
TouchDevelop: Programming Cloud-Connected

Mobile Devices via Touchscreen

Nikolai Tillmann, Micha l Moskal,
Jonathan de Halleux, Manuel Fähndrich

Microsoft Research
One Microsoft Way, Redmond WA 98052, USA
{nikolait,micmo,jhalleux,maf}@microsoft.com

August 17, 2011

Abstract

The world is experiencing a technology shift. In 2011, more touchscreen-
based mobile devices like smartphones and tablets will be sold than desk-
tops, laptops, and netbooks combined. In fact, in many cases incredibly
powerful and easy-to-use smart phones are going to be the first and, in
less developed countries, possibly the only computing devices which vir-
tually all people will own, and carry with them at all times. Furthermore,
mobile devices do not only have touchscreens, but they are also equipped
with a multitude of sensors, such as location information and acceleration,
and they are always connected to the cloud.

TouchDevelop is a novel application creation environment for anyone
to script their smartphones anywhere – you do not need a separate PC.
TouchDevelop allows you to develop mobile device applications that can
access your data, your media, your sensors and allows using cloud services
including storage, computing, and social networks. TouchDevelop targets
students, and hobbyists, not necessarily the professional developer. Typ-
ical TouchDevelop applications are written for fun, or for personalizing
the phone.

TouchDevelop’s typed, structured programming language is built around
the idea of only using a touchscreen as the input device to author code.
It has built-in primitives which make it easy to access the rich sensor
data available on a mobile device. In our vision, the state of the pro-
gram is automatically distributed between mobile clients and the cloud,
with automatic synchronization of data and execution between clients and
cloud, liberating the programmer from worrying (or even having to know
about) the details. We report on our experience with our first prototype
implementation for the Windows Phone 7 platform, which already real-
izes a large portion of our vision. It is available on the Windows Phone
Marketplace.

1

1 Introduction

The way in which we interact with computing devices is changing:

• most devices have some form of internet connectivity, and are almost al-
ways connected to the cloud via cellular networks, with short interrup-
tions,

• instead of using keyboards and mice as the point input devices, advanced
touchscreens are becoming more common,

• many people now carry a smartphone or some other small mobile device
with them at all times,

• mobile devices are often equipped with sensors that give auxiliary informa-
tion about the environment such as orientation, acceleration, and location,

• even small mobile devices such as smartphones are now typically equipped
with comparatively powerful batteries, graphic processors, high-resolution
screens, and main processors, which rival small ordinary laptops or even
PCs which were state-of-the-art just a few years ago.

Applications for such devices are typically written in the traditional way: Using
traditional programming languages, traditional compilers, traditional develop-
ment environments augmented with extra libraries to access the touchscreen,
sensors, network, etc., and using a traditional PC with a mouse, keyboard, and
a big monitor.

What has not yet happened is the shift to use the new mobile devices them-
selves to write applications for those devices. This might not seem desirable for
professional developers who spend the majority of their time writing code and
can afford a traditional PC development set up. On the other hand, automating
little tasks, performing simple computations, or retrieving personal data stored
on a mobile device with a query expression, with minimal set up and possibly
on-the-go, offers practical value and can also serve as an excellent entry point
into computer science education for students as well as adults.

We propose a new programming environment and language which makes it
possible to write applications on mobile devices: TouchDevelop. The aim of
TouchDevelop is to bring the excitement of the first programmable personal
computers to the now ubiquitous mobile devices. TouchDevelop engages users
by allowing them to write scripts that show and manipulate things that connect
with their personal interests and possessions, such as the music and pictures
stored on their own mobile device, the sensors of the phone, and the friends in
their social networks.

TouchDevelop comes with a typed, structured programming language that
is built around the idea of only using a touchscreen as the input device to
author code. TouchDevelop has built-in primitives which make it easy to access
the rich sensor data available on a mobile device. In our vision, the state of
the program is automatically distributed between mobile clients and the cloud,

2

with automatic synchronization of data and execution between clients and cloud,
liberating the programmer from worrying (or even having to know about) the
details.

The contributions of this paper are as follows:

• We motivate the idea of programming on a mobile device itself.

• We describe the TouchDevelop language.

• We give an overview over the TouchDevelop environment: the program
management, the code editor, the runtime environment.

• We report on our experience with the first prototype implementation of
TouchDevelop, which already realizes a large portion of our vision, and
illustrate its practically in a case study with an example.

TouchDevelop is available on the Windows Phone Marketplace; the TouchDe-
velop website1 contains the latest information, documentation, and instructional
videos to get started. Within a week of being launched, TouchDevelop became
one of the 100 most popular (most downloaded) applications on the Windows
Phone Marketplace (out of over 13, 000 available apps on 4/14/2011), and the
3rd most popular app in the general “productivity” category. This ranking indi-
cates that TouchDevelop serves a purpose — a large percentage of all Windows
Phone users want the ability to write and run scripts on their phone.

Our currently available prototype does not yet implement all features which
we envision for TouchDevelop. We will indicate in the text when an aspect will
only be realized in the future, and we give a summary of all current limitations
in Section 5.

