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Abstract

Classical mean and variance normalization (MVN) uses a di-
agonal transform and a bias vector to normalize the mean and
variance of noisy features to reference values. As MVN uses di-
agonal transform, it ignores correlation between feature dimen-
sions. Although full transform is able to make use of feature
correlation, its large amount of parameters may not be estimated
reliably from a short observation, e.g. 1 utterance. We propose a
novel structured full transform that has the same amount of free
parameters as diagonal transform while being able to capture
correlation between feature dimensions. The proposed struc-
tured transform can be estimated reliably from one utterance by
maximizing the likelihood of the normalized features on a refer-
ence Gaussian mixture model. Experimental results on Aurora-
4 task show that the structured transform produces consistently
better speech recognition results than diagonal transform and
also outperforms advanced frontend (AFE) feature extractor.
Index Terms: robust speech recognition, feature normalization,
maximum likelihood, eigen-decomposition.

1. Introduction

Speech recognition performance on noisy speech data is poor if
the acoustic model is trained from clean speech data. This is due
to the mismatch between the distributions of the clean and noisy
speech data. Many techniques have been proposed to reduce the
mismatch and can be grouped into two approaches, the model
adaptation approach and feature compensation approach.
Model adaptation approach adapts clean acoustic model to-
wards noisy test features. For example, maximum a posteriori
(MAP) [1] and maximum likelihood linear regression (MLLR)
[2] adapt acoustic model by using noisy speech data. Parallel
model combination (PMC) [3] and vector Taylor series (VTS)-
based adaptation [4] predict noisy acoustic model based on
noise estimate and a physical model that characterizes the re-
lationship between clean and noisy features. Although model
adaptation approach is powerful, they generally require much
higher computational load than feature compensation approach.
Feature compensation approach estimates clean features
from noisy observations. For example, minimum mean square
error (MMSE) estimators of clean speech are proposed in spec-
tral domain [5] and cepstral domain (e.g. [6]). The success of
these techniques heavily depends on accurate noise estimation
which itself is a difficult problem. A group of feature space
techniques, called feature normalization, do not require noise
estimation. Feature normalization methods normalize the dis-
tribution of noisy features (typically over an utterance) to that
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of clean features. For example, the cepstral mean normalization
(CMN) [7] normalizes the mean of noisy features; mean and
variance normalization (MVN) [8] normalizes both mean and
variance of noisy features; and histogram equalization (HEQ)
[9] generalizes MVN by normalizing the histograms of noisy
features. These feature normalization methods are also ex-
tended to multi-class normalization for better performance. In
augmented CMN [10], speech and silence frames are normal-
ized to their own reference means rather than a global mean.
Similar two-class extension is also applied to MVN in [11] and
it is shown that two-class MVN produces similar performance
as the advanced feature extraction (AFE) [12] on Aurora-4 task
[13]. In [14, 15], multi-class HEQ is proposed and good perfor-
mance was reported on Aurora-2 task.

A limitation of feature normalization techniques is that they
ignore the correlation between feature dimensions and process
each dimension independently. Although cepstral features are
only weakly correlated, the correlation between feature dimen-
sions can be used to improve speech recognition performance.
For example, semi-tied covariance model [16] shows that it is
beneficial to model the cross-covariance between feature di-
mensions for speech recognition.

In this paper, we propose to incorporate feature correla-
tion information in feature normalization. As we will show
later, MVN and its multi-class extension are two special cases
of constrained MLLR (CMLLR) [17] and therefore belong to
the maximum likelihood (ML) feature adaptation framework.
MVN uses a diagonal transform to scale the feature dimensions
independently. We proposed to use full transform to allow in-
teractions between dimensions. To keep the number of free pa-
rameters low, we use a novel structured full transform that has
the the same number of free parameters as diagonal transform.
The new transform is estimated in the CMLLR framework.

The organization of this paper is as follows. In section 2,
we review MVN in the CMLLR framework and introduce the
proposed structured full transform. In section 3, the proposed
method is evaluated on the Aurora-4 task. In section 4, conclu-
sion is presented.

