
Homomorphic Proofs and Applications

Tolga Acar
tolga@microsoft.com

Lan Nguyen
languyen@microsoft.com

Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

Categories and Subject Descriptors
E.3 [Data Encryption]: Public Key Crypto Systems

General Terms
Security, Cryptography, Theory

Keywords
Privacy, Anonymous Credential, Revocation, Accumulator,
Proof System, Zero Knowledge.

ABSTRACT
This paper introduces and formalizes homomorphic proofs,
which allow ’adding’ proofs and ’adding’ their statements
to get a new proof of the ’sum’ statement. We propose
a construction of homomorphic proofs and show one of its
applications which is a new accumulator scheme with del-
egatable non-membership (NM) proofs. We use this accu-
mulator in extending the BCCKLS scheme [3] to achieve
a delegatable anonymous credential with revocation system.
Informally, the accumulator’s delegatable NM proofs enable
user A, without revealing her identity, to delegate to user
B the ability to prove that A’s identity is not included in a
blacklist which could even be updated afterward. Moreover,
the delegation should be redelegatable, unlinkable and ver-
ifiable. Security of the proposed schemes is provable. We
implement a system for Revocation of Anonymous Creden-
tials (RAC) that bases on the proposed accumulator. RAC
could provide revocation for several anonymous credential
systems.

1. INTRODUCTION
Proof systems play important roles in many cryptographic
systems, such as signature, authentication, encryption, anony-
mous credential and mix-net. In a proof system between a
prover and a verifier, an honest prover with a witness can
convince a verifier about the truth of a statement but an ad-
versary cannot convince a verifier of a false statement. Groth
and Sahai [18] proposed a novel class of non-interactive proof

systems (GS) with a number of desirable properties which
are not available in previous ones. They are efficient and
general. They do not require the random oracle assumption.
They can be randomized, i.e. generating a new proof from
an existing proof of the same statement without knowing
the witness. In this paper, we will unveil another valuable
feature of GS proofs, homomorphism.

Proof systems are used to construct accumulators. An ac-
cumulator allows aggregation of a large set of elements into
one constant-size accumulator value. There is a proof sys-
tem, called ‘membership’, to prove that an element is ac-
cumulated. An accumulator is said to be universal if there
is another proof system, called ‘non-membership’, to prove
that a given element is not accumulated in the accumulator
value. An accumulator is said to be dynamic if the costs
of adding and deleting elements and updating the accumu-
lator value and proof systems’ witnesses do not depend on
the number of elements aggregated [2]. Some applications of
accumulators include space-efficient time stamping, ad-hoc
anonymous authentication, ring signatures, ID-Based sys-
tems, and membership revocation for identity escrow, group
signatures and anonymous credentials.

In anonymous credential systems, a user can prove some
credentials without revealing any other private information
such as her identity. There have been several proposals
[10, 4, 3]; applications such as in direct anonymous attes-
tation (DAA) [9] and anonymous electronic identity (eID)
token [12, 21]; and implementations such as U-prove [21],
Idemix [12] and in java cards [5]. Revocation is indispens-
able in credential systems in practice, as dispute, compro-
mise, mistake, identity change, hacking and insecurity could
make any credential become invalid before its expiration.
The anonymity requirement makes revocation for anony-
mous credentials more challenging, as the user also needs
to anonymously prove that her credentials are not revoked.
The primary revocation method so far is to use accumulator
[23, 2], as the cost for each proof of not being revoked is
constant. An anonymous credential system is delegatable [3]
if its credential could be delegated from one user to another
user so that a user could anonymously prove a credential
which is delegated some levels away from the original issuer.
Delegation is important for efficiently managing any kind
of organizations, as one person can not do everything and
should delegate some authority to colleagues or subordinates
to execute her tasks.

Our contribution.
We introduce and formally define a new notion of homomor-
phic proof, which means there is an operation which ’adds’
some proofs, their statements and their witnesses to get a
new valid proof of the ’sum’ statement and the ’sum’ wit-
ness. We present and prove a construction for homomorphic
proofs from GS proofs [18]. GS proof’s high level of general-
ization could partly explain its large number of applications,
such as group signatures, ring signatures, mix-nets, anony-
mous credentials, oblivious transfer. Our homomorphic con-
struction aims to use the most general form of GS proofs to
maximize the range of possible applications.

As a signature or authentication could be viewed as a proof
of authenticity on data, some more straight directions for
applying homomorphic proofs could be homomorphic signa-
tures [19] and homomorphic authentication [1], which have
found applications in provable cloud storage [1], network
coding [13, 24], digital photography [20] and undeniable sig-
natures [22]. Homomorphic encryption and commitment
schemes have been used in mix-nets , voting [15], anonymous
credentials [3] and other multi party computation systems.
Independently from us, homomorphic NIZK is proposed in
[14] and used for homomorphic encryption. Gentry’s recent
results on fully homomorphic encryption [16] allow comput-
ing any generic functions of encrypted data without decryp-
tion and could be applied in scenarios such as cloud com-
puting and searchable encryption. There is a chance that
homomorphic proofs could also be useful in these contexts.
In this paper, we will look at its application to blacklisting
delegatable anonymous credentials.

Blacklisting anonymous credentials has been relying on ac-
cumulators. Identities of revoked credentials are accumu-
lated in a blacklist and a user proves that her credential
is not revoked by using the accumulator’s NM proof, whose
cost is constant, to prove that the credential’s identity is not
accumulated. For delegatable credentials, when a credential
is revoked, a natural rule is to consider all delegated descen-
dants of the credential to be revoked. Applying that rule
in delegatable anonymous credentials, a user must be able
to anonymously prove that all ancestor credentials of her
credential are not revoked, even when the blacklist changes.

So the main difficult challenge is to create a new type of ac-
cumulators for blacklisting delegatable anonymous creden-
tials that satisfies the following requirements. First, user A,
without leaking private information, could delegate the abil-
ity to prove that her credential’s identity is not accumulated
in any blacklist to user B so that such proofs generated by A
and B are indistinguishable and the blacklist could change
anytime. Second, the delegation should be unlinkable, i.e. it
should be hard to tell if two such delegations come from the
same delegator A. Third, user B should be able to redelegate
the ability to prove that A’s credential is not blacklisted to
user C, such that the information C obtains from the redele-
gation is indistinguishable from the information one obtains
from A’s delegation. Finally, when receiving some delegation
information, one should be able to verify that it is correctly
built. We call such a scheme as accumulator with delegatable
NM proofs (ADNMP).

With homomorphic proofs, we propose the first solution to

the above challenge, i.e. constructing an ADNMP scheme,
and then using it to revoke delegatable anonymous creden-
tials. We define a new model for accumulators and ex-
tend it to define security requirements for delegatable NM
proofs. We prove security of the accumulator scheme and the
delegatable anonymous credentials with revocation system.
Their constructions in the SXDH (Symmetric External Diffie
Hellman) or SDLIN (Symmetric Decisional Linear) instan-
tiations of GS proofs allow using the most efficient curves
for pairings [17].

Homomorphic proofs bring delegatability of proofs to an-
other level. A proof’s statement often consists of some
commitments of variables (witnesses) and some conditions.
In [3], a proof could be randomizable or malleable, that
means it is possible to generate a new proof and to ran-
domize the statement’s commitments without witness, but
the statement’s conditions always stay the same. Homomor-
phic proofs allow generating a new proof for a new state-
ment containing new conditions, without any witness. A
user can delegate her proving capability to another user by
revealing some proofs, which are homomorphic. By linearly
combining these proofs and their statements, the delegatee
could generate several new proofs for several other state-
ments with different conditions. In delegatable NM proofs
of accumulators, changing blacklist is an example of chang-
ing a statement’s conditions. In short, the BCCKLS paper
[3] deals with delegating proofs of the same statements’ con-
ditions. This paper deals with delegating proofs of changing
statements’ conditions.

Our final contribution is an implementation of RAC, a sys-
tem for Revocation of Anonymous Credentials. Its core com-
ponent is the ADNMP scheme. RAC could be used for sev-
eral anonymous credential systems [21, 10, 4, 3]with or with-
out delegatability, some of which have been implemented or
commercialized. Previous discussions on accumulators al-
ways focus on the constant costs of their proofs. But there
is a tradeoff: the cost of computing and updating a witness
is linear to the number of accumulated elements. So in sce-
narios which require lots of changes in the accumulated set
and only a few proofs, accumulators may be an inefficient
choice or must be adjusted to optimize performance. This
paper will show such an optimization for RAC’s design.

The next section recalls some background knowledge and
the following sections present our results in homomorphic
proofs, ADNMP, blacklisting delegatable anonymous cre-
dentials, and RAC.

2. BACKGROUND
Notation. PPT stands for Probabilistic Polynomial Time;
CRS for Common Reference String; Pr for Probability; NM
for non-membership; ADNMP for Accumulator with Dele-
gatable NM Proofs. Denote ← for random output. For a
group G with identityO, denote G∗ := G\{O}. Matm×n(R)
is the set of matrices with size m× n of elements in R. For
a matrix Γ, denote Γ[i, j] the value at row ith and column
jth. A vector ~z of l elements can be seen as a matrix of l
rows and 1 column. For a vector or tuple z, denote z[i] the
ith element. Notations of algorithms may omit inputs, such
as public parameters Para, when appropriate.

Bilinear Pairings. Let G1 and G2 be cyclic additive groups
of order prime p generated by P1 and P2, respectively, and
GT be a cyclic multiplicative group of order p. An efficiently
computable bilinear pairing e : G1 × G2 → GT satisfies:
e(aP, bQ) = e(P,Q)ab, ∀P ∈ G1, Q ∈ G2, a, b ∈ Zp; and
e(P1, P2) generates GT .

SXDH [18]. For bilinear setup (p,G1,G2,GT , e, P1, P2) with
prime p, eXternal Diffie-Hellman (XDH) assumes that the
Decisional Diffie-Hellman (DDH) problem is computation-
ally hard in one of G1 or G2. Symmetric XDH (SXDH)
assumes that DDH is hard in both G1 and G2.

