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Abstract

Many practically important problems involve processing very large data sets, such as for web scale data
mining and indexing. An efficient method to manage such problems is to use data intensive distributed
programming paradigms such as MapReduce and Dryad, that allow programmers to easily parallelize
the processing of large data sets where parallelism arises naturally by operating on different parts of
the data. Such data intensive computing infrastructures are now deployed at scales where the resource
costs, especially the energy costs of operating these infrastructures, have become a significant concern.
Many opportunities exist for optimizing the energy costs for data intensive computing and this paper
addresses one of them. We dynamically right size the resource allocations to the parallelized tasks such
that the effective hardware configuration matches the requirements of each task. This allows our system
to amortize the idle power usage of the servers across a larger amount of workload, increasing energy
efficiency as well as throughput. This paper describes why such dynamic resource allocation is useful
and presents the key techniques used in our solution.

1 Introduction

Data intensive distributed computing platforms such as MapReduce [4], Dryad [7], and Hadoop [5], offer an
effective and convenient approach to solve many problems involving very large data sets, such as those in web-
scale data mining, text data indexing, trace data analysis for networks and large systems, machine learning,
clustering, machine translation, and graph processing. Their usefulness has lead to widespread adoption of such
data intensive computing systems for data analysis in many large enterprises, and server clusters consisting of
tens of thousands of servers now host these platforms. At these scales, the cost of resources consumed by the data
parallel computing system becomes very significant. Both the operational costs such as energy consumption,
and the capital expense of procuring the servers and supporting infrastructure are thus crucial to optimize.

Several opportunities exist in data intensive distributed computing systems to maximize the amount of work
performed by a given set of resources and to reduce the energy consumed for performing a given amount of
work. A first opportunity is to schedule the processing jobs in a manner that is best suited to the data place-
ment and network requirements of each job, resulting in improved utilization of the infrastructure [8]. Another
possibility is to reduce the amount of energy spent on storage. While redundant copies of data are required for
reliability, machines hosting some of the redundant copies can be shut down if the throughput requirement and
data consistency constraints permit [9]. A third opportunity arises in adapting the resource configuration to the
resource needs of the currently processing jobs. In this paper we consider this last opportunity in detail and show
how energy use can be reduced and throughput increased for a given set of tasks and cluster size.
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If the server cluster was to always run a single, pre-specified, data processing job, then it would be straight-
forward, though possibly tedious, to configure the server hardware to match the requirements of that processing
task efficiently. However, in practice a single cluster is set up for multiple data analysis jobs. In fact, sharing
the cluster yields significant advantages in efficient resource utilization since one job is unlikely to always have
sufficient workload to justify a dedicated cluster. The complication that arises due to sharing is that the server
configuration is not optimized to meet the resource requirements of any single job. At run time, depending on the
characteristics of the job, certain resources such as the number of disks spinning or active servers, would be left
unused, wasting valuable power and also the capital expense of the infrastructure itself. Since it is impractical to
change the hardware dynamically, we explore software mechanism to optimize resource utilization and improve
overall throughput, using Dryad as the underlying data intensive computing platform.

Specifically, we introduce a mechanism, referred to here as Energy Efficient Dryad (e-Dryad, for short),
for fine grained allocation of cluster resources to incoming jobs that right-sizes the resource configuration to
a job’s requirements. Current job schedulers for data intensive distributed computing platforms allocate a set
of servers (sometimes referred to as nodes) to each job. The number of servers allocated depends on the job’s
requirements, its priority, and the number of currently unallocated servers. However, the hardware configuration
of the servers may not be matched to the processing demands of the job. Our proposed mechanism divides the
server resources among jobs to match their hardware resource usage characteristics, leading to a more efficient
and better balanced resource configuration for each job.

While e-Dryad improves the overall throughput compared to existing schedulers, the amount of instanta-
neous resources allocated to a job may in fact be smaller in our proposed approach. This does cause the latency
of processing to to be higher in certain situations. However, the increased throughput implies that the jobs spend
less time waiting for their turn in the queue and hence the overall completion time can in fact still be lower
depending on the position in the queue.

We describe the design of e-Dryad, along with the challenges addressed and mechanisms used, in Section 2.
The proposed system is evaluated with real workloads on an experimental server cluster, and the evaluation
results are presented in Section 3. Section 4 discusses related problems and possible extensions. Section 5
summarizes the prior works in the area and Section 6 concludes.