2 Principles, Design Decisions, Target Audience

All design decisions of the TouchDevelop programming environment are moti-
vated by one main principle: the programs are created on a mobile device, and
they are consumed on a mobile device. By a mobile device we understand a
pocket-sized computing device with a touchscreen; a typical laptop does not
fit this description. This principle has large implications on the design of the
language, the program editor, and the execution environment.

Main principle, part 1: All programming and relevant content
authoring must be done on a mobile device. We assume that a separate
laptop or PC is not physically accessible to the user. While exploring hybrid
mobile-PC programming environments is certainly interesting, we have decided
to focus on exploring how far the mobile-only experience can be pushed, at least
for now. Notice that in general non-essential input devices tend to die; witness
for example the PDA stylus and tablet PC pen, and the declining popularity
of slide-out keyboards for phones. If it is possible and effective to only use a

1http://research.microsoft.com/TouchDevelop

3

mobile device to program certain applications, then other, more complicated
approaches are likely to be eventually replaced by the single-device approach
for those tasks.

Main principle, part 2: The resulting program should run on a mo-
bile device, leveraging the computing capabilities, sensors and cloud
connection. The programming and execution devices can be the same. The
programming language should be Turing complete.

However, we do not require that every possible program that could poten-
tially run on a mobile device can indeed be created with TouchDevelop —
besides legal and licensing restrictions which might make this impossible, we
expect that once the program reaches a certain size, complexity, or has high
performance requirements, a program creator will likely devote more resources
to the project and would shift his or her efforts over to a bigger development
environment form factor, possibly a traditional PC.

In other words, our target audience is everyone who might traditionally have
been able to write a BASIC program on a regular keyboard and ordinary PC.
This includes students and hobbyist programmers.

Moreover, we were aiming for a language and runtime system where features
are not only fast to type-in once the user knows about them, but where features
are also easily discoverable, in order to help novice programmers navigate the
available functionality without training.

3 TouchDevelop Language

TouchDevelop uses a simple, imperative, statically typed programming lan-
guage. We decided against using an existing, well-known programming language
for three reasons. First, languages with similar scope tend to be dynamically
typed which greatly complicates autocompletion features (see Sections 3.1 and
4.2). Second, the lack of a precise explicit keyboard with around one hundred
separate keys dramatically changes the trade-offs to be made when designing
the concrete syntax. Note that some recent design decisions in the evolution of
C# (and VisualBasic) were made only in order to enable autocompletion in the
code editor; for example, while the established SQL notation for a query usually
begins with “SELECT column FROM table”, in the SQL-inspired LINQ notation
of C# (and similarly VisualBasic) the order is surprisingly reversed: “from x in

table select x.column”; as a result, after typing the code to assign to x elements
of the table, the editor can give autocompletion support with the inferred ta-
ble type while typing the later selection expression x.column; this would not be
possible in the traditional SQL order. In a similar spirit, we will base design
decisions in TouchDevelop on the ability to accurately select relevant program
elements with an imprecise finger tapping gesture on a touchscreen. Third, we
wanted to approach the question how program state should be managed by the
runtime system with a fresh mind which addresses the challenges of the mobile
execution environment of a cloud-connected device.

Even though accommodating these three properties greatly influenced cer-

4

string ::= ”Hello world!\n” | ...
number ::= 0 | 1 | 3.1415 | ...
local ::= x | y | z | foo bar | ...
action ::= frobnicate | go draw line | ...
global ::= phone | math | maps | ok button | chat roster | ...
property ::= vibrate | sin | add pushpin | disable | add | ...
exprs ::= expr | exprs , expr
parameters ::= | (exprs)
op ::= + | − | / | ∗ | ≤ | ≥ | > | < | = | 6= | and | or | ||
expr ::= local | string | number | true | false
| − expr | not expr | expr op expr
| action parameters | expr → property parameters

block ::= stmt | block stmt
locals ::= local | local , locals
stmt ::= expr | locals := expr | do nothing
| if expr then block else block
| while expr do block | foreach local in expr do block
| for 0 ≤ local < expr do block

type ::= Number | String | Song | Nothing | Phone | ...
formals ::= local : type | local : type , formals
formals-opt ::= | formals
returns-opt ::= | returns formals
action-def ::= action action (formals-opt) returns-opt block

Figure 1: Abstract syntax of the TouchDevelop actions.

5

tain details of the language design, in fact the abstract syntax, typing rules,
and the basic semantics of the language are fairly similar to corresponding frag-
ments of mainstream programming languages like Java or C#. This lets the
user transfer expertise between TouchDevelop and a regular programming en-
vironment, in both directions. Moreover, it allowed us to focus on the details
specific to touchscreen input and the mobile execution environment, instead of
the high-level programming language design.

The TouchDevelop language is a mix of imperative, object-oriented, and
functional features. The imperative parts are most visible: users can update
local variables, and state of global objects. Object-orientation is dictated by
autocompletion requirements—properties of objects are an easily accessible and
intuitive concept. However, for the sake of simplicity, the language itself does
not have built-in constructs which would allow users to define new types or
properties. Functional features come in form of a query language akin to LINQ
(Section 3.4) which we plan to incorporate in the future.

