
Roll Forward, Not Back
A Case for Deterministic Conflict Resolution

Sebastian Burckhardt, Manuel Fähndrich, and Daan Leijen
Microsoft Research

{sburckha,maf,daan}@microsoft.com

Abstract
Enabling applications to execute various tasks in parallel
is difficult if those tasks exhibit read and write conflicts.
In recent work, we developed a programming model based
on concurrent revisions that addresses this challenge: each
forked task gets a conceptual copy of all locations that are
declared to be shared. Each such location has a specific isola-
tion type; on joins, state changes to each location are merged
deterministically based on its isolation type. In this paper,
we study how to specify isolation types abstractly using
operation-based compensation functions rather than state-
based merge functions. Using several examples including a
list with insert, delete and modify operations, we propose
compensation tables as a concise, general and intuitively ac-
cessible mechanism for determining how to merge arbitrary
operation sequences. Finally, we provide sufficient condi-
tions to verify that a state-based merge function correctly
implements a compensation table.

1. Introduction
With the recent broad availability of shared-memory multi-
processors, many more application developers now have a
strong motivation to tap into the potential performance ben-
efits of parallel execution. However, dealing with conflicts
between parallel tasks can be quite challenging with tradi-
tional synchronization models. In fact, many programmers
are deterred by the engineering complexity of performing
explicit, manual synchronization or replication.

Our vision is that programmers instead use the program-
ming model of concurrent revisions [2], which simplifies
parallelization of conflicting tasks by (conceptually) copying
shared state automatically on a fork, and merging changes
back at joins using custom merge functions. What is exciting
about this model is the potential to simplify programming
by using isolation types, shared higher-level data types that
have suitable merge functions defined for them. For exam-
ple, instead of sharing an integer to count events using read
and writes, two concurrent tasks would share a counter ab-
straction using increment operations on the counter instead.
Although this seems like a trivial shift in perspective, it is the
higher-level semantics of an increment as opposed to a read-

/write pair that permits the definition of “sensible” merge
functions and reasoning about their behavior.

We found that even simple data types expose subtle cor-
rectness issues when trying to specify and verify them. In
this paper we study a simple integer with both add and set
operations in detail. We also provide merge specifications
for lists with insert, modify, and delete operations. The work
presented here lays the foundation for dealing with more
complicated types such as maps.

In our previous work we have shown that as long as merge
functions are deterministic, the entire execution model of
concurrent revisions is deterministic. One particular ques-
tion left unadressed, however, is what additional properties
merge functions should satisfy in order to be “sensible” for
particular data types. For example, what is a sensible merge
for a list data type supporting inserts, deletes, and changes
to a list? We address this question in this paper by intro-
ducing compensation functions as an abstract specfication
mechanism. Unlike state-based merge functions, compensa-
tion functions are defined in terms of sequences of opera-
tions of the underlying data type. We make the following
contributions:

1. We introduce a operation-based view of merge functions,
based on compensation functions that resolve two con-
flicting operation sequences by appending compensa-
tions.

2. We propose compensation tables as a concise yet trans-
parent way to specify compensation functions pairwise.

3. We show that compensation tables naturally define how
to resolve arbitrary operation sequences by “tiling”.

4. We give sufficient conditions for verifying that a state-
based merge function satisfies a compensation table.

5. We present compensation tables for a number of example
data types, including a list, and a concrete implementa-
tion along with a detailed proof of correctness.

2. Concurrent Revisions
The context for our work is the recently proposed determin-
istic concurrent programming model called concurrent revi-
sions [2, 3]. Its key design principles are:



Explicit Join. The programmer forks and joins revisions,
which can execute concurrently. All revisions must be
joined explicitly.

Declarative Data Sharing. The programmer uses special
isolation types to declare what data may be shared, and
how individual data should be merged.

Effect Isolation. All changes made to shared data within
a revision are only locally visible until that revision is
joined.

Conceptually, the runtime copies all shared data when a
new revision is forked. Therefore, the runtime can schedule
concurrent revisions for parallel execution without creating
data races. At the time of the join, the runtime calls a merge
function f for each location that was modified by the joined
revision, and assigns the computed value to the location
(locations that were not modified retain their current value).
The function called depends on the isolation type. It is called
with three values vcurrent, vjoined and voriginal representing the
current value in the joining revision, the current value in the
joined revision, and the value at the time the revision was
originally forked, respectively.