2 Resource Allocation System Design

The problem of inefficient resource utilization arises because the hardware is not configured to match the re-
source requirement of every job. We explain this problem in more detail below and then present a solution to
address it.

2.1 Problem Description

We describe the problem in the context of Dryad, since that is the platform used in our prototype, but the
problem conceptually exists in most data intensive computing platforms. A common operational aspect of such
platforms includes a scheduler that accepts computing jobs and assigns them to servers. A job here refers to a
data processing program that includes at least one processing phase that can be massively parallelized. It may be
followed by additional processing stages that further process or integrate the results from the parallelized phase
or phases. In Dryad, each job is comprised of a root task that manages the actual processing tasks, referred to
as worker tasks. The worker tasks accesses data stored on the server cluster’s constituent computers themselves.
The scheduler queues incoming jobs and as servers become available after finishing previously running jobs,
they are assigned to new jobs from the queue. A good scheduler will assign servers to a job’s worker tasks such
that the data they access from storage is on the assigned server itself or relatively close by within the network
topology [8].
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The parallelized phase is the one that requires the most resources and we primarily focus on the worker
tasks comprising this phase. The worker tasks within a job are largely homogeneous in terms of computational
resource requirement but the worker tasks from different jobs can be very different. Consider the following two
examples of real world applications that are well suited to parallelized data intensive computation:

Word Statistics. This application computes the number of times different words occur in a very large corpus of
text, such as a large number of web pages, stored across multiple machines [12]. Such tasks are commonly
required for web scale indexing.

Terasort. The Terasort application sorts a very large number (billions) of records using case insensitive string
comparisons on a 10-byte key [11]. This is a benchmark used for parallel computing.

Figure 1 shows the resource utilization for CPU, averaged across multiple servers, for a job from each of the
above applications.
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(a) Word Statistics.
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(b) Terasort.

Figure 1: Resource usage of two Dryad jobs, averaged across multiple machines allocated during the job’s
execution.

It is clear from the figure that the Word Statistics job has a significantly higher CPU utilization. A similar
figure may be plotted for IO bandwidth usage and that would show that the Terasort job has a higher IO usage and
is not bottlenecked on CPU. Each job thus leaves some resource wasted. This is a problem due to two reasons.
Firstly, the cost of the infrastructure directly depends on the number of servers required, and hence if the servers
are left unused, that results in wasted resources. In the above example, the unused CPU could potentially have
been used by other jobs waiting in the queue. Secondly, the above usage causes energy wastage. A large fraction
of the power usage of a server, often as high as 60%, is spent to simply power on a server, and is referred to
as idle power. This power is spent even if the CPU or other resources are not used by any job. Clearly, if the
CPU resource left unused by Terasort were to be used by another job, the idle energy use will not increase and
only a small amount of additional energy would be required. When resource utilization is high, the idle energy
is amortized over greater amount of work done, resulting in more efficient operation.

Our goal in building e-Dryad is to address precisely the above two problems by improving resource utiliza-
tion leading to better amortization of idle energy, and higher throughput from the given number of servers.

2.2 Resource Allocation Methodology

The basic idea for resource allocation in e-Dryad is to place worker tasks from multiple jobs on each machine,
in a manner that improves the resource utilization. This implies that the worker tasks placed together must be
carefully chosen. If two worker tasks are both bottlenecked on the resource, such as CPU, then placing them
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together would simply increase the run time of each task without improving resource utilization significantly.
Instead, if two worker tasks with complimentary resource utilizations are placed on the same server, then the
overall resource utilization would improve. Suppose one task is bottlenecked on CPU, while another is bottle-
necked on the storage bandwidth, then placed together, they could utilize both resources maximally, leading to
better amortization of the idle power. An important consideration here is that each task needs both storage and
CPU resource. The CPU intensive task is also ultimately a data intensive program and would need some storage
bandwidth and the storage intensive task obviously needs some CPU capacity to perform its work. This implies
that the resource allocation mechanism should ensure that each task gets resources in its desired proportion. This
may be viewed as re-balancing the hardware configuration to match the job requirements.

The e-Dryad resource allocation mechanism, based on the above basic idea, is shown in Figure 2, and
described below.

Job 
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Figure 2: e-Dryad resource allocation block diagram

All incoming job requests are accepted through the job submission system as usual. In Dryad, jobs are often
submitted through a web interface provided for the Dryad cluster, by uploading a job specification.