A TouchDevelop script consists of a number of actions (procedures) and the
global state (global variables and user interface (UI) elements). The UI elements
have various properties (e.g., position, color, content), and define bindings of
particular events (e.g., button clicked, text changed) to the actions. Global
variables define their type, sharing scope, as well as their current value. Global
state is edited via various property dialogs and persisted either on the phone or
in the cloud. We discuss the storage of shared global state in the cloud later in
Section 3.3.

Figure 1 describes the abstract syntax of TouchDevelop actions. We freely
use spaces in identifiers—this is justified by our expression input model, which
treats identifiers as atoms. The body of an action is a block of statements,
which in turn contains nested statements and expressions. Expressions include
the usual assortment of literals, arithmetic and Boolean operators, as well as the
string concatenation operator (||). Actions can define local variables (the first
assignment is the definition point), call other actions, as well as call properties of
objects. The TouchDevelop runtime system defines a number of data types (e.g.,
String or Song; Nothing is the equivalent of the C void type), each with a number
of properties (e.g., → index of or → artist). Additionally, we define singleton
objects (e.g., phone of type Phone), also with properties (e.g., phone→ vibrate or
math→ sin). Types of singletons are not exposed to the user (i.e., one cannot
make an action returning a Phone).

Actions can have multiple return values. We support a multiple-assignment
statement locals := expr ; while most assignment statements are likely to assign
only a single expression to a single local, the multiple-assignment statement can
and may only be used with an expression that represents a call to an action
with multiple return values of the same arity. The motivation to allow multiple
return values for an action is to support a refactoring that extracts multiple
statements into a separate new action. The type representing multiple return
values is not exposed to the user.

6

3.1 Type System

We decided on a statically typed language, since type information is necessary
to provide highly useful context-sensitive code completion options to the user.
Except for parameter and return types of actions and global variable types, the
user does not have to provide type annotations, as types are usually inferred.
The type system is fairly standard.

Every expression has at most one type. Every built-in property, singleton,
and operator has a fixed type defined by the TouchDevelop runtime system.
User-defined actions have their return type explicitly defined. Locals are intro-
duced by assignments, and thus their type is inferred from the type of initial-
ization expression. They remain in scope until the end of the block in which
they are defined.

Arguments in calls (to actions, properties, operators, assignment etc.) are
expected to have the declared type, however every type can be implicitly con-
verted to String or Nothing.

3.2 Execution Model

The semantics of the language is a standard eager call-by-value semantics.
The execution is reactive—actions are run in response to events. Events can

be raised by user input (i.e., manipulating a UI element), passage of time, or
updates of the data stored in the cloud.

TouchDevelop uses cooperative multi-threading. Normally, actions are ex-
ecuted single-threaded, however calls that block (e.g., fetching data from the
web or waiting for user input) allow other actions to run. The blocking calls
are marked visually in the TouchDevelop editor, to make the user aware that
global data can change at this point. Moreover, there are some properties the
user might want to invoke which require the application to suspend, and later
resume, e.g. when the user wants to take a picture via the camera application.
These are also marked visually. See Section 4.4 for a longer discussion of this
concept, called tombstoning in the Windows Phone platform.

3.3 Shared State in the Cloud

In the future, TouchDevelop will support shared state for scripts, which can be
thought of as special global variables that live in the cloud, shared by multiple
application instances. An application can run on multiple devices in a common
application domain; in this case, all application instances operate on the same
shared global variable, and they can observe each other’s state changes. The
distributed state evolution is realized via Concurrent Revisions [1]: a mobile de-
vice forks from the shared state when its connection to the cloud is interrupted,
and its updates are merged back into the shared state when the connection is
restored. To save battery power, these events can be further postponed and
bundled.

7

expr ::= ... | current
type ::= ... | [type]
stmt ::= ... | local := expr apply transformers
transformers ::= transformer | transformers transformer
transformer ::= distinct | reverse
| top expr | bottom expr
| where expr | order by expr | transform to expr

top artists := media→ songs apply
where current→ duration > 30
order by current→ rating
bottom 20
transform to current→ artist
distinct
top 5

Figure 2: The proposed TouchDevelop query language and an example.

According to the semantics of Concurrent Revisions, merging of data is per-
formed by a resolution strategy for competing updates from different devices;
the basic resolution strategy is “the last update wins”, but this can be refined
by further annotations from the user, e.g. the user can indicate that an integer
shared global variable is a “counter”, in which case changes are additive. In this
way, possible merge strategies are limited, but merging never fails, and conflicts
are resolved automatically, maintaining a simple programming model as far as
the programmer is concerned.

An application domain in the cloud is associated with its creator; if the
creator permits, then direct friends of the creator in a social network are allowed
to attach to this application domain.

3.4 Query Language

Figure 2 defines syntax for queries which we plan to implement. We introduce
a sequence type, a special expression to refer to the current element, and an
apply statement, which takes a sequence and a number of transformers. The
editor treats the transformers in the query like statements, using a similar user
interface.

Operations like average, sum, median, minimum, maximum, count, all, and any are
available as properties on the sequence type. We might allow their usage as the
last transformer.

3.5 Intentional Limitations

The TouchDevelop language is intentionally limited, in order to be easy to
understand by non-expert programmers.

