
Title of Presentation
Name

Title

 Future Trends in
 Software Engineering

Wolfram Schulte

Software Engineering (SE)

“Produce high quality software

with a finite amount of resources

to a predicted schedule”

N
A

T
O

 S
E

 C
o
n
fe

re
n
c
e
 1

9
6
8

Agenda

Analytics for software development

• Many known programs: Branch analysis

Logic-based tools

• Two known programs: Equivalence checking

Future platforms, future developers

• One known, one unknown pgm: Coding duels

 Analytics

“Use of analysis, data,

and systematic
reasoning

to make decisions”

• Financial services

• Manufacturing

• Health care

• Search

• And more…

Analytics

Past Present Future

What happened?

(Reporting)

What is happening

now?

(Alerting)

What will happen?

(Extrapolation)

How and why did it

happen

(Modeling)

What‟s the best

next action?

(Recommendation)

What‟s the

best/worst that

can happen?

(Prediction) In
s

ig
h

t
In

fo
rm

a
ti

o
n

From Davenport et al. “Analytics at Work”.

Parent

Child
Integration

IntegrationEdit

Anchor

Branches

Checkins

Edit

Edit

Anchor

Branching in Source Control

Management (SCM) Systems

Coordinating the work of 100‟s of developers is difficult

A common solution is to use branches in SCM systems

 Benefits: Isolating
concurrent work
during times of
instability

Cost: Increase
the time that
changes per-
colate through the system (Code Velocity)

Status quo:

Many branches for little change

Code Velocity for this file is particularly bad…

Branch Analytics

Techniques:

Survey devs to understand their problems with branching

Mine dev. data for relationship of teams and branches

Simulate benefits and cost of alternative branch structures

Actions/Tools:

Alert users about possible conflicts

Recommend branch structure, e.g. del., add, merge etc.

Perform semi-automatic branch refactoring

Survey: Branching Problems

 Big Bang Merge:
merge all
branches
simultaneously

 Development
Freeze: stop work
while merging

 Integration Wall:
using branches
between people,
instead of dividing
work

 Branch Mania:
creating too many
branches

 ….

5

8

Big Bang
Merge

6
12

Branch
Mania

11

10

7
Development

Freeze

Integration
Wall

9

Percent
"High Impact"

Percent "Frequently"

Anti-patterns from Streamed Lines: Branching Patterns for Parallel Software Development

and Branching and Merging Primer.

http://www.cmcrossroads.com/bradapp/acme/branching/
http://msdn.microsoft.com/en-us/library/aa730834(VS.80).aspx

Mine “File Similarity” / ”Developer Similarity”
Dark areas mean many branch pairs in that area.

Most pairs of branches

are not similar

Same devs working on

different things is OK
Same files should

mean same people

Same files, but different team

means possible problems

Simulate Cost-Benefit of

Alternative Branch Structures

Idea: Replay Windows history

•With each feature-branch removed

Measure impact on:

•Velocity (“cost”)

•Avoided conflicts (“benefit”)

Velocity vs. Conflict avoidance

 Bad branch

 Good branch

Summary: Branch Analytics

Software Analytics makes software

development data actionable

• Branch analytics key to improve code velocity

• Better design of development structure

• Efficient scheduling

• Reliable systems with low conflicts

 Equivalence Checking (EC)

THE BIG SUCCESS STORY OF

FMS IN HARDWARE

Formally prove that two

circuit designs, like register

transfer level and netlist,

exhibit exactly the same

behavior

EC for Software

Formally prove that two programs

(with procedures) have the same

input/output behavior

• Input: State of parameters, globals and heap

• Output: State of return, globals and heap

Example

void swap1(ref int x, ref int y){

 int z = x;

 x = y;

 y = z;

}

void swap2(ref int x, ref int y){

 x = x + y;

 y = x - y;

 x = x - y;

}

z0 == x0 &&

x1 == y0 &&

y1 == z0 &&

swap1.x == x1 && swap1.y == y1

&&

x1' == x0 + y0 &&

y1' == x1' – y0 &&

x2' == x1' – y1' &&

swap2.x == x2' && swap2.y == y1'

&&

~ (swap1.x == swap2.x &&

 swap1.y == swap2.y)

Two programs Formula/Constraint

Example

void swap1(ref int x, ref int y){

 int z = x;

 x = y;

 y = z;

}

void swap2(ref int x, ref int y){

 x = x + y;

 y = x - y;

 x = x - y;

}

z0 == x0 &&

x1 == y0 &&

y1 == z0 &&

swap1.x == x1 && swap1.y == y1

&&

x1' == x0 + y0 &&

y1' == x1' – y0 &&

x2' == x1' – y1' &&

swap2.x == x2' && swap2.y == y1'

&&

~ (swap1.x == swap2.x &&

 swap1.y == swap2.y)

Theorem

prover

UNSAT (Equivalent)

SAT (Counterexample)

Interesting constructs in programs

Branches

Loops

Heap and the stack

Procedure calls

Procedure calls and uninterpreted

functions

void Foo1(ref int x, int y){

 int z = x + y;

 x = Bar(z);

}

void Foo2(ref int x, int y){

 int z = y + x;

 x = Bar(z);

}

z0 == x0 + y0 &&

x1 == F_Bar(z0) &&

Foo1.x == x1

&&

z0' == y0 + x0 &&

x1' == F_Bar(z0') &&

Foo2.x == x1'

&&

~ (Foo1.x == Foo2.x)

Two programs Formula/Constraint

Uninterpreted function

a == b  F_Bar(a) == F_Bar(b)

SymDiff

A Semantic Diff tool

•Like Windiff

Language independent

•Builds on Boogie verifier and Z3

theorem prover

Adapt for various source languages

• C, C++, .NET, x86, ARM, ….