2.2.1 Job Matching

The first crucial step for e-Dryad is matching job resource usage characteristics to determine complementary
jobs that are well suited to be placed together. In data intensive computing clusters, while new jobs are submit-
ted everyday to process new data sets, the nature of the jobs themselves does not change as frequently. Rather,
a slowly evolving set of applications is hosted by the cluster. We assume that repeat instances of the same
application each have a unique job ID but are labeled with an application ID that allows identifying them as dif-
ferent instances of the same application. The e-Dryad resource allocation system maintains a set of application
characteristics, shown as an input to the job matching block in the figure.

The application characteristics are acquired by monitoring the resource usage of multiple jobs belonging to
the same application. The characteristics may be initialized based on the first instance, and updated over time
as additional jobs from that application are observed. Monitoring of job resource usage is performed by the job
resource monitoring block shown in the figure. This block itself is a distributed monitoring system that uses the
Dryad infrastructure to correctly track the distributed resource usage of each job across multiple machines. The
implementation of this system in our prototype is discussed in Section 2.3.

Based on the application characteristics, the job matching block identifies the resource for each application
that shows the heaviest usage. This resource is likely the bottleneck for this application and hence the other
resources on a machine running this application jobs would have spare capacity. Note that the determination of
the bottleneck is only an estimate since the heavy resource usage may be an effect of data placement and network
topology that may change based on job placement. The estimate improves over time as a well designed scheduler
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attempts to place each job’s tasks efficiently in terms of data placement and the application characteristics are
then dominated by the true bottlenecks. Matched jobs are ones that have a different bottleneck resource, and can
hence be placed together to reduce the idle power consumption per unit work.

2.2.2 Job Placement

Placement of jobs determines the actual allocation of resources to the worker tasks of the jobs. Once the job
matching block has determined which jobs are suitable to be placed together to optimize resource utilization,
the job placement block assigns the worker tasks to the servers in the cluster based on the current state of the
cluster in terms of server availability and other scheduling considerations. The cluster configuration and state
information is directly measured from the cluster management interfaces.

Multiple different job placement heuristics may be employed based on the nature of jobs and desired perfor-
mance and energy optimization objectives. We assume that the scheduling mechanism is the same as followed in
Dryad and abstract it out, focusing only on the placement. A key resource allocation decision for placement after
matching jobs are identified, is to determine how the resources of the server should be divided among the tasks.
In our prototype we focus on the two resources that affect throughput the most for data intensive computation in
a well scheduled system: processor time and storage bandwidth. The following two heuristics are employed for
resource allocation:

Equal Sharing. In the equal sharing approach, two tasks from different jobs that are placed on a common
server, are each assigned an equal share of the CPU time. One of these tasks is CPU intensive and leaves
significant storage bandwidth unused. The other task being storage intensive, uses up a large fraction of
the storage bandwidth even with half its usual CPU allocation since it is not bottlenecked on the CPU. The
overall amount of work performed increases leading to improved amortization of idle energy.

Proportional Sharing. In the proportional sharing approach, rather than dividing the CPU resource equally, it
is divided in a ratio proportional to the average CPU utilization known for the two jobs. While the CPU
usage can vary across tasks and over the run time of a job, the division in proportion to the average usage
captures the resource requirements better than equal sharing. In this case, resource utilization is further
improved since the tasks bottlenecked on CPU can use up a greater portion of the CPU while the other
task can likely get a sufficient amount of storage bandwidth even with a smaller share of the CPU. The
proportional sharing does not guarantee that resource will be maximally utilized since it is unlikely that
the resource requirements of different tasks are matched exactly in different resource dimensions to use
each resource to a 100%.

The relative performance of the two approaches is studied experimentally in Section 3.

2.3 Implementation

The implementation of e-Dryad is based on a Dryad cluster installed on Windows Server 2008 systems. The
operation of e-Dryad requires detailed resource usage tracing for job characterization as well as experimental
verification. The job resource monitoring component, referred to in Figure 2 earlier, is implemented as follows.
Tracking the resource usage of a single job requires understanding the placement of the tasks comprising the
job on various servers, and then tracking the resource utilization of each task on each of those servers. The
monitoring system in e-Dryad is implemented as shown in Figure 3. The cluster manager in Dryad produces
an XML formatted description of job layout across the servers. e-Dryad fetches that description to infer the
servers allocated to each job at each time step. Resource usage at each server is monitored for the Dryad
processes using Windows kernel provided performance counters. Windows system management enables these
performance counters to be remotely accessed and e-Dryad accesses the counters for each of the processes from
multiple remote servers. Based on the job to server mapping, it accounts for the resource usage of each job.
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Figure 3: e-Dryad job resource monitoring.