2.1 Non-Interactive Proof System
Let R be an efficiently computable relation of (Para, Sta,
Wit) with setup parameters Para, a statement Sta, and a
witness Wit. A non-interactive proof system for R consists
of 3 PPT algorithms: a Setup, a prover Prove, and a verifier
Verify. A non-interactive proof system (Setup, Prove, Verify)
must be complete and sound. Completeneness means that for
every PPT adversary A, Pr[Para← Setup(1k); (Sta,Wit)←
A(Para); Proof← Prove(Para,Sta,Wit) :
Verify(Para,Sta,Proof) = 1 if (Para,Sta,Wit) ∈ R] is over-
whelming. Soundness means that for every PPT adver-
sary A, Pr[Para ← Setup(1k); (Sta,Proof) ← A(Para) :
Verify(Para,Sta,Proof) = 0 if (Para,Sta,Wit) /∈ R, ∀Wit] is
overwhelming.

Zero-Knowledge. A non-interactive proof system is Zero-
Knowledge (ZK), if the proof does not reveal any information
except proving that the statement is true. Witness Indistin-
guishability (WI) requires that the verifier can not determine
which witness was used in the proof. A non-interactive proof
system is composable ZK [18] if there exists a PPT simula-
tion algorithm outputting a trapdoor and parameters indis-
tinguishable from Setup’s output, and under the simulated
parameters, ZK holds even when the adversary knows the
trapdoor. Composable ZK implies the standard ZK.

Randomizing proofs and commitments. A randomiz-
able non-interactive proof system [3] has another PPT algo-
rithm RandProof, that takes as input (Para,Sta,Proof) and
outputs another valid proof Proof′, which is indistinguish-
able from a proof produced by Prove. A PPT commitment
algorithm Com binds and hides a value x with a random
opening r. Informally, a commitment scheme is randomiz-
able [3] if there exists a PPT algorithm ReCom such that
ReCom(Com(x, r), r′) = Com(x, r + r′). Sta and Proof may
contain commitments of variables. A non-interactive proof
system is malleable [3] if it is efficient to randomize the proof
and its statement’s commitments to get a new proof which is
valid for the new statement. When possible, concatenation
of two proofs is a proof that merges setup parameters and
all commitments and proves the combination of conditions.
From a proof Proof, a projected proof is obtained by moving
some commitments from the statement to Proof.

Partial Extractability. A non-interactive proof of knowl-
edge (NIPK) system (Setup, Prove, Verify) is F-extractable
[4] for a bijection F if there is a PPT extractor (ExSet,
ExWit) such that ExSet’s output Para is distributed iden-
tically to Setup’s output, and for every PPT adversary A,
Pr[(Para, td) ← ExSet(1k); (Sta,Proof) ← A(Para);Ext ←

ExWit(td,Sta,Proof) : Verify(Para,Sta,Proof) = 1 ∧
(Para,Sta, F−1(Ext)) /∈ R] is negligible. As in [4], we use
the following notations NIPK or NIZKPK (ZK for zero knowl-
edge) for a statement consisting of commitments C1, ..., Ck
of witness’ variables x1, ..., xk and some Condition:
Proof← NIPK[x1 in C1, ..., xk in Ck]{F (Para,Wit) :
Condition(Para,Wit)}.

2.2 Groth-Sahai (GS) Proofs
This general description of GS proofs is based on the GS full
version paper [18] which is updated and free from previous
errors [17].

Bilinear Map Modules. Given a finite commutative ring
(R,+, ·, 0, 1), an abelian group (A,+, 0) is an R-module if
∀r, s ∈ R,∀x, y ∈ A: (r + s)x = rx + sx ∧ r(x + y) = rx +
ry ∧ r(sx) = (rs)x ∧ 1x = x. Let A1, A2, AT be R-modules
with a bilinear map f : A1 × A2 → AT . Let B1, B2, BT
be R-modules with a bilinear map F : B1 × B2 → BT and
efficiently computable maps ι1 : A1 → B1, ι2 : A2 → B2

and ιT : AT → BT . Maps p1 : B1 → A1, p2 : B2 → A2

and pT : BT → AT are hard to compute and satisfy the
commutative properties: F (ι1(x), ι2(y)) = ιT (f(x, y)) and
f(p1(x), p2(y)) = pT (F (x, y)). For ~x ∈ An1 and ~y ∈ An2 ,

denote ~x · ~y =
∑n
i=1 f(x[i], y[i]). For ~c ∈ Bn1 and ~d ∈ Bn2 ,

denote ~c • ~d =
∑n
i=1 F (c[i], d[i]).

Setup. GS parameters Para includes setup Gk and CRS

σ. Gk := (R, {A(i)
1 , A

(i)
2 , A

(i)
T , f (i)}Li=1) where A

(i)
1 , A

(i)
2 , A

(i)
T

are R-modules with map f (i) : A
(i)
1 × A

(i)
2 → A

(i)
T . L is

the number of equations in a statement to be proved. σ :=

({B(i)
1 , B

(i)
2 , B

(i)
T , F (i), ι

(i)
1 , p

(i)
1 , ι

(i)
2 , p

(i)
2 , ι

(i)
T , p

(i)
T , ~u1

(i), ~u2
(i),

H
(i)
1 , ..., H

(i)
ηi }Li=1) where B

(i)
1 , B

(i)
2 , B

(i)
T , F (i), ι

(i)
1 , p

(i)
1 , ι

(i)
2 ,

p
(i)
2 , ι

(i)
T , p

(i)
T are described above. ~u1

(i) consists of m̂(i)

elements in B
(i)
1 and ~u2

(i) consists of n̂(i) elements in B
(i)
2 .

They are commitment keys for A
(i)
1 and A

(i)
2 respectively, as

we will discuss more later. Matrices H
(i)
1 , ..., H

(i)
ηi ∈

Matm̂(i)×n̂(i) (R) generate all matrices H(i) satisfying ~u1
(i)•

H(i) ~u2
(i) = 0. It may happens that A

(i)
k ≡ A

(j)
l for some

k, l ∈ {1, 2} and i, j ∈ {1, ..., L}. In that case, it is required

that (B
(i)
k , ι

(i)
k , p

(i)
k , ~uk

(i)) ≡ (B
(j)
l , ι

(j)
l , p

(j)
l , ~ul

(j)).

Statement. A GS statement is a set of L equations. Each
equation is over R-modules A1, A2, AT with map f : A1 ×
A2 → AT as follows

n∑
j=1

f(aj , yj) +

m∑
i=1

f(xi, bi) +

m∑
i=1

n∑
j=1

γijf(xi, yj) = t

with variables x1, . . . , xm ∈ A1 and y1, . . . , yn ∈ A2 and
coeffficients a1, . . . , am ∈ A1, b1, . . . , bn ∈ A2 and t ∈ AT .
For any matrix Γ ∈ Matm×n(R), we have ~x · Γ~y = Γ>~x · ~y
and ~x • Γ~y = Γ>~x • ~y. So each equation can be written as

~a · ~y + ~x ·~b+ ~x · Γ~y = t.

A GS statement can be viewed as a set {(~ai,~bi,Γi, ti)}Li=1

over the corresponding set of bilinear groups {A(i)
1 , A

(i)
2 , A

(i)
T ,

f (i)}Li=1 satisfying equations ~ai · ~yi + ~xi ·~bi + ~xi · Γ~yi = ti.
The witness is the set of corresponding variables {~xi, ~yi}Li=1.

Commitment. Given keys ~u1 ∈ Bm̂1 and ~u2 ∈ Bn̂2 , com-

mitments of ~x ∈ Am1 and ~y ∈ An2 are respectively com-

puted as ~c := ι1(~x) + R ~u1 and ~d := ι2(~y) + S ~u2, where
R ← Matm×m̂(R) and S ← Matn×n̂(R). We see that

~c ∈ Bm1 and ~d ∈ Bn2 . The commitment keys could be
one of two types. Hiding keys satisfy ι(A1) ⊆ 〈 ~u1〉 and
ι(A2) ⊆ 〈 ~u2〉. So the commitments are perfectly hiding.

Binding keys satisfy p1(~u1) = ~0 and p2(~u2) = ~0, and the
maps ι1 ◦ p1 and ι2 ◦ p2 are non-trivial. If they are identity
maps, then the commitments are perfectly binding.

Proof. For a statement consisting of several (~a,~b,Γ, t) and
a witness of corresponding variables (~x, ~y), the proof includes

commitments (~c, ~d) of the variables and corresponding pairs

(~π, ~ψ), computed as follows. Generate R ← Matm×m̂(R),
S ← Matn×n̂(R), T ← Matn̂×m̂(R) and r1, ..., rη ← R.

Compute ~c := ι1(~x)+R ~u1; ~d := ι2(~y)+S ~u2; ~π := R>ι2(~b)+

R>Γι2(~y) + R>ΓS ~u2 − T> ~u2 +
∑η
i=1 riHi ~u2; and ~ψ := S>

ι1(~a) +S>Γ>ι1(~x) + T ~u1. Dimension of ~b, ~x and ~c is m,

dimension of ~a, ~y and ~d is n, dimension of ~π is m̂, and di-

mension of ~ψ is n̂. To show that a variable of one equation
is the same as another variable of the same or another equa-
tion, the same commitment is used for the variables.

Verification for each equation’s proof is to check ι1(~a) • ~d+

~c • ι2(~b) + ~c • Γ~d = ιT (t) + ~u1 • ~π + ~ψ • ~u2.