2. Feature Normalization with Full
Structured Transform

CMLLR [17] is a popular model adaptation method. Due to
its constrained form of transform, CMLLR can also be imple-
mented in feature space, also known as feature space MLLR
(fMLLR) [18]. As CMLLR provides a general maximum like-



lihood framework for linear feature transformation, we will use
the CMLLR formulation to derive our proposed method. We
will first show that MVN is a special case of CMLLR, and then
describe the proposed structured full transform.

2.1. MVN as A Special Case of CMLLR
Assume that the features are linearly transformed as follows:
y(t) = Ax(t) +b M

where x(t) and y(t) are the original and transformed feature
vectors at frame ¢, respectively, A is a positive-definite matrix
and b is a bias vector. The auxiliary function of CMLLR is
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where A = {A,b} is the set of parameters to be estimated,
A= {A, l;} is the current estimate of the parameters, ft,», and
¥, are the mean and covariance matrix of the m'® mixture
in the model, M is the number mixtures, 7" is the number of
frames in the noisy data to be processed, v (t) is the posterior
probability of mixture m at frame ¢ after the noisy features are
observed. The solution of A and b are given in [19] for diagonal
transform case and in [17] for full transform case.

If there is only one Gaussian in the reference model, and
assume that the transform A is diagonal, the following closed-
form solution can be derived:

A = wnl/2y-1/2 3)
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where ¥, is the diagonal covariance matrix of the only Gaussian
in the model, 3, is the diagonal covariance matrix of the data,
ur and g are the reference and data mean vectors, respectively.
With this solution, we have:
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As this solution coincides with MVN, MVN is a special case of
CMLLR for single Gaussian model and diagonal transform.

If there are multiple Gaussians in the model and each as-
sociated with a diagonal transform, the auxiliary function be-
comes
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where v = "1, Yim(t), Am and by, are the diagonal trans-

form and bias vector for mixture m, respectively. The M trans-
forms and bias vectors can be solved independently:

A = SR )
BTH = Hm — A‘"LI/LI,’"L (8)
where
1 I
Pom = — ) Ym(t)x(t) )
Tm
1 I
S = ding| 2 YOO — o) (50— )
™ ot=1

(10)

The final transformed feature vector is a linear combination of
the mixture-dependent transformed features:

M
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The two-Gaussian MVN in [11] is a special case of the multi-
class MVN, where one Gaussian is used to represent speech
frames and the other for silence frames. When implementing
multi-class MVN, the noisy features are first preprocessed by
MVN with one Gaussian, and then used to find the posterior
probability v (¢). This is because the quality of 7y, (t) from
original noisy features could be too bad and will lead the nor-
malization to wrong directions. Similar preprocessing is also
used in multi-class HEQ in [14].

2.2. MVN with Structured Full Transform

The diagonal transforms in MVN do not allow interaction be-
tween feature dimensions. Although full transforms will be
more flexible, they have a large amount of parameters and can-
not be reliably estimated from a small amount of data, e.g. 1
utterance. In this section, we propose a structured full trans-
form that is more powerful than diagonal transform, but with
the same amount of free parameters as diagonal transforms.
The proposed transform has following structure:

A=ESE! 12)

where E is a nonsingular (invertible) matrix and S is a diagonal
matrix. With this structure, A can be seen as a linear combina-
tion of D rank-1 matrix:

D
A= sief] 13)
=1

where D is the dimension of the feature vectors, s; is the ith
diagonal element of S, and e; and f; are the i*" column vectors
of E and E™', respectively. E is pretrained and only S needs
to be estimated during feature normalization. Hence, there are
only D free parameters in the transform, the same as a diagonal
transform. Similar structured matrix has been used for model-
ing the precision matrix of Gaussian in [20]. With the struc-
tured transform and a meaningful E, it is possible to find A that
is more powerful than a diagonal transform without increasing
the number of free parameters.