For example, a cumulative integer type may employ the
merge function fCumulativeInt(vc, vj , vo) = vc + (vj − vo) as
shown in Fig. 1. This function computes the relative effect
vj − vo of the modifications in the joined revision and adds
it to the current value vc. The effect is that modifications by
all revisions are cumulative.

Another isolation type may give priority to the writes in
the child revision by specifying f(vc, vj , vo) = vj , as we do
for the versioned integers in Fig. 2. We found these versioned
types to be very useful in practice [2] as they allows us to
precisely control the order of writes: all writes to a versioned
variable appear to take effect atomically at the time of the
join (and thus simply overwrite earlier writes).

A key benefit of the “concurrent revisions + isolation
types” model is that it resolves conflicts between tasks in
a deterministic and programmable way. Even if tasks exhibit
conflicts, they can still be efficiently executed in parallel,
without issues caused by unnecessary rollbacks and retries.
Moreover, the computation is determinate, meaning that it is
fully specified by the program and does not depend on the
relative timing or scheduling of tasks1 [3].

2.1 Revision Diagrams
It is often helpful to visualize computations using revision
diagrams (see Fig. 1(b) and the bottom row of Fig. 2). Such
diagrams show each revision as a vertically aligned sequence
of points, each point representing one (dynamic) instance of
a statement. We use curved arrows to show precisely where

1 Note further that the determinacy also does not depend on the merge
function being associative or commutative (or being “sensible” in any other
way, for that matter); the only requirement is that it be a function in the
mathematical sense.

(a) (b)

CumulativeInt x = 0 ;
r = fork { x = x + 2 ; }
x = x + 3 ;
join r ; //x = 3 + (2 − 0)
assert(x ≡ 5) ;

◦x = 0
��
◦
�� ��
◦x = x + 3
��

◦x = x + 2

nn◦
assert
(x≡ 5)

��
◦

Figure 1. Example illustrating parallel aggregation with
the isolation type CumulativeInt with the merge function
fCumulativeInt(vc, vj , vo) = vc + (vj − vo).

new revisions branch out (on a fork) and where they merge
in (on a join). As shown in Fig. 2(e), revisions can be nested.

Revision diagrams are not equivalent to other graphs
commonly used to depict concurrent computations: unlike
DAGs, they are semilattices [3], and unlike in SP-graphs,
children may be joined after their parent is joined (Fig. 2(e)).

3. Data Types and Compensations
We now consider some fundamental definitions of sequential
data types, and show how to use compensation operations
to generalize sequential semantics to a concurrent semantics
appropriate for use with the concurrent revisions model.

First, let Val be the universe of values. We consider values
of all types to be part of this set, and the type to be implicitly
and uniquely determined by each value.

DEFINITION 1. We define a sequential data type to be a
tuple of the form (S,R,M, I, ρ, µ) where S is a set of states,
R is a set of read operations,M is a set of modify operations,
I ∈ S is an initial state, ρ : R× S → Val is a read function
(which returns for a given read operation and state the value
returned by the read operation), and µ : M × S → S is a
modify function (returning for a given write operation and
state the updated state). For convenience, we assume that
every data type always includes an empty operation ε such
that µ(ε, s) = s.

EXAMPLE 2. We can define an integer register (a location
holding an integer value and supporting read and write
operations) as a sequential data type

IntReg = (Z, {get}, {set(k) | k ∈ Z}, ρ, µ)

where ρ(get, k) = k and µ(set(k), k′) = k.

Note that the state of a sequential data type is completely
determined by the sequence of modifications. For a sequence
of modifications w = w1 . . . wn ∈ M∗ and a state s ∈ S,
we write µ(w, s) short for µ(wn, . . . µ(w1, s)) . . . ).

We consider operation sequences equivalent that are
equivalent state transformers: we write w1

∼=D w2 for some
data type D = (S,R,M, I, ρ, µ) if µ(w1, s) = µ(w2, s) for
all s ∈ S. For example, set(1) ∼=IntReg set(0)add(1).