SXDH Instantiation. Bilinear pairing modules Zp,G1,G2

and GT and map e are sufficient to specify all equations in
a statement. So Para includes setup Gk = (p,G1,G2,GT ,
e, P1, P2) and CRS σ = (B1, B2, BT , F, ι1, p1, ι2, p2, ι

′
1, p
′
1, ι
′
2,

p′2, ιT , pT , ~u,~v) where B1 = G2
1, B2 = G2

2 and BT := G4
T

with entry-wise group operations. G1, G2 and GT could be
viewed as Zp-modules with map e. Matrices H1, ..., Hη are
not needed. Vectors ~u of u1, u2 ∈ B1 and ~v of v1, v2 ∈ B2

are commitment keys for G1 and G2.
There are 4 types of equations in statements. For pairing
product, A1 = G1, A2 = G2, AT = GT , f(X,Y) = e(X,Y),

and equations are (~A · ~Y)(~X · ~B)(~X · Γ~Y) = tT . For multi-
scalar multiplication in G1, A1 = G1, A2 = Zp, AT = G1,

f(X, y) = yX, and equations are ~A·~y+ ~X ·~b+ ~X ·Γ~y = T1. For
multi-scalar multiplication in G2, A1 = Zp, A2 = G2, AT =

G2, f(x, Y) = xY , and equations are ~a·~Y +~x· ~B+~x·Γ~Y = T2.
For quadratic equations, A1 = Zp, A2 = Zp, AT = Zp,

f(x, y) = xy mod p and equations are ~a ·~y+~x ·~b+~x ·Γ~y = t.
A proof and its verification can then be done as specified
in the general GS proofs. GS proofs are WI and in some
cases ZK. As shown in [18], in the SXDH and Decisional
Linear (DLIN) [17] instantiations, for statements consisting
of only multi-scalar multiplication and quadratic equations,
GS proofs are composable ZK.

3. HOMOMORPHIC PROOFS
3.1 Formalization
Recall that an abelian group must satisfy 5 requirements:
Closure, Associativity, Commutativity, Identity Element and
Inverse Element.

Definition. Let (Setup,Prove,Verify) be a proof system for
a relation R and Para ← Setup(1k). Consider a subset Π
of all (Sta,Wit,Proof) such that (Para,Sta,Wit) ∈ R and
Verify(Para,Sta,Proof) = 1, and an operation +Π : Π ×

Π → Π. Π is said to be a set of homomorphic proofs if
(Π,+Π) satisfies the 3 requirements: Closure, Associativity
and Commutativity.
Consider an IΠ := (Sta0,Wit0,Proof0) ∈ Π. Π is said to be
a set of strongly homomorphic proofs if (Π,+Π, IΠ) forms
an abelian group where IΠ is the identity element.

If +Π((Sta1,Wit1,Proof1), (Sta2,Wit2,Proof2)) 7→ (Sta, Wit,
Proof), we have the following notations: (Sta,Wit,Proof)←
(Sta1,Wit1,Proof1) +Π (Sta2,Wit2,Proof2), Sta ← Sta1 +Π

Sta2, Wit←Wit1 +Π Wit2, and Proof← Proof1 +Π Proof2.
We also use the multiplicative notation n(Sta,Wit,Proof)
for the addition of n times of (Sta,Wit,Proof). As such, we
also use

∑
i ai(Stai,Witi, P roofi) to represent linear com-

bination of statements, witnesses and proofs. These homo-
morphic properties are particularly useful for randomizable
proofs. One can randomize a proof computed from the ho-
momorphic operation to get another proof which is indistin-
guishable from a proof generated by Prove.

3.2 GS Homomorphic Proofs
Consider a GS proof system (Setup,Prove,Verify) of L equa-
tions (section 2.2). Each map ι1 : A1 → B1 satisfies ι1(x1 +
x2) = ι1(x1) + ι1(x2), ∀x1, x2 ∈ A1, and similarly for ι2.

We first define the identity IGS = (Sta0,Wit0,Proof0).

Sta0 consists of L GS equations (~a0,~b0,Γ0, t0), Wit0 consists
of L corresponding GS variables (~x0, ~y0), Proof0 consists of

L corresponding GS proofs (~c0, ~d0, ~π0, ~ψ0), and there are L
tuples of corresponding maps (ι1, ι2). They satisfy:

� Let m be the dimension of ~b0, ~x0 and ~c0. There exists a
set M ⊆ {1, ...,m} such that ∀i ∈ M , b0[i] = 0; ∀j ∈ M̄ ,
x0[j] = 0 and c0[j] = ι1(0), where M̄ := {1, ...,m}\M .

� Let n be the dimension of ~a0, ~y0 and ~d0. There exists a
set N ⊆ {1, ..., n} such that ∀i ∈ N , a0[i] = 0; ∀j ∈ N̄ ,
y0[j] = 0 and d0[j] = ι2(0), where N̄ := {1, ..., n}\N .

� Both (∀i ∈ M̄, ∀j ∈ N̄) and (∀i ∈M,∀j ∈ N): Γ0[i, j] = 0.

� t0 = 0, ~π0 = 0, and ~ψ0 = 0.

We next define a set ΠGS of tuples (Sta, Wit, Proof) from

the identity IGS . Sta consists of L GS equations (~a,~b,Γ, t)

(corresponding to Sta0’s (~a0,~b0,Γ0, t0) with m, n, M , N);
Wit consists of L corresponding GS variables (~x, ~y); Proof

consists of L corresponding GS proofs (~c, ~d, ~π, ~ψ); satisfying:

� ∀i ∈M , x[i] = x0[i] and c[i] = c0[i]. ∀j ∈ M̄ , b[j] = b0[j].

� ∀i ∈ N , y[i] = y0[i] and d[i] = d0[i]. ∀j ∈ N̄ , a[j] = a0[j].

� If (i ∈ M̄) ∨ (j ∈ N̄), then Γ[i, j] = Γ0[i, j]. That means
∀i ∈ M̄, ∀j ∈ N̄ : Γ[i, j] = 0.

We finally define operation +GS : ΠGS × ΠGS → ΠGS .
For i ∈ {1, 2} and (Stai,Witi,Proofi) ∈ ΠGS , Stai con-

sists of L GS equations (~ai,~bi,Γi, ti) corresponding to Sta0’s

(~a0,~b0,Γ0, t0), Witi consists of L corresponding GS vari-
ables (~xi, ~yi), and Proofi consists of L corresponding GS

proofs (~ci, ~di, ~πi, ~ψi). We compute (Sta, Wit, Proof) ←
(Sta1,Wit1,Proof1) +GS (Sta2,Wit2,Proof2) of correspond-

ing (~a,~b,Γ, t), (~x, ~y) and (~c, ~d, ~π, ~ψ) as follows.

� ∀i ∈M : x[i] := x1[i]; c[i] := c1[i]; b[i] := b1[i] + b2[i]. ∀j ∈
M̄ : b[j] := b1[j]; x[j] := x1[j] + x2[j]; c[j] := c1[j] + c2[j].

� ∀i ∈ N : y[i] := y1[i]; d[i] := d1[i]; a[i] := a1[i]+a2[i]. ∀j ∈
N̄ : a[j] := a1[j]; y[j] := y1[j] + y2[j]; d[j] := d1[j] + d2[j].

� If (i ∈ M̄) ∨ (j ∈ N̄), then Γ[i, j] := Γ1[i, j]. Otherwise,
Γ[i, j] := Γ1[i, j] + Γ2[i, j].

� t = t1 + t2, ~π = ~π1 + ~π2, and ~ψ = ~ψ1 + ~ψ2.

Theorem 3.1. In the definitions above, ΠGS is a set of
strongly homomorphic proofs with operation +GS and the
identity element IGS.

Proof of theorem 3.1 could be found in the Appendix.

4. ACCUMULATOR
4.1 Model
An universal accumulator consists of the following PPT al-
gorithms.

� Setup takes in 1l and outputs (Para,Aux), where Para is
setup parameters containing a domain DomPara of elements
to be accumulated and Aux is some auxiliary information.

� Accu takes in Para and a set of elements AcSet and re-
turns an accumulator value AcVal. In some cases, Accu may
also take in Aux to compute AcV al more efficiently. The
input as a set, where order makes no difference, instead of a
sequence implies the quasi commutativity property defined
in previous papers [2].

� A proof system (Setup,ProveMem,VerifyMem) proves that
an element Ele is accumulated in AcV al. Note that AcSet
is not an input. There is a PPT algorithm CompMemWit
to compute a membership witness for this proof from Para,
Ele, AcSet and AcV al.

� An NM proof system (Setup,ProveNM,VerifyNM) proves
that an element Ele is not accumulated in AcV al. Note
that AcSet is not an input. There is a PPT algorithm
CompNMWit to compute an NM witness for this proof from
Para, Ele, AcSet and AcV al.

An accumulator is dynamic if there exist the following 3
PPT algorithms, whose costs should not depend on AcSet’s
size, for adding or removing an accumulated element Ele.
UpdateVal, whose input includes Para, Ele, the current
accumulator value AcV al and Aux, updates the accumu-
lator value. UpdateMemWit, whose input includes Para,
Ele, the current witness Wit and AcV al, updates member-
ship witnesses. For universal accumulators, UpdateNMWit,
whose input includes Para, Ele, the current witness Wit
and AcV al, updates NM witnesses.

Security of accumulators is implied by completeness and
soundness of the 2 proof systems. As this paper does not

deal with membership proofs, we refer to an universal accu-
mulator as (Setup, ProveNM, VerifyNM, CompNMWit, Accu).

4.2 Delegatable NM Proofs for Accumulators
Delegating ability to prove statements is to allow someone
else to prove the statements on one’s behalf without re-
vealing the witness, even if the statements’ conditions are
changing over time. For privacy reasons, adversaries could
not distinguish different delegations coming from different
users. Moreover, the delegatee could verify a delegation and
unlinkably redelegate the proving ability further to other
users.
Therefore, delegating an accumulator’s NM proofs should
meet 4 conditions, as formalized in Definition 4.1. Delegata-
bility means that an element Ele’s owner can delegate her
ability to prove that Ele is not accumulated without simply
revealing Ele. Even if the set of accumulated elements is
changing overtime, the delegatee does not need to contact
the delegator again to generate the proof. The owner does it
by giving the delegatee a key De generated from Ele. The
proof generated from De by CompProof is indistinguishable
from a proof generated by ProveNM. Unlinkability means
that a delegatee should not be able to distinguish whether
or not 2 delegating keys originating from the same element.
It implies that it is computationally hard to compute an el-
ement from its delegating keys. Redelegatability means that
the delegatee could redelegate De as De′ to other users, so
that the distributions of De and De′ are indistinguishable.
Verifiability means that one should be able to validate that
a delegating key De is correctly built.