8

No user-defined types As mentioned before, we do not let the user define
new types or write new properties. There is also no other encapsulation mech-
anism beyond the concept of a script. However, while there is no language-
intrinsic mechanism to define custom types, externally realized and possibly
user-configurable data sources and state can extend the universe of available
types.

Restricted libraries TouchDevelop provides a set of built-in primitives and
types to interact with the phone sensors, screen, web, etc. While all relevant
aspects of the mobile device are exposed in this way, we often expose the under-
lying Windows Phone APIs only in a simplified way to TouchDevelop scripts,
preferring easy-of-use over expressivity, efficiency, and performance. In the fu-
ture, additional libraries could be added via extension mechanisms.

No error handling For simplicity, when a rare unrecoverable error occurs,
e.g. a web service cannot be contacted, the script simply stops. This is typical
for small applications on mobile devices. Also, structured error handling would
add another layer of complexity to the language which might be too difficult to
master for many of our target user group.

Some kinds of “errors” are in fact rather common. For example, a call to
the built-in media→ choose picture property may fail when the user cancels the
request to select a picture from the phone’s picture library. To deal with such
situations, every data type has a special invalid value, which indicates the absense
of a proper value. The property is invalid allows the user to test for the presence
of this special value. As a convention, all built-in properties return invalid when
invoked with an invalid argument.

4 TouchDevelop Environment

Together with the language itself, the programming environment has been de-
signed around the idea of working on a mobile device with a touchscreen, typi-
cally with a 4” diagonal on a smartphone.

4.1 Multiple-screen User Interface

Windows Phone apps use the metaphor of the browser going through the pages
of the app. The user taps on UI elements to navigate to new pages, and uses the
hardware back button to return to the previous page (usually saving whatever
state was modified, which is slightly different from the basic browser paradigm).
In this way, the TouchDevelop editor is used to “browse” through scripts stored
on the device. The first page shows a list of scripts currently available on the
mobile device. Each script has its own page with a list of actions and global
variables (in the future, the script’s UI elements and events will be also available
at this level). Selecting an action brings up the action editor page, and selecting
a statement there shows the expression editor. Finally, selecting certain literals

9

Figure 3: TouchDevelop action editor. (left) Main action view; note that return
type is hidden, as it is Nothing. (middle) Statement editing options. (right)
Inserting a new statement above the existing if statement.

(e.g., string or date-time literals) in the expression pops up specialized literal
editors.

4.2 Editing Actions

TouchDevelop offers a structured editor for statements and autocompletion-
enabled token-level editor for expressions. Full statements can be moved around
by cut/copy and paste, and new statements can be inserted and edited. Lim-
iting these operations to full statements was done in interest of expediting and
simplifying the editing process. As a side effect, it is impossible to construct
a program which is syntactically invalid at the statement level. On the other
hand, expressions are entered as strings of tokens and it’s perfectly possible to
have syntax or type errors there. We hope that confining syntax errors at the
relatively small expression level makes it reasonably easy for our users to correct
syntax errors.

The main action view shows the source code of a single action. The font
is easily readable, but not big enough for precise selection (left screen shot in
Figure 3). The user can tap anywhere on the action to select the statement to
operate on. If the selection was not exactly what the user intended, it can be
adjusted by sliding the text up or down. The selection brings up a set of buttons
with available operations (middle screen shot): editing the expression in current
statement, copy and paste operations, as well as inserting a new statement above
or below. Tapping the insertion button brings up a list of available statements
(right screen shot).

Each statement directly contains at most one expression. For if and while

10

Figure 4: TouchDevelop expression editor (calculator). (left) Editing condition
in if-then statement; help shown for the expression before cursor. (middle)
The “...” button shows more properties of Album with descriptions. (right)
Expression with error in orange, error message for expression before cursor; also
virtual keypad in operator mode.

statements it is the condition, for for the upper bound (the bound variable is
inserted automatically), etc. Inserting a statement or tapping the “edit” button
on it brings up the calculator view (Figure 4). The calculator provides a virtual
on-screen keypad. It has multiple keypad modes—the left screen shot shows the
main keypad with autocompletion suggestions and options of switching to other
keypads; the right screen shot has the operator keypad. The on-screen keys are
big enough to be tapped without mistakes. Because there is a keypad, there is
also the cursor. It can be moved by tapping on the expression screen at the top,
or when precision is needed, using on-screen cursor keys.

Editing expressions happens at the level of tokens: the user inserts and
deletes tokens, some of which can be parentheses or operators. Operators and
literals are available in one of the keypads. Recently used properties, global and
local variables, as well as actions are shown on the main keypad. Tapping the
“...” button opens up the full list, divided into categories (middle screen shot).
Editing string literals and renaming local variables are the only places where
the regular virtual on-screen (or possibly hardware slide-out, if available on a
particular mobile device) keypad is used. In particular, the keypad is not used
for entering property names.2

The expression is parsed and type-checked after each tap on a key. The type
information is used to provide error messages, autocompletion suggestions, and

2We can use the keypad to filter the full property list if so desired. Still it will be impossible
to make a typo in an identifier.

11

context-sensitive help. When expression editing is complete, the hardware back
key is used to return to the action editor.