(a) (b) (c) (d) (e)

versioned〈int〉 x = 0 ;
r = fork { x = 2 ; }
x = 1 ;
join r ;
assert(x ≡ 2) ;

versioned〈int〉 x = 0 ;
r = fork { x = x ; }
x = 1 ;
join t ;
assert(x ≡ 0) ;

versioned〈int〉 x = 0 ;
r = fork { }
x = 1 ;
join t ;
assert(x ≡ 1) ;

versioned〈int〉 x = 0 ;
r1 = fork { x = 2 ; }
r2 = fork { x = 3 ; }
join r2 ;
join r1 ;
assert(x ≡ 2) ;

versioned〈int〉 x = 0 ;
r1 = fork { r2 = fork { x = 1 ; } }
join r1 ;
assert(x ≡ 0) ;
join r2 ;
assert(x ≡ 1) ;

◦x = 0

��
◦

�� ��
◦x = 1

��

◦x = 2

rr◦

assert
(x≡ 2)

��
◦

◦x = 0

��
◦

�� ��
◦x = 1

��

◦x = x

rr◦

assert
(x≡ 0)

��
◦

◦x = 0

��
◦

�� ��
◦x = 1

��

◦

rr◦

assert
(x≡ 1)

��
◦

◦x = 0
��
◦
��

��
◦
����

◦x = 3

00

◦
��
◦x = 2

ww

◦
��
◦

assert
(x≡ 2)

��
◦

◦x = 0
��
◦

��

��
◦

nn
��

◦
assert
(x≡ 0)

��
◦
��

◦x = 1

mm◦
assert
(x≡ 1)

��
◦

Figure 2. Examples illustrating the semantics of revisions and versioned types with the merge function f(vc, vj , vo) = vj . (a)
The write x=2 takes effect on join; (b,c) the assignment x=x counts as a write, thus removing it leads to a different result; (d)
the order of joins determines the order of writes; (e) a nested revision may be joined after its parent.

3.1 Constructing Merge Functions
The intention behind the concurrent revisions programming
model is to behave as if all modifications performed by a
revision are isolated while the revision is still running, but
take effect atomically at the moment it is joined (i.e. the
modifications are applied to the current state of the joining
revision). As we have demonstrated in prior work [2] and
in the examples earlier in this paper, we can usually achieve
this with a state merge function f : S × S × S → S that is
invoked during join if there were write-write conflicts, i.e. if
both the parent and the child performed modifications.

For example, the versioned integer type illustrated in
Fig.2 is intended to merges modifications that represent
absolute changes to the value. On the other hand, the cu-
mulative integer type shown in Fig. 1 is intended to merge
modifications that are interpreted as relative changes. But
what if some changes are absolute and some are relative? In
that case, we need more information about what operations
were performed to perform a proper merge.

EXAMPLE 3. We can define a sequential data type Int that
offers two different modify operations, an absolute one (set
it to specific value), and a relative one (add a value) as
follows:

S = Z
R = {get}
M = {set(k) | k ∈ Z} ∪ {add(k) | k ∈ Z}
ρ(get, k) = k
µ(set(k), k′) = k
µ(add(k), k′) = k′ + k

This example raises two questions: how do we specify
what should happen if operations add(k) and set(k) are
called concurrently? And how can we implement a state
merge function that follows that specification? We give gen-
eral answers to these questions in the remainder of this paper,
with specific solutions for this Example.

3.2 Compensation Functions
It is not always clear how to devise state-based merge func-
tions that achieve the intended semantics. Reasoning about
operations can often provide more insight.

We could describe an operation-based merge function as
taking two sequences of modify operations and returning a
new sequence, i.e. f : M∗ × M∗ → M∗. Unfortunately,
such arbitrary sequences do not permit compositional rea-
soning about merge behavior on nested revision diagrams
(such as the one in Fig. 2(e)). Thus we use compensation
specification instead.

DEFINITION 4. A compensation specification c∗ for a se-
quential data type (S,R,M, I, ρ, µ) is a function that, given
two sequences, returns two compensation sequences:

c∗ : M∗ ×M∗ → (M∗ ×M∗)

We write c∗l , c
∗
r to denote the left and right components of c∗,

respectively.

Given two operation sequences that we wish to merge,
say wl (happening “on the left”, i.e. in the joining revision)
and wr (happening “on the right”, i.e. in the joined revi-
sion), we consult c∗ to obtain the compensating operation
sequences, say c∗(wl, wr) = (vl, vr). The meaning of these



·
m1

�����������
m3

��>>>>>>>>>

·
m2

�����������
cl(m1,m3)

��

·

cr(m1,m3)
��

m4

��>>>>>>>>>

·

cl(m2,cl(m1,m3))
��

·

v1

��

v2

��

·

cr(cr(m1,m3),m4)
��·

cl(v1,v2)
��

·

cr(v1,v2)
��·

Figure 3. Tiling compensation tables on single operations
constructs a compensation function on sequences. In the
above diagram, we have v1 = cr(m2, cl(m1,m3)) and v2 =
cl(cr(m1,m3),m4).

operations is that the effect of the merge must be equivalent
to both (1) applying the compensating operations on the left,
i.e. applying vl after ml, and (2) applying the compensating
operations on the right, i.e. applying vr after mr.