Definition 4.1. An universal accumulator (Setup,
ProveNM, VerifyNM, CompNMWit, Accu) provides delegat-
able NM proofs if there exist PPT algorithms: delegating
Dele, redelegating Rede, validating Vali and computing proof
CompProof satisfying.

� Delegatability: For every PPT algorithm (A1,A2), |Pr[
(Para, Aux)← Setup(1k); (Ele,AcSet, state)←A1(Para);
AcV al ← Accu(Para, AcSet); Wit ← CompNMWit(Para,
Ele, AcSet, AcV al); Proof0 ← ProveNM(Para, AcV al,
Wit); De← Dele(Para, Ele); Proof1 ← CompProof(Para,
De, AcSet, AcV al); b ← {0, 1}; b′ ← A2(state, AcV al,
Wit, De, Proofb): (Ele /∈ AcSet) ∧ b = b′] − 1/2| is negli-
gible.

� Unlinkability: For every PPT algorithm A, |Pr[(Para,
Aux) ← Setup(1k); (Ele0, Ele1) ← DomPara; De ← Dele
(Para, Ele0); b ← {0, 1}; Deb ← Dele(Para,Eleb); b

′ ←
A(Para, De, Deb): b = b′]− 1/2| is negligible.

� Redelegatability: For every PPT algorithms (A1,A2), |Pr[
(Para, Aux)← Setup(1k); (Ele, state)← A1(Para); De←
Dele(Para,Ele); De0 ← Dele(Para,Ele); De1 ← Rede
(Para, De); b ← {0, 1}; b′ ← A2(state,De,Deb) : b = b′] −
1/2| is negligible.

� Verifiability: For every PPT algorithm A, |Pr[(Para,
Aux) ← Setup(1k); Ele ← A(Para); De ← Dele(Para,
Ele): Vali(Para,De) = 1 if Ele ∈ DomPara]− 1| and
|Pr[(Para,Aux)← Setup(1k);De′ ← A(Para) : Vali(Para,
De′) = 0 if De′ /∈ {De|De← Dele(Para,Ele′);
Ele′ ∈ DomPara}]− 1| are negligible.

On the other hand, given an element Ele′, the delegatee can
accumulate Ele′ and try to prove that Ele is not accumu-
lated using De. If she can’t prove that anymore, she can
conclude that Ele ≡ Ele′. So for any ADNMP, given an
element Ele and a delegating key De, one can tell if De is
generated by Ele. Due to this restriction, in the accumula-
tor’s applications, Ele should be a secret that only its owner
or a trusted authority knows.

5. AN ADNMP SCHEME
We propose a dynamic universal ADNMP. Its Setup, Accu
and UpdateVal are generalized from those in [2].

� Setup: We need GS instantiations where GS proofs for this
accumulator are composable ZK. As its GS proofs are only
for multi-scalar or quadratic equations, we could use either
the SXDH or SDLIN [17] instantiations, as explained in sec-
tion 2. This paper will use SXDH as an example. Generate
parameters (p,G1,G2,GT , e, P1, P2) and CRS σ with per-
fectly binding keys for the SXDH instantiation of GS proofs
as in section 2, and auxiliary information Aux = δ ← Z∗p.
For the proof, generate A← G1 and τ := ι′2(δ). For efficient
accumulating withoutAux, a tuple ς = (P1, δP1, . . . , δ

q+1P1)
is needed, where q ∈ Z∗p. The domain for elements to be ac-
cumulated is D = Z∗p\{−δ}. We have
Para = (p,G1,G2,GT , e, P1, P2, A, σ, ς, τ).

� Accu: On input AcSet = {a1, ..., aQ} ⊂ D, compute m =
dQ/qe. If Aux = δ is available, the output AcV al is a set
of m component accumulator values {Vj}mj=1 computed as

Vj =
∏jq
i=(j−1)q+1;i<Q(δ + ai)δP1. If Aux is not available,

AcV al is efficiently computable from ς and AcSet.

� UpdateVal: In case a′ ∈ D is being accumulated; from 1
to m, find the first Vj which hasn’t accumulated q elements
and update V ′j = (δ + a′)Vj ; if such Vj couldn’t be found,
add Vm+1 = (δ+ a′)δP1. In case a′ is removed from AcV al,
find Vj which contains a′ and update V ′j = 1/(δ + a′)Vj .

Remarks. Previous accumulators [2] require that q of ς is
the upper bound on the number of elements to be accumu-
lated, i.e. m = 1. We could relax this requirement by the
above generalization which allows this ADNMP to work no
matter whether or not q is less than the number of accumu-
lated elements. It also allows q to be set up smaller.

5.1 NM Proof
We need to prove that an element y2 ∈ D is not in any com-
ponent accumulator value Vj of AcV al {Vj}mj=1. Suppose
Vj accumulates {a1, ..., ak} where k ≤ q, denote Poly(δ) :=∏k
i=1(δ + ai)δ, then Vj = Poly(δ)P1. Let yj3 be the re-

mainder of polynomial division Poly(δ) mod (δ+ y2) in Zp,
and Xj1 be scalar product of the quotient and P1. Simi-
lar to [2], the idea for constructing NM proofs is that y2 is
not a member of {a1, ..., ak} if and only if yj3 6= 0. We
have the following equation between δ, y2, yj3 and Xj1:
(δ + y2)Xj1 + yj3P1 = Vj . Proving this equation by itself
does not guarantee that yj3 is the remainder of the poly-
nomial division above. It also needs to prove the knowl-
edge of (yj3P2, yj3A) and the following Extended Strong DH
(ESDH) assumption. It is a variation of the Hidden Strong
DH (HSDH) assumption [8], though it is not clear which as-

sumption is stronger. It is in the extended uber-assumption
family [7] and can be proved in generic groups, similar to
HSDH.

Definition. q-ESDH: Let (p,G1,G2,GT , e, P1, P2) be bi-
linear parameters, A ← G∗1 and δ ← Z∗p. Given P1, δP1,
. . . , δq+1P1, A, P2, δP2, it is computationally hard to output
(y3
δ+y2

P1, y2, y3P2, y3A) where y3 6= 0.

We will show later that if one could prove the knowledge
of (yj3P2, yj3A) satisfying (δ + y2)Xj1 + yj3P1 = V and y2

is accumulated in V but yj3 6= 0, then she could break the
assumption. To prove the knowledge of (yj3P2, yj3A), we
need equation Xj3 − yj3A = 0. To verify yj3 6= 0, we need
equation Tj = yj3Xj2 and the verifier checks Tj 6= 0. We
now present the NM proof and its security.

� CompNMWit takes in y2, and for each component accu-
mulator value Vj of AcV al {Vj}mj=1, computes remainder
yj3 of Poly(δ) mod (δ + y2) in Zp which is efficiently com-
putable from {a1, ..., ak} and y2. It then computes Xj1 =
(Poly(δ) − yj3)/(δ + y2)P1, which is efficiently computable
from {a1, ..., ak}, y2 and ς. The witness includes y2 and
{(Xj1, Xj3 = yj3A, yj3)}mj=1. UpdateNMWit is for one Vj at
a time and similar to [2] with the extra task of updating
Xj3 = yj3A.

� ProveNM generates Xj2 ← G∗1 and outputs Tj = yj3Xj2
for each Vj and a GS proof for the following equations of
variables y1 = δ, y2, {(Xj1, Xj3, Xj2, yj3)}mj=1.∧m
j=1((y1 +y2)Xj1 +yj3P1 = Vj∧ Xj3−yj3A = 0∧ yj3Xj2 =

Tj).
Note that the prover does not need to know y1. From τ , it
is efficient to generate a commitment of δ and the proof.

� VerifyNM verifies the proof generated by ProveNM and
checks that Tj 6= O, ∀j. It accepts if both of them pass or
rejects otherwise.

Theorem 5.1. The proof system proves that an element
is not accumulated. Its soundness depends on the ESDH
assumption. Its composable ZK depends on the assumption
underlying the GS instantiation (SXDH or SDLIN).

Proof sketch of theorem 5.1 could be found in the Appendix.

5.2 NM Proofs are Strongly Homomorphic
We can see that for the same constant A, the same vari-
ables δ, y2 and Xj2 with the same commitments, the set of
NM proofs has the form of strongly homomorphic GS proofs
constructed in section 3. For constructing delegatable NM
proofs, we just need them to be homomorphic. More specif-
ically, ’adding’ 2 proofs of 2 sets of equations (with the same
commitments for δ, y2 and Xj2)∧m
j=1((δ + y2)X

(1)
j1 + y

(1)
j3 P1 = V

(1)
j ∧ X(1)

j3 − y
(1)
j3 A = 0 ∧

y
(1)
j3 Xj2 = T

(1)
j) and∧m

j=1((δ + y2)X
(2)
j1 + y

(2)
j3 P1 = V

(2)
j ∧ X(2)

j3 − y
(2)
j3 A = 0 ∧

y
(2)
j3 Xj2 = T

(2)
j) will form a proof of equations∧m

j=1((δ+ y2)Xj1 + yj3P1 = Vj ∧Xj3− yj3A = 0∧ yj3Xj2 =

Tj)

where Xj1 = X
(1)
j1 + X

(2)
j1 , Xj3 = X

(1)
j3 + X

(2)
j3 , yj3 = y

(1)
j3 +

y
(2)
j3 , Vj = V

(1)
j + V

(2)
j and Tj = T

(1)
j + T

(2)
j .

5.3 Delegating NM Proof
We first explain the ideas of constructing the accumula-
tor’s delegatable NM proof. We see that a component ac-
cumulator value V =

∏k
i=1(δ + ai)δP1 of {a1, ..., ak} can

be written as V =
∑k
i=0 biδ

k+1−iP1 where b0 = 1 and

bi =
∑

1≤j1<j2<...<ji≤k
∏i
l=1 ajl , that means V can be writ-

ten as a linear combination of δP1, . . . , δ
k+1P1 in ς.