2.2.1. Solution for S

Let’s first assume that we already know E and derive the so-
lution for S. Substitute (12) into the auxiliary function (2) we
get
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Unlike standard CMLLR, the covariance matrices of the Gaus-

sians are not assumed to be diagonal in case of structured trans-
form.



Let’s make the following projections:

xp(t) = E'x(t) (15)
b, = E'b (16)
Hmp = E_lﬂm (17)
Ymp = ET'S,ET (18)

Then the auxiliary function can be rewritten as follows:
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This is exactly the CMLLR problem with diagonal transform
S, but in the space projected by E~! rather than in the origi-
nal feature space. Closed-form solution for S exists if ¥, , is
diagonal [19].

2.2.2. Solution for E

We now discuss how to obtain E and how to guarantee that the
projected covariance matrix ., , is diagonal. We can solve
both problems by choosing E properly. In the simplest case, if
we have just one Gaussian in the model, one option is to choose
E as the eigenvectors matrix of the Gaussian covariance matrix,
i.e. © = EAE”, where ¥ is the global full covariance matrix of
the clean feature space. Then, the projected covariance matrix
will be diagonal: ¥, = ET'SE = ETXE = A, where E~' =
E” as eigenvector matrix is orthonormal. The resulting problem
is the same as MVN except that the normalization takes place
in the projected space of E~* rather than in the original space.
If we set E = I, the algorithm becomes MVN.

In a more general case, there are multiple Gaussians in the
model. If we use one transform with each Gaussian, i.e. we
have Ay, = E,SnE;;,! for Gaussian mixture m, then E,,, can
be set to the eigenvector matrix of ¥,,, which is now full co-
variance matrix. The resulting normalization is similar to multi-
class MVN, except that the normalization is performed in pro-
jected space by E.,' for mixture m rather than in the original
feature space. If E,,, = I for all m, the normalization degener-
ates to multi-class MVN. In this paper, we study this case and
the single Gaussian case in the experiments.

In the most general case, there are multiple transforms A,
and each transform is shared by a set of Gaussian mixtures. In
this case, one possible solution is to adopt semi-tied covariance
modeling [16] to build the reference GMM and associate E,,,
with the semi-tied transforms. With this selection, E,, will
decorrelate the Gaussians belonging to transform A, (although
not perfectly). Due to page limit, we will not discuss this gen-
eral case in this paper.

3. Experiments
3.1. Experimental Settings

The proposed feature normalization algorithm is evaluated on
the large vocabulary Aurora-4 task [13] that is widely used as
benchmarking for different noise robust techniques. The MFCC
features are extracted using the standard WIO07 feature extrac-
tion program [21]. In total, 39 features, including the 13 static
cepstral features and their delta and acceleration features, are
used as raw features. The cepstral energy feature cO is used
instead of the log energy. In all the experiments, the training
and testing features are always processed by the same feature
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Figure 1: Performance of MVN with diagonal and structured
full transforms on Aurora-4 task with different number of trans-
forms. AFE result is also shown for comparison.

processing method. A triphone-based acoustic model is trained
using the clean condition training scheme and 8kHz. There are
about 2,800 tied states in the model, each with 8 Gaussian mix-
tures. The acoustic model and a bigram language model are
tested on the 14 test cases of Aurora-4 task.

For feature normalization, reference GMMs are trained
from the same clean features used to train the acoustic model.
For MVN with diagonal transforms, GMM with diagonal co-
variance matrices. For MVN with structured full transforms,
GMM with full covariance matrices are trained. The projection
matrices for each Gaussian E,,, are obtained as the eigenvectors
matrices of the corresponding covariance matrices.

