

High-Fidelity Augmented Reality Interactions

Hrvoje Benko Researcher, MSR Redmond

New generation of interfaces

Instead of interacting through indirect input devices (mice and keyboard), the user is interacting directly with the content.

Direct un-instrumented interaction

Content is the interface

Surface computing

Kinect

New generation of interfaces

Direct un-instrumented interaction.

Content is the interface.

New generation of interfaces

Bridge the gap between "real" and "virtual" worlds...

... but still confined to the rectangular screen!

An opportunity...

Depth camera

Projector

Enable interactivity on any available surface and between surfaces.

MicroMotoCross

Augmented reality

Spatial

"Deviceless"

High-fidelity

Depth Sensing Cameras

Depth sensing cameras

Color + depth per pixel: RGBZ

Can compute world coordinates of every point in the image directly.

Three basic types

- Stereo
- Time of flight
- Structured light

Correlation-based stereo cameras

Binocular disparity

TZYX http://www.tyzx.com/

Point Grey Research http://www.ptgrey.com

Correlation-based stereo

Stereo drawbacks

- Requires good texture to perform matching
- Computationally intensive
- Fine calibration required
- Occlusion boundaries
- Naïve algorithm very noisy

Time of flight cameras

3DV ZSense

3DV, Canesta (no-longer public)
PMD Technologies http://www.PMDTec.com
Mesa Technologies http://www.mesa-imaging.ch

Time of flight measurement

Structured light depth cameras

PrimeSense http://www.primesense.com
Microsoft Kinect http://www.microsoft.com/kinect

Structured light (infrared)

Depth by binocular disparity

- Expect a certain pattern at a given point
- Find how far this pattern has shifted
- Relate this shift to depth (triangulate)

Kinect depth camera

- Per-pixel depth (mm)
- PrimeSense reference design
- Field of View 58° H, 45° V, 70° D
- Depth image size VGA (640x480)

- Spatial x/y resolution (@ 2m distance from sensor) 3mm
- Depth z resolution (@ 2m distance from sensor) 1cm
- Operation range 0.8m 3.5m
- Best part It is affordable \$150

Why sense with depth cameras?

Requires no instrumentation of the surface/environment.

Easier understanding of physical objects in space.

Enabling interactivity everywhere

LightSpace

LightSpace

LightSpace

Combining Multiple Depth Cameras and Projectors for Interactions On, Above, and Between Surfaces

LightSpace Implementation

Projectors

PrimeSense Depth Cameras

PrimeSense depth cameras

320x240 @ 30Hz Depth from projected structured light Small overlapping areas Extended space coverage

Unified 3D Space

Camera & projector calibration

Projector

& Intrinsic Projector
Parameters

Camera & projector calibration

LightSpace authoring

All in real world coordinates.

Irrespective of "which" depth camera.

Irrespective of "which" projector.

Supporting rich analog interactions

Skeleton tracking (Kinect)

Our approach

Use the full 3D mesh.

Preserve the analog feel through physics-like behaviors.

Reduce the 3D reasoning to 2D projections.

Pseudo-physics behavior

Virtual depth cameras

Simulating virtual surfaces

Through-body connections

Physical connectivity

Spatial widgets

User-aware, on-demand spatial menu

What is missing?

LightSpace

 "Touches" are hand blobs

All objects are 2D

Very coarse manipulations

Ideally

Multi-touch

3D virtual objects

Full hand manipulations

Touch on every surface

Problem of two thresholds

How to get surface distance?

Analytically

- Problems:
 - Slight variation in surface flatness
 - Slight uncorrected lens distortion effect in depth image
 - Noise in depth image

How to get surface distance?

Empirically

- Take per-pixel statistics of the empty surface
 - Can accommodate different kinds of noise
 - Can model non-flat surfaces
- Observations:
 - Noise is not normal, nor the same at every pixel location
 - Depth resolution drops with distance

Modeling the surface

Build a surface histogram at every pixel.

SURFACE

Setting reasonable finger thickness

Must make some assumption about anthropometry, posture, and noise.

How good can you get?

Camera above surface 0.75m

Finger threshold 14mm

Surface noise 3mm

1.5m

30mm

6mm

KinectTouch

Camera at 1.5m above table

But these are all static surfaces

How to allow touch on any (dynamic) surface?

- Dynamic surface calibration
- Tracking high-level constructs such as finger posture, 3D shape
 - Take only the ends of objects with physical extent ("fingertips")
 - Refinement of position

Depth camera touch sensing is almost as good as conventional touch screen technology!

Works on any surface! (curved, flexible, deformable, flat...)

Interacting with 3D objects

Previous approaches were 2D

Micromotocross

LightSpace

Can one hold a virtual 3D object in their hand?

And manipulate it using the full dexterity of your hand?

If you know the geometry of the world, you should be able to simulate physical behaviors.

Problems with physics and depth cameras

Dynamic meshes are difficult

Rarely supported in physics packages

No lateral forces!

Can't place torque on an object

Penetration is handled badly

Can't grasp an object with two fingers

Particle proxy representations

Wilson 2007

But can you see 3D in your hand?

3D perception

Many cues:

- Size
- Occlusions
- Shadows
- Motion parallax
- Stereo
- Eye focus and convergence

Can correctly simulate if you know:

- The geometry of the scene
- User's view point and gaze

Depth camera is ideal for this!

Can easily capture scene geometry

Can easily track user's head

MirageBlocks

3D Projector (Acer H5360)

Depth Camera (Kinect)

Shutter Glasses (Nvidia 3D Vision)

Benko, Costa, and Wilson, 2011

A single user experience!

Particle proxies

MirageBlocks

MirageBlocks

Hrvoje Benko, Ricardo Costa, Andy Wilson

Microsoft Research 2011

Next: Grabbing

Very hard problem – Working on it!

Summary

- 1. Interactivity everywhere
- 2. Room and body as display surfaces
- 3. Touch and 3D interactions
- 4. Preserve the analog feel of interactions

Come to try it yourself!

MirageBlocks demo

Friday 10am – 1pm

Resources to consider

Resources

Kinect for Windows SDK

 http://research.microsoft.com/enus/um/redmond/projects/kinectsdk

Resources

NVIDIA PhysX SDK

- http://developer.nvidia.com/physx-downloads
- http://physxdotnet.codeplex.com/ (.NET wrappers)

Newton Physics Game Engine

http://newtondynamics.com/forum/newton.php

Resources

NVIDIA 3D Vision

http://www.nvidia.com/object/3d-vision-main.html

DLP Link

- http://www.dlp.com/projector/dlp-innovations/dlp-link.aspx
- http://www.xpand.me/ (3D glasses)

My collaborators

Andy Wilson

Chris Harrison

Ricardo Costa Jota