We can construct proofs, which are homomorphic, for each

(δ+y2)X
(i)
1 +y

(i)
3 P1 = δiP1∧X(i)

3 −y
(i)
3 A = 0∧y(i)

3 X2 = T (i)

where i ∈ {1, ..., k + 1}. Using the same linear combi-
nation of δP1, . . . , δ

k+1P1 for V , we can linearly combine
these proofs to get a proof for (δ + y2)X1 + y3P1 = V

∧X3 − y3A = 0 ∧y3X2 = T , where X1 =
∑k
i=0 biX

(k+1−i)
1 ,

X3 =
∑k
i=0 biX

(k+1−i)
3 , y3 =

∑k
i=0 biy

(k+1−i)
3 and T =∑k

i=0 biT
(k+1−i). We now provide the algorithms for del-

egating NM proofs and its security theorem. We also add
UpdateProof to be used in place of CompProof when possible
for efficiency.

� Dele(Para,Ele). For each i ∈ {1, ..., q + 1}, compute re-

mainder y
(i)
3 of δi mod (δ + y2) in Zp, and X

(i)
1 = (δi −

y
(i)
3)/(δ + y2)P1, which are efficiently computable from y2

and ς. In fact, we have y
(i)
3 = (−1)iyi2 and X

(i+1)
1 =∑i

j=0(−1)jyj2δ
i−jP1 = δiP1 − y2X

(i)
1 (so the cost of com-

puting all X
(i)
1 , i ∈ {1, ..., q + 1} is about q scalar prod-

ucts). Generate X2 ← G∗1, the delegation key De includes

{T (i) = y
(i)
3 X2}q+1

i=1 and a GS proof of equations∧q+1
i=1 ((δ + y2)X

(i)
1 + y

(i)
3 P1 = δiP1 ∧ X(i)

3 − y
(i)
3 A = 0 ∧

y
(i)
3 X2 = T (i)).

� Rede(Para,De). For each i ∈ {1, ..., q + 1}, extract proof

Proofi of y
(i)
3 X2 = T (i) in De. In each Proofi, for the same

y
(i)
3 and its commitment, Proofi is of homomorphic form. So

generate r ← Z∗p and compute Proof ′i = rProofi which is a

proof of y
(i)
3 X ′2 = T ′(i), where X ′2 = rX2 and T ′(i) = rT (i).

Note that commitments of y
(i)
3 stay the same. For every

i ∈ {1, ..., q+1}, replace T (i) by T ′(i) and Proofi by Proof ′i
in De to get a new GS proof, which is then randomized to
get the output De′.

� Vali(Para,De). A simple option is to verify the GS proof
De. An alternative way is to use batch verification: Divide

De into proofs NMProofi of (δ+ y2)X
(i)
1 + y

(i)
3 P1 = δiP1 ∧

X
(i)
3 −y

(i)
3 A = 0∧y(i)

3 X2 = T (i) for i ∈ {1, ..., q+1}. Gener-
ate q + 1 random numbers to linearly combine NMProofis
and their statements and verify the combined proof and
statement.

� CompProof(Para,De,AcSet, AcV al). Divide De into
proofs NMProofi as in Vali.
For each component accumulator value V of {a1, ..., ak},
compute bi for i ∈ {0, ..., k} as above. NMProofis belong
to a set of homomorphic proofs, so compute NMProof =∑k
i=0 biNMProofk+1−i, which is a proof of (δ + y2)X1 +

y3P1 = V ∧X3 − y3A = 0 ∧y3X2 = T where X1, X3, y3, T

and V are as explained above.
Extract proof SubProof of y3X2 = T in NMProof . For
the same y3 and its commitment, SubProof is of homomor-
phic form. So generate r ← Z∗p and compute SubProof ′ =
rSubProof which is a proof of y3X

′
2 = T ′, where X ′2 = rX2

and T ′ = rT . Note that y3’s commitment stays the same.
Replace T by T ′ and SubProof by SubProof ′ in NMProof
to get a new proof NMProof ′.
Concatenate those NMProof ′ of all V in AcV al and output
a randomization of the concatenation.

� UpdateProof(Para,De,AcSet,AcV al,Proof ,Opens).
Proof is the proof to be updated and Opens contains open-
ings for randomizing commitments of y1 = δ and y2 from
De to Proof . Suppose there is a change in accumulated ele-
ments of a component value V , we just compute NMProof ′

for the updated V as in CompProof. Randomize NMProof ′

so that its commitments of y1 and y2 are the same as those
in Proof and put it in Proof in place of its old part. Output
a randomization of the result.

To prove that this construction provides an ADNMP, we
need the following Decisional Strong Diffie Hellman (DSDH)
assumption, which is not in the uber-assumption family [7],
but can be proved in generic groups similarly to the Pow-
erDDH assumption [11]. Proof sketch of theorem 5.2 could
be found in the Appendix.

Definition. q-DSDH: Let (p,G1,G2,GT , e, P1, P2) be bi-
linear parameters, B0, B1 ← G∗1, x0, x1 ← Z∗p and b ←
{0, 1}. Given B0, x0B0, . . . , x

q
0B0, B1, xbB1, . . . , x

q
bB1, no

PPT algorithm could output b′ = b with a probability non-
negligibly better than a random guess.

Theorem 5.2. The accumulator provides delegatable NM
proofs, based on ESDH, DSDH and the assumption under-
lying the GS instantiation (SXDH or SDLIN).

6. REVOKING DELEGATABLE
ANONYMOUS CREDENTIALS

6.1 Model
This is a model of delegatable anonymous credential with
revocation systems. For each credential proof, a user uses
a new nym which is indistinguishable from her other nyms.
We need another type of nyms for revocation called r-nym
to distinguish between these 2 types of nyms. When an r-
nym is revoked, its owner cannot prove credentials anymore.
Participants include users and a Blacklist Authority (BA)
owning a blacklist BL which is empty initially. The PPT
algorithms are:

� Setup(1k) outputs trusted public parameters ParaDC , BA’s
secret key SkBA, and an initially empty blacklist BL.

� KeyGen(ParaDC) outputs a secret key Sk and a secret
r-nym Rn for a user.

� NymGen(ParaDC , Sk,Rn) outputs a new nym Nym with
an auxiliary key Aux(Nym).

� An user O becomes a root credential issuer by publishing a
nym NymO and a proof that her r-nym RnO is not revoked

that O has to update when BL changes.

� Issue(ParaDC , NymO, SkI , RnI , NymI , Aux(NymI),
Cred, DeInf , NymU , L) ↔ Obtain(ParaDC , NymO, SkU ,
RnU , NymU , Aux(NymU), NymI , L) lets user I issue a
level L+ 1 credential to user U . SkI , RnI , NymI and Cred
are the secret key, r-nym, nym and level L credential rooted
at NymO of issuer I. SkU , RnU and NymU are the secret
key, r-nym and nym of user U . I gets no output and U gets a
credential CredU . DeInf is optional. When it is included,
U also gets delegation information DeInfU to later prove
that r-nyms of all delegators in her chain are not revoked.
If L = 0 then Cred is omitted and DeInf = 1 (optional).

� Revoke(ParaDC , SkBA, Rn,BL) updates BL so that a re-
voked user Rn cannot prove credentials or delegate.

� CredProve(ParaDC , NymO, Cred, DeInf , Sk, Rn, Nym,
Aux(Nym), BL,L) takes a level L credential Cred, Sk, Rn
and optionally DeInf to output CredProof , which proves
that: (i) a credential level L is issued to Nym’s owner. (ii)
Nym’s Rn is not revoked. (iii)(optional, when DeInf is in-
cluded) all r-nyms on the credential’s chain are not revoked.

� CredVerify(ParaDC , NymO, CredProof,Nym, BL, L) ver-
ifies if CredProof is a valid proof of the above statements.

The differences with the model for delegatable anonymous
credentials without revocation [3] are the introductions of
BA with SkBA and BL; r-nyms; delegation information
DeInf ; Revoke; and 2 CredProof ’s conditions (ii) and (iii).

Delegability and Anonymity. They do not always go
together, such as in this case. Suppose user I delegates to
user U the ability to prove that I is not revoked in BL (U
knows I by NymI). Then, in any construction, given an
r-nym Rn, U and BA can collude to tell if Rn belongs to
NymI or not by blacklisting Rn and checking if U can still
prove that I is not revoked. So it is important that a user
keeps her r-nym secret. Otherwise, she should know that
such delegation could compromise her anonymity when is-
suing. It is still her right to or not to delegate that proving
ability (by issuing DeInf or not).
Even then, we emphasize that in worst cases, the only pri-
vacy lost is that a collision of BA and the delegatee could
learn if an r-nym belongs to a delegator from Issue↔ Obtain.
Other privacy properties, such as anonymity of CredProof ,
Nym and the delegatee, are still maintained.
This limitation will be reflected in the Anonymity definition
and is related to the restriction on ADNMP mentioned in
section 4.2. When a BL is implemented by using ADNMP
to accumulate revoked Rns, given an Rn′ and an ADNMP
delegating key De, a user can collude with BA to tell if De
is generated by Rn′.

Exposing R-nyms. We can use one of previous methods for
BA to obtain r-nyms to revoke. There could be an author-
ity who could force any user to reveal his r-nym to BA and
prove his ownership by using CredProve and showing open-
ings of his r-nym’s commitment. For example, users may
be required to give deposits to the authority when entering
the system. If an user does not follow the enforcement, he
loses his deposit. If such an enforcement is difficult, another

method adopted from group signatures [6] is an Opening
Authority who can open any disputed CredProof to find
its generator’s r-nym. The third option is a Nym Author-
ity who controls users’ r-nyms and makes requests to BA to
revoke r-nyms.

6.2 Security
The full definition could be found in this paper’s full ver-
sion. There are 3 requirements which are extended from the
security definition of delegatable anonymous credentials [3].

Correctness: Suppose all participants are honest. A user
always gets valid credentials from issuers. If the user is not
revoked, she can always generate a credential proof, which
is always accepted by a verifier who does not require the
user’s whole credential chain not revoked. If the user’s whole
credential chain is not revoked, she can always generate a
credential proof, which is always accepted.