The action editor also offers the possibility (Figure 3 left, at the bottom) of
executing the currently edited action, adding a new statement at the end of the
action (to save one tap), and editing action properties (e.g., the name, formal
parameters and return type; in the future we plan to have event bindings here)
using a dedicated dialog.

4.3 Discussion of the Editor

We decided against a Tactile Programming paradigm [9] and a Visual program-
ming language [8], as we wanted to enable the authoring of BASIC-like pro-
grams. Instead, our language is similar to a traditional text-based programming
language, but with a structural editor, where the extent of enforced structure
was chosen to make each editing step possible with the press of a finger on a
touchscreen. Such a tapping gesture is not as precise as a mouse-click, but in-
stead needs dozens of spare pixels in each direction to buffer against errors due
to the imprecision of the gesture recognition.

At the statement level, the language editor is structured. At the expression
level, the editor is unstructured. However, at the token level, the editor is struc-
tured again. In other words: You cannot make syntax errors at the statement
level, but you can at the expression level; however, individual identifier names
are treated as atoms, and they cannot be misspelled. This set of decisions is a
usability compromise, largely driven by the overall design of our code editor.

The distinction between the statement-level structured editing and unstruc-
tured (yet misspelling-free) expression editing comes from observation of the
usage of modern IDEs like Eclipse or Visual Studio. Users seem to be happy
to close braces immediately after opening them, and only later fill them in,
because otherwise autocompletion gets confused. On the other hand, people
rarely write particular expressions that way. Finally, autocompletion tends to
correct (or preserve) all misspellings. In our experience, moving this model to
the mobile device seems to work well.

We currently use the tap-to-select model with the option to cancel the se-
lection if an unintended statement gets selected. Also, the user can scroll and
expand the selection after the initial selection.

We have experimented with a few other models and decided against them:

• Pinch to zoom the view and then tap to select. This is the standard model
in other phone applications. However, we found that continuous zooming
and changing of the viewing area is confusing.

• Dragging a button like “edit” or “add statement” to the place where it
should be executed. While dragging, the “drop place” is highlighted and
updated depending on the current position of the finger until it is released,
thus allowing high precision. However, the entire operation takes a long
time and requires long-distance finger movements.

12

• Tapping and holding for 500ms to bring up a cursor for selecting the
statement above the finger. This cursor can be then dragged and the
selected statement is highlighted. Then the menu with options appears.
This mode resembles how individual characters are selected in text boxes
on the Windows Phone. However, for frequest use, we found that the
initial hold period (500ms) was too long and impossible to avoid, because
the action view needs to be scrollable which also happens with the drag
gesture. In a variation of this approach, the view was zoomed when the
selection cursor was active.

• Two-tap-selection—the first tap zooms the view, the second tap selects.
This allows for very precise selection without the need to frequently cancel
an unintended selection, but it adds an additional tap.

These models were unsatisfactory, mostly because the involved gestures are
slow to execute (multiple taps, tap-and-hold), or they change the viewing area
too often and drastically (pinch), or they involve far finger movements (drag).
Selecting statements is a core part of TouchDevelop experience and therefore
needs to be very fast and precise.

The calculator features on-screen keys much bigger than the usual on-screen
keyboard used for text input. They are big enough to be tapped very quickly
without mistakes. Additionally, the operator keypads go away after a tap, while
the number keypad does not, since usually only a single operator is needed at
a particular position, but numbers consist of several digits. Finally, the most
often used identifiers valid in the current context are immediately available
on the main keypad, greatly speeding up expression entry. As an example,
entering the program from Figure 3 takes a minimum of 20 taps (including all
navigation), which is about 35 seconds for one of the authors, whereas typing
it using a regular laptop keyboard takes about 25 seconds. The first line takes
5 taps, second 11, and the last one 4. It would be significantly longer if the
user did not like the default name for the local (songalbum) and decided to
rename it; renaming involves typing the text for a new identifier name on a
regular on-screen keyboard, which is independent of TouchDevelop. Thus, it
seems the speed of expression entry can be still improved (particularly, some of
the view transitions in our current implementation are a bit slow), but given
a bit of training a performance can be achieved that is in the same order of
magnitude as regular keyboard program entry. This speed indicates that the
transition of program development from a traditional keyboard/mouse set up
to a touchscreen is feasible, especially given the comfort of a mobile device.

4.4 Interpreter

At the core of TouchDevelop’s runtime system sits an interpreter which operates
on a byte-code representation directly derived from the abstract syntax tree of
the script code. An important feature of the interpreter is that its state (and
thus by extension the state of the user’s program) is serializable in between any

13

Figure 5: Capabilities of wall. (left) Action that pops up input box and posts
a few things to the wall: a string, a song, and a picture. (middle) Input box.
(right) The wall after executing the action.

two byte-code instructions, and during those built-in instructions which require
tombstoning.

Tombstoning on the Windows Phone platform refers to a concept where an
application has to persist its program state, die, be launched again later, and
restore the program state to appear as if the application was running the entire
time. This concept can be triggered by an external event, e.g. on an incoming
phone call, or when the user pressed the off-button of the phone. When the
external event is over, e.g. when the phone call is finished, or when the user turns
the phone on again, then the application must resurrect itself. The intention
of this concept is to save memory and processing power, and focus on single
activities. This concept can also be triggered by an internal event, e.g. when
the current application wants to take a picture using the phone’s camera.