DEFINITION 5. A compensation specification c∗ is con-
sistent if the operations composed with their compensa-
tions are equivalent: ∀wl, wr ∈ M∗ : wlc

∗
l (wl, wr) ∼=D

wrc
∗
r(wl, wr).

3.3 Compensation Tables
To define compensation functions in practice, it is sensible
to first define a compensation function for pairs of opera-
tions c : M × M → (M × M). We call such a func-
tion a compensation table. Compensation tables (if consis-
tent) have the nice property that they uniquely define a (con-
sistent) compensation function for arbitrary finite operation
sequences because we can tile pairwise compensations as
illustrated in Fig. 3, where we compute the compensation
function c(m1m2,m3m4) for merging two instruction se-
quences of two operations each. Starting at the top, we first
compute the compensating actions for merging just m1 and
m3. From that new point we can keep merging on single op-
erations until we fill out the 4 tiles of the diamond. Clearly,
this procedure easily generalizes to sequences of more than
two operations, thus defining a complete compensation func-
tion. While elegant, the tiling method may however not be
efficient in practice (spending time quadratic in the number
of operations). We discuss in Section 4 how to build more
efficient implementations.

EXAMPLE 6. Consider an integer data type as defined in
Example 3, but with M restricted to contain only add op-

erations. We can then define the compensation table

c(add(i), add(j)) = (add(j), add(i)).

In this case, the compensating action is exactly the other
action. It is not hard to see that the merge we define in this
way is equivalent to the state-based merge function fCumInt
defined earlier.

In general, if the operations commute we can always con-
struct a consistent merge specification by using exactly
the other operation as the compensating action, where
c(ml,mr) = (mr,ml). Due to commutativity, if follows
directlty that mlmr

∼= mrml.
The next example shows that operations do not always

need to commute to be mergeable, nor does the merge func-
tion need to be symmetric.

EXAMPLE 7. Consider the integer register defined in Exam-
ple 2. We can then define the compensation table as

c(set(i), set(j)) = (set(j), ε).

This specification is consistent since set(i)set(j) ∼= set(j)ε.
In this case, we want the write on the right to overwrite
the write on the left, thus the compensating action on the
left is set(j), while the compensating action on the right is
ε (none needed). Again, the merge we defined in this way
is equivalent to the state-based merge function fVersionedInt
defined earlier.

EXAMPLE 8. Consider the integer data type from Exam-
ple 3. Then we can give a compensation table:

c(add(i), add(j)) = (add(j), add(i))
c(set(i), add(j)) = (add(j), set(i+ j))
c(add(i), set(j)) = (set(j), ε)
c(set(i), set(j)) = (set(j), ε)

EXAMPLE 9. Consider a list data type (S,R,M, I, ρ, µ)
with S being the set of lists of some type (left unspecified
for now), I being the empty list, R = {get(i) | i ∈ Z,
M = {set(i, x) | i, x ∈ Z}∪{ins(i, x) | i, x ∈ Z}∪{del(i) |
i ∈ Z}. The insertion ins(i, x) inserts x right before the
element at index i. We write idx(m) to get the index from
an operation, and adj(m, j) to add j to the index of an
operation m.

Since there are so many cases to consider, we define the
merge table first just for the right-side compensation. First,
we consider all pairs of operations where the indices are
equal and thus work on the same element:



cr(del(i), del(i)) = ε (double deletion)
cr(set(i, x), del(i)) = ε (set is deleted)
cr(set(i, x), set(i, y)) = ε (right side wins)
cr(ins(i, x), ins(i, y)) = ins(i, x) if x < y
cr(ins(i, x), ins(i, y)) = ins(i+ 1, x) if x ≥ y

cr(del(i), set(i, x)) = del(i)
cr(ins(i, x), del(i)) = ins(i, x)
cr(del(i), ins(i, x)) = del(i+ 1)
cr(set(i, x), ins(i, y)) = set(i+ 1, x)

Secondly, we consider the cases where the indices differ:

cr(m1,m2) = m1 if idx(m1) < idx(m2)
cr(m1, del(i)) = adj(m1,−1) if idx(m1) > i
cr(m1, ins(i, x)) = adj(m1,+1) if idx(m1) > i
cr(m1, set(i, x)) = m1 if idx(m1) > i