Anonymity: It means an adversary, who could collude some
participants in the system, can not gain any information
about honest participants. The anonymity definition re-
quires that the adversary’s interaction with honest parties is
indistinguishable from interaction with simulators, including
SimSetup, SimProve, SimObtain and SimIssue. The additions
to the definition in [3] include the followings. Nym reveals
no information about its r-nym. New entities r-nyms, black-
list and delegation information could be generated as part
of challenges by the adversary to simulators. For the case
that DeInf is included, when interacting with SimIssue, r-
nyms on the chain of issuer’s credentials are randomly gener-
ated and not revealed to the adversary, because as discussed
above, a user and BA can tell if a given r-nym belongs to
one of the delegators on her chain.

Unforgeability: It means that an adversary, who could inter-
act with the system in many ways, could not forge a valid
credential proof for a challenge Nym of an r-nym and a se-
cret key, which are in one of rogue conditions. It also as-
sumes complete binding of Nyms, so that exactly one r-nym
and one key could be extracted from a Nym. The adver-
sary’s interaction with the system is modelled by an Oracle,
who could perform several tasks based on the adversary’s
request. The additions to the definition in [3] include the
followings. Oracle maintains a list of honest parties, which
may or may not include BA. Apart from the condition that
there is no chain of honest users who delegate the challenge
Nym, another rogue condition is that the challenge r-nym is
blacklisted by an honest BA. If a credential proof is required
to prove that all users on its chain are not revoked, another
rogue condition is that a user on the challenge Nym’s cre-
dential chain is blacklisted by an honest BA.

6.3 A scheme
Overview. We first describe intuitions of the BCCKLS del-
egatable anonymous credential scheme [3] and how ADNMP
extends it to provide revocation.

BCCKLS uses an F -Unforgeable certification secure authen-
tication scheme AU of PPT algorithms AtSetup, AuthKg,
Authen, VerifyAuth. AtSetup(1k) returns public parameters
ParaAt, AuthKg(ParaAt) generates a key Sk, Authen(ParaAt,
Sk, ~m) produces an authenticator Auth authenticating a

vector of messages ~m, and VerifyAuth(ParaAt, Sk, ~m, Auth)
accepts if and only if Auth validly authenticates ~m under
Sk. The scheme could be F -Unforgeable [4] for a function F ,
which means (F (~m), Auth) is unforgeable without obtaining
an authenticator on ~m; or certification secure, which means
no PPT adversary, even after obtaining an authenticator by
the challenge secret key, can forge another authenticator.
Besides, BCCKLS uses a protocol (AuthPro) for an user to
obtain from an issuer an NIZKPK of an authenticator on ~m
without revealing anything about ~m.
An user U could generate a secret key Sk ← AuthKg(ParaAt),
and many nyms Nym = Com(Sk,Open) by choosing differ-
ent values Open. Suppose U has a level L + 1 credential
from O, let (Sk0 = SkO, Sk1, ... , SkL, SkL+1 = Sk) be
the keys such that Ski’s owner delegated the credential to
Ski+1, and let H : {0, 1}∗ → Zp be a collision resistant hash
function. ri = H(NymO, atributes, i) is computed for a set
of attributes for that level’s credential. U generates a proof
of her delegated credential as
CredProof ← NIZKPK[SkO in NymO, Sk in Nym]
{(F (SkO), F (Sk1), ..., F (SkL), F (Sk), auth1, ..., authL+1) :
VerifyAuth(SkO, (Sk1, r1), auth1) ∧
VerifyAuth(Sk1, (Sk2, r2), auth2) ∧ ... ∧
VerifyAuth(SkL−1, (SkL, rL), authL) ∧
VerifyAuth(SkL, (Sk, rL+1), authL+1)}.

Now we show how ADNMP could extend BCCKLS to pro-
vide revocation. Using ADNMP, BA’s blacklist BL includes
an accumulated set of revoked Rns and its accumulator
value. Beside a secret key Sk, user U has a secret r-nym Rn
in the accumulator’s domain, and generates nyms Nym =
(Com(Sk,OpenSk),Com(Rn,OpenRn)). ADNMP allows del-
egation and redelegation of a proof that an Rn is not accu-
mulated in a blacklist Rn /∈ BL. U generates a proof of her
delegated credential and validity of the credential’s chain as
CredProof ← NIZKPK[SkO in NymO[1], Sk in Nym[1],
Rn in Nym[2]]{(F (SkO), F (Sk1), F (Rn1), ..., F (SkL),
F (RnL), F (Sk), F (Rn), auth1, ..., authL, authL+1) :
VerifyAuth(SkO, (Sk1, Rn1, r1), auth1) ∧ (Rn1 /∈ BL) ∧
VerifyAuth(Sk1, (Sk2, Rn2, r2), auth2) ∧ (Rn2 /∈ BL) ∧ ... ∧
VerifyAuth(SkL−1, (SkL, RnL, rL), authL) ∧ (RnL /∈ BL) ∧
VerifyAuth(SkL, (Sk,Rn, rL+1), authL+1)∧(Rn /∈ BL)} (1).

Description. The building blocks consist of: (i) Those
from BCCKLS, including AU ; AuthPro; H; and a malleable
NIPK credential proof system (CredPS) of PKSetup, PKProve,
PKVerify, RandProof, with commitment Com. (ii) An accu-
mulator with a randomizable delegatable NM proof sytem
(NMPS) of AcSetup, ProveNM, VerifyNM, CompNMWit, Accu,
Dele, Rede, Vali, CompProof, with commitment ComNM.
(iii) A randomizable proof system (EQPS), whose setup con-
sists of PKSetup and AcSetup, to prove that 2 given commit-
ments by Com and ComNM commit to the same value.
Assume a delegating key De contains a commitment of its
element Ele. CompProof and Rede generate Ele’s commit-
ment in their outputs by randomizing the commitment in
De. Elements of the accumulator domain and the authenti-
cator’s keyspace can be committed by Com.

The BCCKLS building blocks could be instantiated as in
[3]; an ADNMP instantiation is presented in section 4; and
an EQPS instantiation with composable ZK can be con-
structed from [4]. They all share the same bilinear pair-

ing parameters, so elements of the accumulator domain and
the authenticator’s keyspace are in Zp and committable by
Com. The concatenation of instantiated CredPS, NMPS and
EQPS forms a GS proof system and thereby is randomizable,
partially extractable, and composable ZK. The following al-
gorithm inputs are the same as in the model and omitted.

� Setup: Use PKSetup(1k), AtSetup(1k) and AcSetup(1k)
to generate ParaPK , ParaAt, and (ParaAc, AuxAc). The
blacklist includes an accumulated set of revoked r-nyms and
its accumulator value. Output an initial blacklist BL with
an empty set and its initial accumulator value, ParaDC =
(ParaPK , ParaAt, ParaAc, H), and SkBA = AuxAc.

� KeyGen: Run AuthKg(ParaAt) to output a secret key Sk.
Output a random r-nym Rn from the accumulator’s domain.

� NymGen: Generate random OpenSk and OpenRn, and
output nymNym = (Com(Sk,OpenSk),Com(Rn,OpenRn))
and Aux(Nym) = (OpenSk, OpenRn).

� The credential originator O publishes a Nym0 and a proof
NMProof0 that RnO is not revoked that O has to update
when BL changes.

� Issue ↔ Obtain: If L = 0 and NymO 6= NymI , aborts.
Issuer I verifies that NymI and Cred are valid with SkI ,
RnI and Aux(NymI), and user U verifies that NymU is
valid with SkU , RnU and Aux(NymU). After that, they
both compute rL+1 = H(NymO, atributes, L + 1) for a set
of attributes for that level’s credential, as in [3]. They then
run AuthPro for U to receive: ProofU ← NIZKPK[SkI in
NymI [1], SkU in Com(SkU , 0), RnU in Com(RnU , 0)]
{(F (SkI), F (SkU), F (RnU), auth) : VerifyAuth(SkI , (SkU ,
RnU , rL+1), auth)}.
U ’s output is CredU = ProofU when L = 0. Otherwise,
suppose the users on I’s chain from the root are 0 (same
as O), 1, 2,..., L (same as I). I randomizes Cred to get
a proof CredProofI (containing the same NymI) that for
every Nymj on I’s chain for j ∈ {1, ..., L}, Skj and Rnj are
authenticated by Skj−1 (with rj). Concatenate ProofU and
CredProofI and project NymI from statement to proof to
get CredU .
The optional DeInf includes a list of delegating keys Dejs
generated by the accumulator’s Dele to prove that each Rnj
is not accumulated in the blacklist, and a list of EQProofj
for proving that two commitments of Rnj in Cred and Dej
commit to the same value Rnj , for j ∈ {1, ..., L− 1}. When
DeInf is in the input, I Redes these delegating keys, up-
dates and randomizes EQProofj to match the new keys
and CredU , and adds a new delegating key DeI to prove
that RnI is not revoked and a proof EQProofI that two
commitments of RnI in NymI [2] and DeI commit to the
same value. The result DeInfU is sent to U .

� Revoke: Add Rn to the accumulated set and update the
accumulator value.

� CredProve: Abort if Nym 6= (Com(Sk,OpenSk),
Com(Rn,OpenRn)). Use ProveNM to generate a proof
NMProof that Rn is not blacklisted. Generate EQProof
that Rn’s commitments in NMProof and in Nym[2] both
commit to the same value. Randomize Cred to get a proof

which contains Nym. Concatenate this proof with
NMProof and EQProof to get CredProof ′. If the op-
tional DeInf is omitted, just output CredProof ′. Other-
wise, use CompProof to generate a proof NMChainProof
that each Rnj ’s on the user’s chain of delegators is not accu-
mulated in the blacklist. Update and randomize EQProofj
for j ∈ {1, ..., L} to match with NMChainProof and
CredProof ′. Concatenate NMChainProof and
CredProof ′ to output CredProof as described in (1).

� CredVerify runs PKVerify, VerifyNM and verifies
EQProofs to output accept or reject.