By making its state serializable, the TouchDevelop interpreter can continue
execution seamlessly after tombstoning. In our experience, properly handling
tombstoning is a tedious and error-prone duty when developing Windows Phone
applications in the traditional way. Within the capabilities of TouchDevelop
scripts, all of this is handled automatically by the interpreter.

4.5 TouchDevelop Wall

Just as a traditional text-based application usually has a console output stream,
TouchDevelop has the concept of the wall to which any value can be posted dur-
ing script execution. Some values are stateful, i.e. they have reference semantics,
e.g. pictures, which can thus effectively function as an updatable canvas. Simi-
larly, when a sound or song is posted, it can be played via an embedded button

14

(Figure 5). Similarly, posted videos can be played, maps can be zoomed, links
followed, etc. The wall offers a very simple, yet rich, way of interacting with
the script and the content it manipulates.

5 Prototype Implementation Limitations

Our currently available prototype does not yet support the following features:

• Attaching of actions to events; in the initial prototype, the only way to
run an action is via an explicit “run” button.

• Persistent UI elements

• Synchronization of shared global script state with the cloud

• Functional query statements

We plan to implement these features in future releases.
Even with these limitations, interesting applications can be written, e.g. us-

ing an explicit event-handler loop in the code; see Section 6.2 for an example.
In fact, the users of our prototype seem to be quite happy with the current pro-
gramming model; the most frequent feature request after our prototype release
was not related to the language or the editor, but instead the ability to “pin”
a custom script to the phone’s start screen, in order to appear as a regular ap-
plication that can be launched with a single tap. That feature will be available
with the Mango release of Windows Phone.

6 Case Studies

6.1 Samples

The TouchDevelop app comes with various sample scripts; each main action of a
script is up to two “pages” long, or roughly 40 lines. The following list of samples
illustrates the diverse capabilities of our initial prototype implementation of
TouchDevelop.

• hello world / go — print text to the wall

• classical algorithms / fac 5 — recursive calls to helper routines with param-
eters and result, computing factorial of 5

• classical algorithms / fib 5 — recursive calls to helper routines with param-
eters and result, computing the fifth Fibonacci number

• goodies / ask duckduckgo — query a search web service

• goodies / beatbox — record multiple sounds from user via microphone, play
in loop triggered by button taps, realized with an explicit event loop

15

• goodies / search songs — search song library on phone based on song name

• goodies / themify picture — user selects picture, graphical effect is applied
to picture pixel by pixel via two nested loops

• goodies / vibrato morse — user enters a text, which is then turned into a
sequence of phone vibrations in morse code

• simple graphics / go draw random dots — draw random dots on a canvas

• simple graphics / go draw line — draws a line on a canvas, pixel by pixel

• simple graphics / go draw random circles — draws circles on a canvas, pixel
by pixel

• simple graphics / go draw spiral — draws a spiral on a canvas, pixel by pixel

• senses samples / go record microphone — records a sound from microphone

• senses samples / go snap camera — takes new picture via phone camera

• web samples / links — post links to the web to the wall

• media samples / find short songs — finds all songs shorter than 180s

6.2 Writing a Script

In this section, we will illustrate how one can build a new script from scratch. We
will implement a well-known game, where two paddles are visible on the screen.
Here, one is controlled by the user, and one is controlled by the computer. A ball
is bouncing between the two paddles. The user can tilt the phone to control the
location of the paddle on the screen, and the user gets feedback via the phone
vibration when the ball is missed. To detect tilting of the physical phone device,
this game uses the built-in accelerometer sensor of the phone.

We start by adding a new action with the (+) button at the script level; this
brings us into the action editor. Then we add statement after statement with the
(+) button at the action level. Now we get presented a list of different statement
kinds to choose from, similar to the right screen in Figure 3. For example, to
add the second statement (at line 3), we tap the assignment-statement kind,
which will implicitly introduce a new local variable pic to hold the result. In the
expression editor, we can easily add the right-hand side of the assignment by
tapping on media in the quick-selection list that shows available services in the
current context.

Now we see the middle screen of Figure 6 in the expression editor. Then
we tap on create picture in the quick-selection list which has now adjusted to
show everything we can do with media. By default, the picture size (480, 800) is
entered (the full size of the standardized Windows Phone 7 screen). We choose
to reduce the resolution to (480, 648) so it is fully visible on the screen given
the TouchDevelop header and buttons. Editing the size is easily done with a

16

Figure 6: Paddle game example. (left) First part of game code in action editor
(middle) Editing assignment in expression editor (right) Game while executing

calculator-like user interface to edit numbers. Overall, from the action editor,
just four taps were needed to create a new picture, and a few more taps in the
calculator to edit the desired picture size. A tap on the hardware back button
brings us back to the action editor. Next, we want to show this new picture on
the wall. For that, we again press the (+) button to add another action, then
tap to select an arbitrary-expression statement kind. In the expression editor,
we tap on pic in the quick-selection list, then we tap on the ... button to get
more options, and tap on post to wall from the list of available properties. A tap
on the back button brings us back to the action editor.