Finally, we define the left compensation in terms of the right
compensation:

cl(set(i, x), set(i, y)) = set(i, y) (right side wins)
cl(m1,m2) = cr(m2,m1) otherwise

This defines the merge semantics of mutable lists. Note that
the cases for conflicting set’s prefer the set of the right side.
One could define lists over mergeable types and use the
apropiate merge specification for that type in such cases. For
double insertions cr(ins(i, x), ins(i, y)), we use the order
between the elements x and y to determine the final order:
this ensures that for example a sorted list stays sorted after
merging. Another choice could be to use ‘right side first’, to
only preserve the relative order of insertions in each branch.

4. Concrete Implementations
In practice, we often try to construct concrete implementa-
tions of a data type where state forking and merging is repre-
sented by a replication function (representing the operation
of copying the state upon a fork for use in the forked revi-
sion) and a state merge function f as described in Section 2.

DEFINITION 10. We define a concrete implementation to be
a tuple (S,R,M, I, ρ, µ, r, f) where (S,R,M, I, ρ, µ) is a
sequential data type, r : S → S is a replication function,
and f : S × S × S → S is a merge function.

EXAMPLE 11. We can define a concrete integer implemen-
tation for the Int type from Example 3 that satisfies the com-
pensation tables given in Example 8. We augment the state
to store not just a simple integer k, but A(k) if the inte-
ger should be interpreted as an absolute value, or R(k) if
it should be interpreted as a relative value. To simplify the
notation below, we use as a pattern that matches an ar-
bitrary state, and X(k) as a pattern that matches A(k) or
R(k).

S = {A(i), R(i) | i ∈ Z}
R = {get}
M = {set(i), add(i) | i ∈ Z}
I = A(0)
ρ(get, A(i)) = ρ(get, R(i)) = i
µ(set(i), X(j)) = A(i)
µ(add(i), X(j)) = X(j + i)
f( , A(m), ) = A(m)
r(X(i)) = R(i)
f(A(n), R(m), X(i)) = A(n+m− i)
f(R(n), R(m), X(i)) = X(n+m− i)

4.1 Verifying Concrete Implementations
As soon as we present a concrete implementation, we would
like to know whether it correctly represents the the in-
tended sequential semantics (specified by some sequential
data type) and the intended merge semantics (specified by
a compensation table). This question is not academic, but
very important in practice; without a clear idea on how
to relate the implementation to the specification, humans
are certain to make mistakes. We now elaborate how we
can break the verification of some concrete implementation
(S,R,M, I, ρ, µ, r, f) into three conditions and give suffi-
cient subconditions for each.

(Condition 1) To show that the implementation general-
izes a sequential data type (S′, R,M, I ′, ρ′, µ′) we can give
an abstraction function ψ : S → S′ that satisfies the follow-
ing conditions:

∀r ∈ R : ∀s ∈ S : ρ(r, s) = ρ′(r, ψ(s))
∀m ∈M : ∀s ∈ S : ψ(µ(m, s)) = µ′(m,ψ(s))
ψ(I) = I ′

∀s ∈ S : ψ(r(s)) = ψ(s)

EXAMPLE 12. We can show that the implementation in
Example 11 generalizes the sequential data type Int from
Example3 by defining the map ψ : S → Z as ψ(X(k)) = k,
that is, to “erase” the extra information. The cases are then
easily verified.

(Condition 2). We can show that the concrete implemen-
tation correctly merges revisions in cases where there is at
most one operation, by enumerating all cases. Specifically,
for all s ∈ S and m1,m2 ∈M , we can show:

f(µ(m1, s), µ(m2, r(s)), s) = µ(m1cl(m1,m2), s)
= µ(m2cr(m2,m1), s)

EXAMPLE 13. For the implementation in Example 11 and
the compensation table in Example 8, we can discharge this
condition by going through all the cases for m1 and m2,
each case being relatively simple.

(Condition 3). We can show that the concrete implemen-
tation merges states correctly even if multiple operations
need to be reconciled, by showing that there exists a “smash”
function ξ : M ×M → M that satisfies the following con-
ditions:



1. ξ is associative.

2. ∀m ∈M : ξ(m, ε) = ξ(ε,m) = m.

3. ξ is consistent with µ: for all s ∈ S and m1,m2 ∈ M ,
we have µ(ξ(m1,m2), s) = µ(m2, µ(m1, s)).