Theorem 6.1. If the authentication scheme is
F-unforgeable and certification-secure; a concatenation of
CredPS, NMPS and EQPS is randomizable, partially ex-
tractable, and composable ZK; and H is collision resistant,
then this construction is a secure revocable delegatable anony-
mous credential system.

Proof sketch of theorem 6.1 could be found in the Appendix.

7. RAC
RAC (Revocation of Anonymous Credentials) is developed
in C++ and includes 2 libraries. The first implements the
ADNMP scheme in the SXDH instantiation proposed in sec-
tion 4, and could be used to develop accumulator’s applica-
tions. It provides API for ADNMP’s algorithms AcSetup,
ProveNM, VerifyNM, CompNMWit, Accu, Dele, Rede, Vali
and CompProof. The second library depends on the AD-
NMP library to perform revoking anonymous credentials as
follows. A blacklist authority could use it to create a black-
list and accumulate revoked identities of anonymous creden-
tials. A user could prove that an identity is not accumulated
in a blacklist, and to delegate that proof. Another user could
redelegate or compute proofs from the delegation. Several
anonymous credential systems based on prime order with
or without delegatability [21, 10, 4, 3] could be integrated
with RAC for revocation. Besides the BCCKLS system [3],
a non-delegatable example is U-Prove [21], a commercialized
anonymous credential system developed by Microsoft, that
has been released for community technology preview.

RAC is the first solution for revoking delegatable anony-
mous credentials, and the first implementation of an uni-
versal accumulator. The only previous prime-order univer-
sal accumulator [2] requires Random Oracle (RO) for non-
interactive proofs and its prover needs 3 pairings, whereas
RAC requires no RO and its prover does no pairing. For
RAC’s accumulator with q = 500, using 256-bit BN pairing
curves, on a regular 2.4 GHz Intel 2 Core with 4 GB RAM,
ProveNM takes 0.14 s and Dele takes 69.38 s.

Performance Optimization. In a system using this accu-
mulator, depending on the accumulator’s workloads, a cen-
tral entity (who knows Aux) can always adjust the value
of q at any time to optimize efficiency. We utilize this ad-
vantage in the following exemplified scenario. Based on the
work loads on the accumulator’s operations and the number
of accumulated elements, we look for the optimal value of q.
Assume in an application, the number of accumulated ele-
ments is around a constant Q overtime and elements could

be added or removed. Let m = dQ/qe, let the computation
unit be a scalar product, and let the approximate costs of the
accumulator’s operations be as follows (generalized for both
SXDH and SDLIN instantiations): Accu - m; UpdateVal -
1; CompNMWit - (mq ≈ Q); UpdateWitness - 2; ProveNM
- α1m; VerifyNM - α2m; Dele - β1q; Rede - β2q; Vali - β3q;
CompProof - (β4mq + α3m); UpdateProof - (β4q + α3m);
where αi and βi are constants. For simplicity and analysis
of a common user, we will ignore operations which are rare
or mostly performed by a central entity, or whose cost does
not change when q changes.
Suppose over a period of time, say 1 year, the average num-
bers of runs of operations per user are as follows: ProveNM
- a1; VerifyNM - a2; Dele - b1; Rede - b2; Vali - b3; CompProof
- a3; UpdateProof - c; where ai, bi and c are constants. The
total cost per user per period is S(q) ≈ a1α1m + a2α2m +
b1β1q + b2β2q + b3β3q + a3α3m+ a3β4mq + cβ4q + cα3m
≈ (a1α1 + a2α2 + a3α3 + cα3)Q/q + (b1β1 + b2β2 + b3β3 +
cβ4)q + a3β4Q.

As (
√

(a1α1 + a2α2 + a3α3 + cα3)Q/q −√
(b1β1 + b2β2 + b3β3 + cβ4)q)2 ≥ 0, we have

(a1α1+a2α2+a3α3+cα3)Q/q+(b1β1+b2β2+b3β3+cβ4)q ≥
2
√

(a1α1 + a2α2 + a3α3 + cα3)(b1β1 + b2β2 + b3β3 + cβ4)Q.
So minimum of S(q) happens when

q ≈ min(Q,
√

a1α1+a2α2+a3α3+cα3
b1β1+b2β2+b3β3+cβ4

Q).

So intuitively, if users have to generate proofs lots more than
delegations, then q = Q. If their cost amounts are about the
same, then q ≈

√
Q.

8. REFERENCES
[1] G. Ateniese, S. Kamara, and J. Katz. Proofs of

storage from homomorphic identification protocols. In
ASIACRYPT 2009, 2009.

[2] M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu.
Dynamic universal accumulators for DDH groups and
their application to attribute-based anonymous
credential systems. In CT-RSA 2009, 2009.

[3] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss,
A. Lysyanskaya, and H. Shacham. Randomizable
proofs and delegatable anonymous credentials. In
CRYPTO 2009, 2009.

[4] M. Belenkiy, M. Chase, M. Kohlweiss, and
A. Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In TCC 2008, 2008.

[5] P. Bichsel, J. Camenisch, T. Groß, and V. Shoup.
Anonymous credentials on a standard java card. In
ACM CCS 09, 2009.

[6] D. Boneh, X. Boyen, and H. Shacham. Short group
signatures. In CRYPTO 2004, 2004.

[7] X. Boyen. The uber-assumption family (invited talk).
In PAIRING 2008, 2008.

[8] X. Boyen and B. Waters. Full-domain subgroup hiding
and constant-size group signatures. In PKC 2007,
2007.

[9] E. F. Brickell, J. Camenisch, and L. Chen. Direct
anonymous attestation. In ACM CCS 04, 2004.

[10] J. Camenisch and A. Lysyanskaya. Signature schemes
and anonymous credentials from bilinear maps. In
CRYPTO 2004, 2004.

[11] J. Camenisch, G. Neven, and A. Shelat. Simulatable
adaptive oblivious transfer. In EUROCRYPT 2007,

2007.

[12] J. Camenisch and E. Van Herreweghen. Design and
implementation of the idemix anonymous credential
system. In ACM CCS 02, 2002.

[13] D. Charles, K. Jain, and K. Lauter. Signatures for
network coding. In International Journal on
Information and Coding Theory, 2006.

[14] Y. Dodis, K. Haralambiev, A. Lopez-Alt, and
D. Wichs. Cryptography against continuous memory
attacks, 2010.

[15] P.-A. Fouque, G. Poupard, and J. Stern. Sharing
decryption in the context of voting or lotteries. In
FC 2000, 2000.

[16] C. Gentry. Fully homomorphic encryption using ideal
lattices. In 41st ACM STOC, 2009.

[17] E. Ghadafi, N. Smart, and B. Warinschi. Groth sahai
proofs revisited. In PKC, 2010.

[18] J. Groth and A. Sahai. Efficient non-interactive proof
systems for bilinear groups. In C. ePrint 2007/155,
editor, EUROCRYPT 2008, 2008.

[19] R. Johnson, D. Molnar, D. X. Song, and D. Wagner.
Homomorphic signature schemes. In CT-RSA 2002,
2002.

[20] R. Johnson, L. Walsh, and M. Lamb. Homomorphic
signatures for digital photographs. In Suny Stony
Brook, 2008.

[21] Microsoft. U-prove community technology preview. In
https://connect.microsoft.com/, 2010.

[22] J. Monnerat and S. Vaudenay. Generic homomorphic
undeniable signatures. In ASIACRYPT 2004, 2004.

[23] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith.
PEREA: towards practical TTP-free revocation in
anonymous authentication. In ACM CCS 08, 2008.

[24] A. Yun, J. Cheon, and Y. Kim. On homomorphic
signatures for network coding. In Transactions on
Computer, 2009.

9. APPENDIX: PROOFS
Proof of theorem 3.1. We need to prove that (ΠGS ,+GS , IGS)
satisfies the 5 conditions of an abelian group.
Closure: We can see that (Sta, Wit, Proof)← (Sta1, Wit1,
Proof1) +GS (Sta2, Wit2, Proof2) (as in the description) sat-
isfies the requirements for an element in ΠGS as follows.
∀i ∈ M : x[i] = x1[i] = x0[i] and c[i] = c1[i] = c0[i].
∀j ∈ M̄ : b[j] = b1[j] = b0[j]. ∀i ∈ N : y[i] = y1[i] = y0[i]
and d[i] = d1[i] = d0[i]. ∀j ∈ N̄ : a[j] = a1[j] = a0[j].
If (i ∈ M̄) ∨ (j ∈ N̄), then Γ[i, j] = Γ1[i, j] = Γ0[i, j].
We now need to prove that Proof is the valid proof of Sta
and Wit. Suppose for i ∈ {1, 2}, ~ci := ι1(~xi) + Ri ~u1,
~di := ι2(~yi) + Si ~u2.