All other statements are added in a similar fashion, usually just taking a few
taps for each, where each tap targets a comparatively large surface area which
is easy to hit properly with a big finger. No tedious navigation to individual
characters is necessary. In fact, the most difficult part of programming with
TouchDevelop is usually entering of raw text either to enter a string literal, e.g.
to show a message to the user, or to rename an identifier, if the developer chooses
to do so. Entering text is done with the standard Windows Phone keyboard
control, which works well, but still requires pressing of individual character
buttons which are smaller than all other TouchDevelop button surface areas.

A screenshot of the beginning of the paddle game code in the action editor
is shown on the left screen in Figure 6.

Listing 1: Paddle game

1 action paddle game()
2 sound := senses→ record microphone
3 pic := media→ create picture(480, 648)
4 pic→ post to wall

17

5 x := 0
6 y := 0
7 a := (1 + math→ rand norm) ∗ math→ pi / 8
8 speed := pic→ height / 10
9 while true do

10 p := senses→ acceleration quick
11 x := x + speed ∗ math→ cos(a)
12 y := y + speed ∗ math→ sin(a)
13 if y < 0 or y > pic→ height then
14 a := −a
15 if x > pic→width then
16 a := math→ pi − a
17 sound→ play
18 ly := pic→ height ∗ (1 + p→ y)
19 pic→ clear(colors→ background)
20 pic→ fill rect(0, ly − 40, 4, 80, 0, colors→ foreground)
21 pic→ fill rect(pic→width − 4, y − 40, 4, 80, 0, colors→ gray)
22 pic→ fill rect(x − 4, y − 4, 8, 8, 0, colors→ green)
23 if x < 0 then
24 a := math→ pi − a + (0.5 − math→ rand norm) ∗ math→ pi / 8
25 x := 0
26 sound→ play
27 if y < ly − 40 or y > ly + 40 then
28 phone→ vibrate(0.4)
29 pic→ update on wall
30 phone→ sleep(0.1)

Listing 1 shows the full game source code. Line 2 records a sound that will
be played later when the ball bounces on the left or the right against the wall.
As discussed, line 3, 4 create and post a canvas called pic. Line 5, 6 declare the
coordinates of the moving ball, initially x=0 and y=0, starting at the upper left
corner. Line 7, 8 declares the angle variable a which controls the direction of
the movement of the ball, initially a random value in a range that ensures that
the ball moves towards the right wall. Line 8 introduces a helper variable that
governs how fast the ball flies. In line 9, a while ... do loop starts. The body of
the loop is visually nested. Within the loop, line 10 queries the accelerometer for
the current acceleration vector – a three dimensional value. Without any further
forced-induced acceleration, this vector always includes the gravitational force,
and thus, it can be used to determine the orientation of the otherwise steady
device. In particular, the y coordinate of the vector is used later in line 18
to compute the current vertical position of the user’s (left) paddle, based on
whether the device is standing upright (p→ y=−1) or in a horizontal position
(p→ y=0). Line 13, 14 let the ball bounce when it hits the upper or lower wall,
by adjusting its direction angle a. Note that the body of the if statement is
automatically indented, just like the loop body. Line 15-17 let the ball bounce
when it hits the right wall, adjusting the direction angle and playing the user-
provided sound. Line 18-22 update the picture by basically redrawing it from
scratch, drawing filled rectangles for the left paddle, the green ball, and the right

18

paddle. Line 23-26 let the ball bounce when it hits the left wall, adjusting the
direction angle, playing the user-provided sound, and vibrating when the ball
does not hit the user’s (left) paddle depending on its vertical position. Before
ending the loop, on line 29, we use pic→ update on wall to make the changes made
to the picture visible on the screen. Finally, at the end of the loop in line 30,
the game briefly sleeps to provide a steady game speed.

The right screen in Figure 6 shows the game while executing: The canvas
pic, which changes over time, is visible on the wall. On the left, the user’s paddle
is visible; in the middle is the flying ball, and on the right is the computer’s
paddle. The user can stop the execution of the script at any time.

The initial development of this game by the first author stretched over a
time span of approximately two hours, incrementally adding more game aspects
(left paddle, flying ball, right paddle, vibration, sound) and testing them. Since
the program is small in size, errors were easy to spot and fix. In fact, the
biggest intellectual effort in writing this game was to figure out how to real-
ize the physically-correct ball bouncing against the different walls. A novice
TouchDevelop programmer will most likely spend much more time than two
hours for this example, but we expect that much of this additional time will be
spent familiarizing with the programming environment, which will be amortized
when developing further applications.

This game is quite simple, and is meant to illustrate how easy it is to create
conceptually engaging applications with TouchDevelop, using only a touchscreen
to enter the program, and leveraging the sensors of the phone. Much larger and
more refined applications can be created with TouchDevelop.