4. ξ is consistent with tiling of compensation functions (as
in Fig. 3): for all m1,m3,m4 ∈M , we have

cl(m1, ξ(m3,m4)) = ξ(cl(m1,m3), cl(cr(m1,m3),m4))
cr(m1, ξ(m3,m4)) = cr(cr(m1,m3),m4))

and for all m1,m2,m3 ∈M , we have

cl(ξ(m1,m2),m3) = cl(m2, cl(m1,m3)))
cr(ξ(m1,m2),m3) = ξ(cr(m1,m3), cr(m2, cl(m1,m3)))

EXAMPLE 14. For the implementation in Example 11 and
the compensation table in Example 8, we define the smash
function as follows:

ξ(add(i), add(j)) = add(i+ j)
ξ(add(i), set(j)) = set(j)
ξ(set(i), add(j)) = set(i+ j)
ξ(set(i), set(j)) = set(j)

Again, we can then discharge the conditions by going
through all the cases. The first three are easy. Consis-
tency with the compensation functions is abit more work.
Listing all 32 cases appeared overwhelming at first, but us-
ing diagrams simplified the task reasonably; we drew and
filled in one diagram for each of the 8 combinations of
m1,m3,m4, and one diagram for each of the 8 combina-
tions ofm1,m2,m3, then checked 2 conditions per diagram.
Clearly, for more complex data types we would automate this
process.

5. Related Work
Recently, researchers have proposed programming models
for deterministic concurrency [1, 5, 11, 14]. These models all
guarantee that the execution is equivalent to some sequential
execution and do not resolve true conflicts. Cilk++ hyperob-
jects [6] are similar to isolation types, but are deterministic
only for fully commutative operations, and Cilk tasks follow
a more restricted concurrency model [7, 12]. Isolation types
are also similar to the idea of coarse-grained transactions [8]
and semantic commutativity [9] insofar they eliminate false
conflicts by raising the abstraction level.

Conflict resolution schemes have also been studied in the
context of collaborative editing and eventual consistency.
Most similar to our compensation function idea is the op-
erational transformations approach [4], but it requires more
complicated consistency conditions often violated by actual
implementations [10]. Alternatively, conflict resolution can
be simplified by making all operations commutative [13].

6. Conclusion
We believe that the concurrent revisions framework is a great
foundation to study mergeable datatypes. Using compensa-
tion tables we can concisely specify the semantics of concur-
rent data types, and we are working to specify more complex
data types like graphs and dictionaries.

References
[1] E. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe mul-

tithreaded programming for C/C++. In Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA),
2009.

[2] S. Burckhardt, A. Baldassin, and D. Leijen. Concurrent pro-
gramming with revisions and isolation types. In Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2010.

[3] S. Burckhardt and D. Leijen. Semantics of concurrent re-
visions. In European Symposium on Programming (ESOP),
2011.

[4] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware
systems. SIGMOD Rec., 18:399–407, June 1989.

[5] R. B. et al. A type and effect system for Deterministic Parallel
Java. In Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2009.

[6] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin.
Reducers and other Cilk++ hyperobjects. In Symposium on
Parallel Algorithms and Architectures (SPAA), 2009.

[7] M. Frigo, C. Leiserson, and K. Randall. The implementation
of the Cilk-5 multithreaded language. In Programming Lan-
guage Design and Impl. (PLDI), pages 212–223, 1998.

[8] E. Koskinen, M. Parkinson, and M. Herlihy. Coarse-grained
transactions. In Principles of Programming Languages
(POPL), 2010.

[9] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. Chew. Optimistic parallelism requires abstrac-
tions. In Programming Language Design and Implementation
(PLDI), 2007.

[10] G. Oster, P. Urso, P. Molli, and A. Imine. Proving correctness
of transformation functions in collaborative editing systems.
Rapport de Recherche 5795, LORIA – INRIA Lorraine, Dec.
2005.

[11] P. Pratikakis, J. Spacco, and M. Hicks. Transparent proxies
for java futures. SIGPLAN Not., 39(10):206–223, 2004.

[12] K. Randall. Cilk: Efficient Multithreaded Computing. PhD
thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, May 1998.

[13] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A
comprehensive study of Convergent and Commutative Repli-
cated Data Types. Rapport de Recherche 7506, INRIA, Jan.
2011.

[14] A. Welc, S. Jagannathan, and A. Hosking. Safe futures for
java. In Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 439–453, 2005.