The system mechanism used to assign the right amount of resource is based on server virtualization. We
create virtual machines on each server and divide the physical resources among virtual machines in a proportion
that suits the job placement across servers. For instance, going back to the example shown in Figure 1, suppose
quad core servers were used, one virtual machine could be assigned three processor cores and allocated to Word
Statistics job, while the other one could be given one processor core and allocated to the Terasort job. Clearly,
the bandwidth on the machine would also get split among the two VMs. Terasort may use a greater share
of the bandwidth based on its needs. The virtualization based mechanism integrates seamlessly with the Dryad
scheduler since from the perspective of the scheduler, each virtual machine is a different server to be assigned to a
job. However, virtualization is only one of the options to allocate resources in the correct proportion. Equivalent
functionality could also be achieved by simultaneously assigning the same server to multiple jobs and creating
separate processes to host each job. The Dryad scheduler may be modified to incorporate e-Dryad based job
characteristics in determining the job allocations across servers. The operating system on each allocated server
could then be informed to allocate resources in the correct proportion to the different processes running the
worker tasks from different jobs on each server.

3 Evaluation

We evaluate e-Dryad on a 32 node cluster, with Intel Xeon 2.5GHz processors. We use data intensive applica-
tions found in Dryad literature [12], including the two applications mentioned in Section 2.1, that are generally
representative of data indexing tasks. The jobs are specified using DryadLINQ [11].

The energy use and savings for the equal and proportional sharing policies is shown in Table 1, and also
compared to that of placement without e-Dryad. The improved job placement leads to significant energy savings,
that for large scale data intensive computing clusters result in significant cost savings.

Placement Energy Use (J) Energy Saving (%)
Dryad-default 35295 –
Equal Sharing 29303 17.01
Proportional Sharing 28282 20.40

Table 1: Energy Savings achieved by e-Dryad in experimental tests.

While the energy savings are definitely a desirable feature of e-Dryad and come along with increased overall
throughput, they are also associated with a potential increase in latency, in terms of job execution time measured
from the instant that a job is allocated on the cluster. The overall latency, including the queuing delay and
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processing delay may not be increased for most jobs. However, high priority jobs, that were not subject to
significant queuing delays in the default design, could suffer increased latency. This is illustrated in Figure 4
taking two jobs, one from the word statistics application and the other from the Terasort application. The figure
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Figure 4: Illustration of effect on job latency with e-Dryad resource allocation. The “Prop.” label refers to the
proportional sharing approach.

shows the execution of these two jobs along the time line. The top segment shows how execution proceeds in
the default system and the lower two segments show how execution proceeds with e-Dryad policies. Each job
consumes a shorter processing time in the default system but the total execution time on the system is longer. For
the first job the latency is smaller but the second job suffers a longer latency due to longer queuing delay. The
simultaneous execution in the other two approaches allows the two jobs to exit the system sooner, leading to a
lower total energy cost and higher throughput. The latency of the Terasort job has however increased by 34.9%
in the equal sharing case and 54.2% in the proportional sharing case, due to reduced instantaneous resources
granted.

The resource utilization also improves in the system. Taking the above run as an example, the CPU utilization
is plotted in Figure 5. The utilizations shown are averaged across the 8 worker tasks comprising each job. As
seen, the utilization is higher during the run with e-Dryad, and the jobs finish sooner (at 39s instead of 52s).
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Figure 5: Resource utilization with and without e-Dryad.
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4 Discussion

The e-Dryad approach for resource allocation in data intensive computing highlights an important opportunity
for improving energy costs and infrastructure expense. However, there are several additional features and design
extensions that may be considered to the initial design presented above. We discuss some of these extensions
below.

Temporal Profiling: In e-Dryad, we considered job level characteristics. A job has multiple stages of pro-
cessing. The worker tasks perform different types of computation in each stage and more accurate resource
utilization characteristics would emerge if the worker tasks of different stages were characterized individually.
Further, even among the homogeneous parallel tasks of a single stage, resource usage may differ because of
placement. Some tasks may be accessing only local data, some could be fetching their data from remote ma-
chines, and some could be using a mix of local and remote data. Differences in network data rates available to
different tasks will lead to differences in each task’s server resource usage and considering such effects can help
further optimize the e-Dryad resource allocation. However, in pactice, acquiring such detailed characteristics,
some of which depend on run time placement, is often difficult.