7 Related Work

TouchDevelop aims at making programming easier and accessible for non-expert
programmers, a topic that has been studied widely for decades; an extensive
overview can be found in [5]. Some notable graphical programming environ-
ments are Scratch [7], Alice [2], and Greenfoot [6]. Alice and Greenfoot target
older students than Scratch. Alice and Scratch are visual programming lan-
guages which shield the user from syntax errors, while Greenfoot uses Java as
its programming language. All of them neither specially target mobile devices,
nor are designed for the touchscreen. In fact, to our knowledge, TouchDevelop
is the first general-purpose programming environment that specifically targets
touchscreens as the main input device.

Closely related to TouchDevelop’s approach are structured code editors,
e.g. the early Cornell Program Synthesizer [10]. Structured editing has been
used previously mainly as a way to prevent certain syntax errors. TouchDe-
velop’s editor is not strictly structured, as it allows arbitrary token-strings at
the expression-level, but each token is treated as an atom again. All of the
structured editing in TouchDevelop is motivated by the ability to easily edit the
code on a touchscreen, where elements are typically selected with a big thumb,
and not for the sole purpose of preventing syntax errors. The GNOME [4] envi-

19

ronment, for example, even prevented the programmer from moving the cursor
while a syntax error was present.

The TouchDevelop language could be considered a Visual programming lan-
guage [8], since it is edited graphically, but the interaction with the graphical
elements is quite limited; the TouchDevelop language still very much resembles
a traditional, text-based programming language, with a specialized editor and
automated reformatting and annotation of program text.

Although based on touchscreen-focused program editing, TouchDevelop is
also different from Tactile programming [9] in that TouchDevelop does not
make it easy to cross the boundaries between the application world and the
programming world; both worlds are still strictly separated, as in a traditional
programming model.

Dasher[11] is another new user interface that aims at efficient input of
character-based text based on language modeling and driven by continuous two-
dimensional gestures which could come from a touchscreen. In TouchDevelop,
we do not face so much the problem of continuous text input, but rather have
to deal with highly structured programs.

Another visual programming platform that targets novice programmers is
App Inventor for Android3, which enables the creation of applications for the
Android platform. However, for program development, App Inventor requires
a regular (big and powerful) PC with a full Java runtime environment; it does
not run on Android itself.

Programming on tablet PCs with a stylus has been studied before [3], using
ordinary programming languages, compilers, and development environments,
using a pen. While the mobility of the device was appreciated, the students felt
that this arrangement was ineffective for programming tasks.

8 Conclusion

Incredibly powerful and easy-to-use smartphones are going to be the first (and
possibly only) computing devices which virtually all people will own, and carry
with them at all times. TouchDevelop is a novel application creation environ-
ment for anyone—in particular students and hobbyist programmers—to pro-
gram and script their phone, directly on the phone, enabling fun, interesting
and novel combinations of phone sensor data (e.g. location) and the cloud (via
services, storage, computing, and social networks). TouchDevelop is available on
the Windows Phone Marketplace where it became one of the 100 most down-
loaded apps (out over 13, 000 apps, on 4/14/2011) within one week of being
launched. Users gave TouchDevelop an average rating of 4.7/5, confirming our
proposition that scripting on a mobile device is possible and even desirable.

3http://appinventor.googlelabs.com/about/

20

Acknowledgements

We would like to thank all researchers and developers in the Research in Software
Engineering group at Microsoft Research who helped to shape TouchDevelop in
countless discussions.

References

[1] S. Burckhardt and D. Leijen. Semantics of concurrent revisions. In
G. Barthe, editor, ESOP, volume 6602 of Lecture Notes in Computer Sci-
ence, pages 116–135. Springer, 2011.

[2] S. Cooper. The design of alice. Trans. Comput. Educ., 10:15:1–15:16,
November 2010.

[3] S. H. Edwards and N. D. Barnette. Experiences using tablet pcs in a pro-
gramming laboratory. In Proceedings of the 5th conference on Information
technology education, CITC5 ’04, pages 160–164, New York, NY, USA,
2004. ACM.

[4] D. B. Garlan and P. L. Miller. Gnome: An introductory programming
environment based on a family of structure editors. SIGPLAN Not., 19:65–
72, April 1984.

[5] C. Kelleher and R. Pausch. Lowering the barriers to programming: A tax-
onomy of programming environments and languages for novice program-
mers. ACM Comput. Surv., 37:83–137, June 2005.

[6] M. Kölling. The greenfoot programming environment. Trans. Comput.
Educ., 10:14:1–14:21, November 2010.

[7] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The
scratch programming language and environment. Trans. Comput. Educ.,
10:16:1–16:15, November 2010.

[8] J. V. Nickerson. Visual programming. In PhD thesis. New York University,
1994.

[9] E. Repenning and J. Ambach. Tactile programming: A unified manipula-
tion paradigm supporting program comprehension, composition and shar-
ing. In Proceedings of the 1996 IEEE Symposium of Visual Languages,
pages 102–109. Press, 1996.

[10] T. Teitelbaum. The cornell program synthesizer: a syntax-directed pro-
gramming environment. SIGPLAN Not., 14:75–75, October 1979.

[11] D. J. Ward, A. F. Blackwell, and D. J. C. MacKay. Dasher - a data entry
interface using continuous gestures and language models. In Proceedings of
the 13th annual ACM symposium on User interface software and technol-
ogy, UIST ’00, pages 129–137, New York, NY, USA, 2000. ACM.

21