SymDiff for Applications and Compiler

X86

IL

v2 v3 Versions

C

Version/Application-compatibility:

Do the two versions behave the same?

Translation Validation:

Do source and target

program agree?

Can be used to automatically resolve refactoring/bugfix conflicts

SymDiff tool

SymDiff

P1

P2
P2 ≠ P1

P1 = P2

Works at Boogie intermediate language, i.e.

generates verification conditions, which are

discharged by the theorem prover Z3

S1
Source



Boogie

S2
Source



Boogie

SymDiff for C

Summary: SymDiff

Logic-based tools translate programs &
constraints into formulas

SymDiff checks

• merge of refactorings

• application compatibility

• compiler translations

• “refinement”- the same except for undef behavior

Try tools out yourself: http://rise4fun.com

http://rise4fun.com/

• Over 1.8 billion people are connected to the web

• The browser is the most widely used app

• People love to play

 Pex for Fun

Excite people to play coding duels (puzzles), i.e.

Given a hidden program

Puzzlers writes a user program

Puzzler wins if hidden “=“ user,
otherwise he gets counter examples

Enabled via Pex which uses dynamic symbolic
execution, i.e. executes “all” paths of both programs

Pex Functionality

Intellisense

Coding Duels

Social Experience

Teaching

Pex for Fun: Conclusion

For reach, taking programming into
the browser & cloud and make it fun

Pex4Fun opens opportunities for

• learning using coding duels

• socialiazing using live feed, sharing duels

• teaching with automatic grading

• research: recommend fixes based on 1/2 million
attempts

Try it out yourself: http://pex4fun.com

http://pex4fun.com/

• In 2010, Smartphones outsold PCs

• Today’s Smartphones more powerful than PC from 2000

• But cannot be programmed …

 Shouldn’t we change that?

 Touchstudio

 Social experience of
creating little apps

On the phone for the
phone and in the
cloud

Examples:

• print “Hello world”
should go to facebook

• set ring-tone based on
GPS location

• filter twitter messages

• build your own media
search

Users

teenagers
Excel

macro-writers

you and everyone else

What‟s needed?

Programming on the phone
• authoring, debugging, running

Easy access to sensors/services/apps
• discoverable, minimal amount of code

Social aspects
• share programs and their data with your friends

Cloud integration

• sharing state, split computation, privacy, security

Program Model

Program is a set of event-triggered, sequentially executed actions

Async calls lead to automatic tomb-stoning and continuation

Programming Environment
Semi-structured editing + calculator using touch

Programs on the phone; possibly shared as pictures with friends

Just for fun….

• Start location feature

• Create a bing map

• Get the current location

• Add a („here‟) pushpin

• Geocode „portland, usa‟

• Add a („to‟) pushpin

• Calc. a route between the 2 points

• Display it on the map (green line)

• Take a screenshot,

• Save it to the library

Touchstudio Conclusion

Take programming on the Phone + Cloud

With TouchStudio research opportunities abound
• Dev.Environment: on the phone authoring/debugging/running

• Programming model: easy access to sensors/services/apps

• Cloud integration: sharing of programs & data, security, privacy

• Energy efficiency: on the phone/cloud, tier splitting

Try it out yourself: Windows Phone MarketStore
 http://research.microsoft.com/Touchstudio

http://research.microsoft.com/Touchstudio
http://research.microsoft.com/Touchstudio

 Summary: Future of Software Engineering

Software Analytics enables data-driven decision, i.e.
 which process, practice, tool to use and
 deploy under which context

Logic based tools help develop better software artifacts,i.e.
 help model, analyze, optimize, and
 synthesize software artifacts

Future platforms excite and pose new challenges, e.g.
 web, mobile devices (phone, tablet),
 datacenter, games

Q & A

43

schulte@microsoft.com

http://www.rise4fun.com

http://www.pex4fun.com

http://research.microsoft.com/touchstudio

http://research.microsoft.com/rise/

http://research.microsoft.com/~schulte/

mailto:schulte@microsoft.com
http://www.rise4fun.com/
http://www.pex4fun.com/
http://www.rise4fun.com/
http://www.rise4fun.com/
http://research.microsoft.com/rise/
http://research.microsoft.com/rise/
http://research.microsoft.com/rise/
http://research.microsoft.com/rise/
http://research.microsoft.com/en-us/people/schulte/
http://research.microsoft.com/en-us/people/schulte/
http://research.microsoft.com/en-us/people/schulte/

