker-dependent feature is the fundamental fre-
quency (F0). F0, at least, gives us additional, gender an age related
information. The effect of F0 is even more profound in tonal lan-
guages, such as Chinese, Thai, etc. Because test utterances are
required to be very short in gaming applications and fundamental
frequencies can only be extracted from voiced frames of each utter-
ance, only a single value of F0 (median value) is used as our feature.
F0’s of the voiced frames can be estimated using a cepstrum-based
technique. In this paper, we used the one proposed in [12].
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4. FEATURE SCORING

In our algorithm, we utilize three sets of features: rMFCC, LPC, and
F0. The scores for the 2 features, rMFCC and LPC, are the standard
log-likelihood scores computed as:

Γ(X) = logp(X|λtarget) − logp(X|λUBM ), (4)

where X is a feature vector, p(X|λ) is the likelihood of feature vec-
tor X belonging to the GMM λ. The fundamental frequency score
is defined as,

Π(F0X) ≡ max (Pvoiced × |F0target − F0X |)
− Pvoiced × |F0target − F0X | , (5)

where Pvoiced is the probability of voiced frames in the test utter-
ance:

Pvoiced =
No. voiced frames

Total no. frames
. (6)

Note that in Eq. 5, the fundamental frequency score is weighted by
the probability of voiced frames because the fundamental frequen-
cies were estimated from the voiced frames only. Also, the weighted
score is subtracted from the maximum value over all genuine speak-
ers so that the better match between F0X and F0target is, the larger
the score is. In this way, the fundamental frequency score varies
coherently with the log-likelihood scores of the first two features.

Next, we would like to properly assign weights to the feature
scores so that the resulting final score would minimize the error rate.
The final score of a given test utterance u is defined as,

S(u) = ŵ1Γ(rMFCC) + ŵ2Γ(LPC) + ŵ3Π(F0). (7)

The optimization criterion for the weight vector W = {w1, w2, w3}
is,

Ŵ = argmin
W

(√
FRR2 + FAR2

2

)
, (8)

where FRR and FAR are the false rejection rate and false acceptance
rate, respectively. The optimized W are obtained from the training
set (created from the TRAIN directory of TIMIT, see Sec. 5.1) using
Gaussian optimization method with the criterion of minimizing the
equal error rate, and will be applied to final scores of the test set.

5. EXPERIMENTAL EVALUATION

5.1. Data preparation

From the TRAIN directory of TIMIT, we put aside 132 speakers
(equal gender proportions) for training the UBM, 166 speakers for
the adaptive T-norm models [1], and 20 speakers to create impostor
messages for the adaptive T-norm’s cohort selection procedure. The
rest of the speakers in the TRAIN directory were used to create the
training set. The training set was used to obtain the optimal weight

vector Ŵ. The entire TEST directory of TIMIT was used to create
the test set. Both training and test sets consisted of 10 data groups.
In each data group, there were 8 genuine speakers (speakers who
were learned by the gaming device during the training session) and
8 impostors (speakers who were not learned by the device), making
up a total of 16 speakers per data group. All 10 sentences of each
speaker were utilized. About 10 seconds of speech data from each of
the 8 genuine speakers were used in training session, and 2-second
test utterances were used by all 16 speakers. The reported results
are average of the results on the test set (10 data groups, or 160 test
speakers).
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Fig. 3. DET curves (2s test utterances): baseline vs. feature contri-
butions of the proposed algorithm.

5.2. Audio processing

Audio data processing included three steps:

• We converted the clean TIMIT data to 4-channel reverberated
data by convolving them with the carefully measured room’s
impulse responses at 12 different positions in the active gam-
ing zone in front of the device, and then added real back-
ground noise.

• The 4-channel simulated data was then processed by the au-
dio pipeline used in the gaming device to generate a single-
channel“enhanced” data. This pipeline includes an adaptive
beamformer, a spatial filter, a noise suppressor [13].

• Sampling rate of 16 KHz, frame length of 25 ms, overlapped
10 ms, and Hamming window were used. We extracted 13
MFCC’s and their delta’s for the baseline algorithm; 13 rM-
FCC’s, 13 LPC’s, and F0 for our proposed algorithm. Both al-
gorithms used 14-component GMM’s for speaker models. In
both the baseline and our algorithm, GMM’s were trained us-
ing maximum likelihood (ML) criterion with EM algorithm.

Because the gaming scenario requires a low computational cost pro-
cessing, a simple EM algorithm was more suitable to use than the
UBM-MAP or discriminative training methods.

5.3. Experimental results

Fig. 3 shows the Detection Error Tradeoff (DET) curves of the pro-
posed algorithm with the contribution of each new feature, and the
baseline algorithm (MFCC) when using 10-second training data and
2-second test utterances. The equal error rates (EER) and mini-
mum decision cost functions (DCF) of these algorithms are shown
in Fig. 4. It can be seen that in our scenario, when test utterances are
2-second long, the proposed algorithm performs better than the base-
line algorithm. Next, we tested the performance of the proposed
algorithm for different test utterance lengths (1.5, 2, 3, 4, and 5 sec-
onds). The results (EER and minimum DCF) are shown in Fig. 5.
The performance of the system drops when going below 2 seconds
and seems to saturate when the test utterances are longer than 4 sec-
onds. We also tested the case when the test utterance length is fixed
at 2 seconds, and we vary the length of the training data (5, 7.5, 10,
12, 15 seconds). The results are shown in Fig. 6. Clearly, increasing
the amount of training data improves the performance.
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Fig. 5. EER and DCF (10s training data): performance vs. test
utterance length.

6. CONCLUSIONS

In this paper we presented a new application of speaker identifica-
tion for gaming scenarios. We proposed the use of three features, re-
versed MFCC, LPC, and F0 that extract more speaker-dependent in-
formation from the speech signals than the traditional MFCC. These
features were then combined optimally to give the final score. Un-
der the specific conditions of gaming applications, which are limited
training data, very short test utterances and a low computational cost,
our proposed algorithm achieved 5.5% EER when using 10-second
training data, and 2-second test utterances, whereas the baseline al-
gorithm (GMM-UBM with adaptive T-norm, MFCC as the feature)
was at 10.5% EER, see Fig. 4. The performance at this level, when
combined with other cues (biometrics, face detection, etc.), would
create a complete game player identification system. Our next step
in the future would be evaluating the proposed algorithm on a stan-
dard data corpus, such as the NIST SRE data.
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