Latency Constraints: Joint placement of jobs for improved resource efficiency sometimes requires reducing
the instantaneous resource allocation for a job, and we showed in evaluations that the processing latency of a
job, measured from the time it is allocated on the cluster, may be increased. This may happen for instance, when
the storage bandwidth on the machines containing a job’s data is shared with another job to improve the CPU
utilization. In certain scenarios, we may wish the first job to have the entire storage bandwidth to minimize its
latency. To address such scenarios, e-Dryad resource allocation may be modified to incorporate priorities and
the high priority jobs may be allocated greater resources, at the cost of overall cluster efficiency.

Throughput Trade-off: We saw for the experimental system configurations and resource allocation policies
that energy efficiency also improved throughput, though sometimes at the cost of higher latency. There are
resource allocation policies when energy efficiency may be improved further by reducing the throughput. Given
that the idle power of keeping a server powered on is high, we optimized energy efficiency by maximally utilizing
available disk throughput. However, consider a policy where some of the servers are turned off, to ensure that
all data is available but multiple redundant copies may not be on line. This will allow for reducing the idle
energy costs but also reduce the available IO bandwidth. If all the jobs are processor intensive (IO bandwidth
was not the bottleneck) and the reduced IO bandwidth does not cause the processors on powered on servers to
stall on data access, then this reduced server configuration will be better aligned to job resource requirements
and hence more energy efficient. In such a policy, that exploits additional resource management knobs such as
server shutdown, both throughput and latency may be traded-off for improved energy efficiency.

Dynamic Allocations: The job allocation policy discussed in our prototype assumes that the resource al-
location is static for each job. This is reasonable when the job queues are typically never empty and jobs are
served in the order received. However, in cases where high prioity jobs require pre-emption of currently allo-
cated jobs, or the arrival of a new job opens up opportunities for more efficient resource allocations than the
current allocation, it becomes worthwile to consider dynamic resource allocations. If the tasks corresponding to
a running job are stopped, the work performed until that time would be wasted. Dynamic allocation would thus
require the capability to suspend a running task by saving the intermediate results and task state.

Multiple Resources: The heuristics presented for job matching and placement considered only two re-
sources and shared a server among at most two worker tasks from matched jobs. The design may be extended to
additional resources and may place more than two tasks on the shared server to further improve resource usage
in even more dimensions leading to lower energy use per unit throughput.
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5 Related Work

The problem of energy efficiency in data intensive computing platforms is a relatively new area of research.
Another work directly addressing this problem, though through a different approach is presented in [9]. The
placement of data among the servers is optimized such that certain servers may be placed in low power states
when feasible.

Simultaneous placement of multiple workloads on the same servers is also considered in several works
focused on virtual machine consolidation, such as [1, 6]. However, the key problem addressed in virtual machine
consolidation is efficient packing along pre-specified resource dimensions such as CPU time and memory space.
The bottleneck resources of data intensive computing tasks, such as storage bandwidth, are not considered.
Also, the resource requirements are assumed specified, while in our work we employ distributed monitoring to
characterize the relevant resource characteristics of applications. The e-Dryad method also trades off latency for
energy efficiency while virtual machine consolidation typically focuses on optimizing performance.

Another set of related works is found in optimizing the performance of data intensive computing platforms
such as by improving the schedulers for Dryad or MapReduce [13, 8, 3] for addressing various challenges such
as efficient handling of failed tasks, adaptation to data and network topology, and better utilization of cache
hierarchy. The optimization of the jobs themselves through static analysis was proposed in [2]. Our work is
complementary to the above works and could potentially be added on as a resource re-configuration layer with
many of their scheduling policies. e-Dryad improves resource efficiency by matching the resource allocation to
the resource configurations best suited to the computational tasks.

6 Conclusions

We described an important opportunity for improving the energy efficiency of data intensive computing plat-
forms. Hardware configurations are rigid and cannot be right sized for the characteristics of each application
that may be executed on the platform. We introduced a software mechanism to dynamically right size the hard-
ware configuration by modifying the resource allocations made to each of the worker tasks of the jobs. The
resource allocation method learns the characteristics of the jobs and determines the appropriate allocations to
efficiently utilize the resources. This results in both lower energy consumption as well as higher throughput,
and we saw through evaluations that the savings were significant. The changes in resource allocation do affect
the latency performance of the jobs and we illustrated this trade-off with an example execution. The proposed
methods demonstrate an important opportunity to improve energy efficiency and help reveal several additional
challenges and extensions that may help improve data intensive computing infrastructures.
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