3.2. Experimental Results

We first examine the recognition performance with different
number of Gaussians in the reference model as shown in Fig. 1.
It is observed that the results obtained by using structured full
transforms is consistently better than that with diagonal trans-
forms. This shows that by allowing interaction between fea-
ture dimensions, the structured full transforms are able to use
the correlation information between feature dimensions and this
leads to better robustness of the normalized features. We also
tried to use full covariance GMM with diagonal transforms, but
this leads to worse results than using diagonal covariance GMM
with diagonal transform. This shows that the advantage of struc-
tured full transform over diagonal transform is not due to the use
of better full covariance matrix in structured full transform.
Fig. 1 also shows that WER obtained by diagonal trans-
forms and structure transforms are both reduced when the num-
ber of classes are increased. The biggest improvement is from 1
to 2 mixtures. However, from 2 mixtures to 16 mixtures, there is
only marginal improvement for both kinds of transforms. This
suggests that the biggest improvement probably comes from us-
ing different mixtures to represent speech and silence as was
suggested in [10] and [11]. The benefit of using more mixtures
for better modeling of the speech frames is perhaps offsetted by
less accurate posterior probability 7, (¢) (the more mixtures,
the less accurate posteriors). The result obtained by advanced
front end (AFE) [12] is also shown in the figure for compari-
son. AFE is a state-of-the-art feature compensation technique
and produces good results on Aurora-4 task. Our results show
that multi-class MVN with diagonal transforms performs sim-
ilarly as AFE (consistent with results in [11]) and multi-class
MVN with structured transforms performs better than AFE.
This shows that the proposed method is a competitive feature



Table 1: Performance on Aurora-4 task using clean condition training. MVNd and MVNf represent MVN with 1 diagonal and 1
structured full transform, respectively. MVNd8 and MVNf8 denote MVN with 8 diagonal and 8 structured full transforms, respectively.
Avg. refers to the averaged WER over all 14 test cases. R.R. is the relative reduction of WER achieved by structured full transform

over diagonal transform. AFE results are also shown for comparison.

Test Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg.
AFE 12.04 | 20.63 | 30.53 | 35.69 | 30.20 | 34.22 | 31.12 | 19.08 | 28.43 | 39.82 | 42.03 | 40.88 | 38.78 | 36.72 | 31.44
MVNd 13.44 | 31.79 | 37.09 | 38.23 | 37.20 | 36.24 | 40.26 | 21.33 | 40.11 | 4552 | 49.28 | 52.56 | 46.22 | 50.17 | 38.53
MVNf 1333 | 21.62 | 32.71 | 38.01 | 37.61 | 34.95 | 38.86 | 19.82 | 29.94 | 4295 | 46.26 | 50.79 | 41.73 | 47.66 | 35.45
R.R 0.8 32.0 11.8 0.6 -1.1 3.6 35 7.1 25.3 5.7 6.1 34 9.7 5.0 8.0
MVNdS8 12.56 | 16.50 | 31.05 | 36.61 | 33.55 | 32.30 | 34.51 | 16.61 | 23.35 | 36.35 | 43.57 | 42.36 | 37.16 | 39.85 | 31.17
MVNf8 11.57 | 15.65 | 28.58 | 3536 | 31.38 | 30.02 | 3396 | 15.80 | 21.10 | 33.19 | 40.66 | 41.10 | 3595 | 38.05 | 29.46
R.R 7.9 5.1 79 34 6.5 7.1 1.6 49 9.6 8.7 6.7 3.0 33 4.5 5.5

space technique for improving robustness of features.

The detailed results of selected number of transforms are
shown in Table 1. From the table, it is observed using struc-
tured transforms produces consistently better results than using
diagonal transforms.

4. Conclusions

In this paper, we proposed to use structured full transform to re-
place diagonal transform of MVN feature normalization. The
proposed transforms are estimated by maximizing the likeli-
hood of the normalized features on a clean GMM reference
model. Experimental results on Aurora-4 task show that the
proposed structured full transform is able to use feature correla-
tion information to improve robustness of features and improve
speech recognition performance in noisy environments, while
using the same number of free parameters as diagonal trans-
forms. In the future, we will investigate structured full trans-
form with projection matrices other than eigenvectors matrix,
e.g. semi-tied transforms [16] and discriminative projections.
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