~πi := R>i ι2(~bi) +R>i Γiι2(~yi) +R>i ΓiSi ~u2

− T>i ~u2 +

η∑
j=1

r
(i)
j Hj ~u2 (1)

~ψi := S>i ι1(~ai) + S>i Γ>i ι1(~xi) + Ti ~u1 (2)

Without losing generality, for i ∈ {1, 2}, we can write

~xi :=

(
X̂

X̃i

)
,~bi :=

(
B̂i
B̃

)
, Ri :=

(
R̂

R̃i

)
,~ci :=

(
Ĉ

C̃i

)

where X̂ consists of x[j] with j ∈M and X̃i consists of xi[j]

with j ∈ M̄ ; B̂i consists of bi[j] with j ∈ M and B̃ consists

of b[j] with j ∈ M̄ ; and R̂ consists of rows j of Ri with

j ∈ M and R̃i consists of rows j of Ri with j ∈ M̄ ; and
Ĉ consists of c[j] with j ∈ M and C̃i consists of Ci[j] with
j ∈ M̄ . Now we have

~x =

(
X̂

X̃1 + X̃2

)
, ~b =

(
B̂1 + B̂2

B̃

)
, R =

(
R̂

R̃1 + R̃2

)
~c =

(
Ĉ

C̃1 + C̃2

)
=

(
ι1(X̂) + R̂ ~u1

ι1(X̃1) + R̃1 ~u1 + ι1(X̃2) + R̃2 ~u1

)
=

(
ι1(X̂) + R̂ ~u1

ι1(X̃1 + X̃2) + (R̃1 + R̃2) ~u1

)
= ι1(~x) +R ~u1 (3)

which is how commitment ~c should be generated from ~x and
R for the proof. In the same way, without losing generality,
for i ∈ {1, 2}, we can write

~yi :=

(
Ŷ

Ỹi

)
,~ai :=

(
Âi
Ã

)
, Si :=

(
Ŝ

S̃i

)
, ~di :=

(
D̂

D̃i

)
where Ŷ consists of y[j] with j ∈ N and Ỹi consists of yi[j]

with j ∈ N̄ ; Âi consists of ai[j] with j ∈ N and Ã consists

of a[j] with j ∈ N̄ ; Ŝ consists of rows j of Si with j ∈ N
and S̃i consists of rows j of Si with j ∈ N̄ ; and D̂ consists
of d[j] with j ∈ N and D̃i consists of Di[j] with j ∈ N̄ . Now
we have

~y =

(
Ŷ

Ỹ1 + Ỹ2

)
,~a =

(
Â1 + Â2

Ã

)
, S =

(
Ŝ

S̃1 + S̃2

)
~d =

(
D̂

D̃1 + D̃2

)
= ι2(~y) + S ~u2 (4)

showing how commitment ~d is generated from ~y and S for
the proof. Besides, we have for i ∈ {1, 2}

Γi :=

(
Γ̂i Γ̌

Γ̃ O

)
, Γ :=

(
Γ̂1 + Γ̂2 Γ̌

Γ̃ O

)
(5)

where Γ̂i consists of Γ[j, k] with j ∈M and k ∈ N , Γ̌ consists

of Γ[j, k] with j ∈ M and k ∈ N̄ , Γ̃ consists of Γ[j, k] with
j ∈ M̄ and k ∈ N , and a zero matrix of Γ[j, k] with j ∈ M̄
and k ∈ N̄ . Substituting (3) and (5) in (1) and (2), we write
π = π1 + π2

~π =

((
R̂> R̃>1

)(ι2(B̂1)

ι2(B̃)

)
+
(
R̂> R̃>2

)(ι2(B̂2)

ι2(B̃)

))
+

((
R̂> R̃>1

)(Γ̂1 Γ̌

Γ̃ O

)(
ι2(Ŷ)

ι2(Ỹ1)

)
+
(
R̂> R̃>2

)(Γ̂2 Γ̌

Γ̃ O

)(
ι2(Ŷ)

ι2(Ỹ2)

))
+

((
R̂> R̃>1

)(Γ̂1 Γ̌

Γ̃ O

)(
Ŝ

S̃1

)
+
(
R̂> R̃>2

)(Γ̂2 Γ̌

Γ̃ O

)(
Ŝ

S̃2

))
~u2

− (T>1 + T>2) ~u2 + (

η∑
j=1

r
(1)
j Hj +

η∑
j=1

r
(2)
j Hj) ~u2

Multiplying matrices and regrouping with (3) and (5) yields

~π = (
(
R̂> (R̃1 + R̃2)>

)(ι2(B̂1 + B̂2)

ι2(B̃)

)
+
(
R̂>(Γ̂1 + Γ̂2) + (R̃1 + R̃2)>Γ̃ R̂>Γ̌

)(ι2(Ŷ)

ι2(Ỹ1 + Ỹ2)

)
+
(
R̂>(Γ̂1 + Γ̂2) + (R̃1 + R̃2)>Γ̃ R̂>Γ̌

)(Ŝ

S̃1 + S̃2

)
~u2

− T> ~u2 +

η∑
j=1

rjHj ~u2

Replacing ~b and R from (3) and ~y and S from (4), we have

~π = R>ι2(~b) +R>Γι2(~y) +R>ΓS ~u2 − T> ~u2 +

η∑
j=1

rjHj ~u2

Similarly, we could show that ~ψ := S>ι1(~a) + S>Γ>ι1(~x)

+ T ~u1. So ~c, ~d, ~π, and ~ψ are generated according to the

formula for a GS proof of (~a,~b,Γ, t) and (~x, ~y). Therefore,
Proof is a valid proof of Sta and Wit.
The other 4 conditions Associativity, Commutativity,
Identity element and Inverse element of abelian groups
can be easily validated. So the theorem holds.

Proof sketch of theorem 5.1. Its correctness and com-
posable ZK comes from the GS proof and its instantiations
and the fact that y2 /∈ AcSet and Xj2 6= 0 means Tj 6= O.
And as described in [18], we can simulate a setup and a
proof which are respectively computationally indistinguish-
able from a real setup and a real proof generated from the
simulated setup.
Now we prove soundness. Suppose an adversary could forge
a proof that VerifyNM accepts for equations

∧m
j=1((y1 +

y2)Xj1 + yj3P1 = Vj∧ Xj3 − yj3A = 0∧ yj3Xj2 = Tj)
where Tj 6= 0 but y2 is accumulated in one of Vjs with
non-negligible probability. We show how to use it to break
ESDH. Suppose we are given the assumption challenge
(p,G1,G2,GT , e, P1, δP1, . . . , δ

q+1P1, A, P2, δP2). Simulate
random CRS σ with extracting trapdoor for GS proofs in
either the SXDH or SDLIN instantiations so that from a
commitment in G2 of y ∈ Zp and a commitment of X ∈ G1,
we could respectively extract yP2 and X. With the trap-
door, we could compute τ := ι′2(δ) and we have all parame-
ters for a simulated accumulator.
The forged proof contains commitments ofXj1, Xj3, Xj2 and
of y1 = δ, y2, yj3 in G2. So we could extract Xj1, Xj3, Xj2
and y2P2, yj3P2 and know yj3 6= 0. As y2 is in AcSet, we
could find y2. Suppose y2 is accumulated in Vl which ac-
cumulates {a1, ..., ak}. As Xl3 = yl3A, we could extract
Xl1, y2 and (yl3P2, yl3A). We have (y1 + y2)Xl1 + yl3P1 =∏k
i=1(y1 + ai)y1P1 and y2 ∈ {a1, ..., ak}, so we could com-

pute yl3
y1+y2

P1 from Xl1, {a1, ..., ak} and ς. So now, we could

find (yl3
δ+y2

P1, y2, yl3P2, yl3A) and break the assumption.

Proof sketch of theorem 5.2. To prove Delegatability, we
see that CompProof’s output is a randomized proof of equa-
tions

∧m
j=1((y1 + y2)Xj1 + yj3P1 = Vj∧ Xj3 − yj3A = 0∧

yj3Xj2 = Tj) which are the same as equations for the proof
outputted by ProveNM. Due to GS proofs’ randomizability,
the outputs has the same distribution which means Dele-
gatability. For proving Redelegatability, we see that for the

same y2, the output T ′(i), i ∈ {1, ..., k + 1} of Rede has the

same distribution as the output T (i), i ∈ {1, ..., k+1} of Dele.

And for the same T (i), i ∈ {1, ..., k + 1}, Rede’s output is a
randomization of a proof that Dele could produce, so their
outputs have the same distribution. Therefore, Dele and
Rede output the same distribution that leads to Redelegata-
bility. Verifiability comes from ESDH and the completeness
and soundness of GS proofs, as De is a GS proof.
We prove that if an adversary can break the accumulator’s
Unlinkability, then we can break either q-DSDH or GS’s un-
derlying assumption (SXDH or SDLIN). Consider 2 cases.
If the adversary can distinguish between a GS proof De
and its simulated proof both in a simulated setup with non-
negligible probability, then we can break the underlying as-
sumption. If not, then we can break q-DSDH as follows.
Suppose we are given a q-DSDH challenge p,G1,G2,GT , e,
P1, P2, B0, x0B0, . . . , x

q
0B0, B1, xbB1, . . . , x

q
bB1. Simulate a

CRS for GS proofs from the setup. Use the same simula-
tion for GS proofs [18], simulate a proof De for

∧q+1
i=1 ((δ +

y2)X
(i)
1 + y

(i)
3 P1 = δiP1 ∧ X(i)

3 − y
(i)
3 A = 0 ∧ y(i)

3 X2 =

(−1)ixi−1
0 B0), and a proof Deb for

∧q+1
i=1 ((δ + y2)X

(i)
1 +

y
(i)
3 P1 = δiP1 ∧X(i)

3 − y
(i)
3 A = 0 ∧ y(i)

3 X2 = (−1)ixi−1
b B1).

We then give the adversary De and Deb. As the adversary
can not distinguish between a delegating key and a simulated
one with non-negligible probability, and he can break Un-
linkability, he could tell with non-negligible advantage over
a random guess if b is 0 or 1. That breaks q-DSDH.

Proof sketch of theorem 6.1. The scheme’s correct-
ness comes from correctness of its component authentication
scheme and the concatenation of CredPS, NMPS and EQPS,
and Delegatability and Redelegatability of the accumulator.
The unforgeability proof is similar to the one in [3], based
on F-unforgeability and certification-security of the authen-
tication scheme, and partial extractability and soundness of
the concatenation.
The anonymity proof is also similar to the one in [3], with the
main difference is to create SimIssue indistinguishable from
Issue with input DeInf . SimSetup includes AtSetup and the
simulation setup SimConSetup for the concatenation. We
see that the accumulator’s 4 delegation properties still hold
under parameters generated by SimConSetup, otherwise an
adversary breaking one of the properties could distinguish
SimConSetup and the concatenation setup ConSetup. We
also see that a concatenation of just CredPS and EQPS is
also composable ZK using simulation SimConSetup. SimIssue
first generates a list of delegating keys for L random r-
nyms. Based on the accumulator’s Unlinkability and Re-
delegatability, the adversary can not distinguish this list
from the list in DeInfU generated by Issue, as r-nyms of
input DeInf to Issue are also randomly generated and not
revealed to the adversary. SimIssue then simulates the con-
catenation of CredPS and EQPS with r-nyms commitments
in the delegating keys and merge it with the delegating keys
to output. This output is indistinguishable from the output
(CredU ,DeInfU) generated by Issue.

