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1. INTRODUCTION

Although most large-scale web search engines adopt the
standard DRAM-HDD storage hierarchy, the usage of hard
disk is greatly limited by its long read latency. On the other
hand, NAND Flash memory is 100x faster than hard disk
and 10x cheaper than DRAM [2]. Therefore, it’s possible
to allocate a significant portion of DRAM data into Flash
memory, so as to save money on storage.

This paper considers the optimal policy that allocates the
DRAM portion of inverted index into Flash memory as much
as possible. Note that the original hard disk portion of
index data is still left in hard disk in our scheme, which
actually results in a three-layer storage hierarchy. To our
best knowledge, we are the first to show that it’s possible to
get substantially better system performance for web index
serving by trying some Flash-aware storage management ap-
proaches, rather than just plugging in a SSD and treating it
as super hard disk.

We limit our discussion in the static scenario, where post-
ing lists are allocated atomically in either Flash memory
or DRAM only when the index updates and no other data
movement is performed at run time. The problem is very
similar to static index caching/pruning [1] [4], except that
the caching here is exclusive and the target storage is Flash
memory. Note that previous work suggested that static poli-
cies work well for inverted index caching, compared with
their dynamic counterparts [1].

2. ANALYSIS

In static index allocation problem, a subset of index terms
is selected to stay in Flash memory until the index is re-
allocated. Following the traditional analysis framework for
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hard disk caching, [1] and [4] modeled it as knapsack prob-
lem, and proposed the standard greedy algorithm to approx-
imate the optimal solution. However, the distinct charac-
teristics of Flash memory requires modifications on existing
optimization model. Specifically, our analysis considers the
problem from following aspects:

Throughput constrained optimization - Throughput and
latency are two major constraints for storage management.
Traditional disk caching systems concern mostly about la-
tency, this may be partially because the long access la-
tency of hard disk tend to hurt the overall performance
first, and partially because the bandwidth of hard disk is
instable across different workloads. However, the latency
requirement in single index server is less restrictive since we
could reduce the latency by splitting index into more par-
titions and serving them simultaneously. Furthermore, the
throughput of Flash read is relatively insensitive to work-
loads and can be considerably large in its high-performance
setup [3]. Thus, we take throughput/bandwidth as the main
constraint in our optimization model.

Cache size oriented optimization - Traditional disk caching
systems try to minimize cache hit rate given a fized cache
size. This paradigm makes sense for latency constrained
optimization, because a "consistently good” caching policy
within traditional framework implicitly minimizes the cache
size for a given cache hit rate, and a required cache hit
rate can be uniquely translated to a required end-to-end
latency. Note that the underlying assumption of this con-
straint translation is that the access latency of any storage
remains the same while its size changes. Unfortunately, sim-
ilar assumption doesn’t hold in throughput/bandwidth con-
strained optimization, because the bandwidth of Flash mem-
ory grows as Flash chips added. Consequently, we have to
explicitly minimizes (maximizes) the size of DRAM (Flash
memory) while ensuring the throughput in Flash memory to
be sustainable.

Finally, the problem can be modeled as, given a set of
index terms 7" where each index term ¢ € T is associated
with a bandwidth requirement B; and a capacity require-
ment CY, also given a capacity-bandwidth function of Flash
memory Ffasn : RT — RT which indicates the sustainable
bandwidth provided by a specified amount of Flash memory,
then the goal is to select a subset S C T for Flash memory
and solve the optimization problem
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Although F'14sn depends on specific package setup of the



Flash memory used, it is convenient to arrange a bunch of
Flash chips in single board [3] and to uniformly distribute
the access requests (e.g. by stripping), in order to achieve
fully parallelized integrated bandwidth. In this case, the
integrated bandwidth will increase by a fixed amount for
each Flash chip added, and thus is proportional to its ca-
pacity. This means Fy.sn can be seen as a linear function
Ffrasn(z) = ax. Interestingly, it can be proved that in this
case the greedy algorithm based on individual ratio % per-
forms at least as good as what it does as the standard heuris-
tic in knapsack problem, by noticing that it is still an ILP
problem with the constraint of
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The proof is omitted due to space limitation.

3. EXPERIMENTATION

We compare our algorithm with the state-of-art hard disk
caching policy, as well as two simplified criteria in the greedy
framework. We use a query log containing 0.7 million user
queries which are already filtered by query result caching,
and an index file covering 7 million web pages, both of which
are from real search engine. Dynamic index pruning and
adaptive matching algorithms are employed, which means
posting lists may be partially scanned for serving a query.
To achieve the full potential of Flash memory, we imple-
mented a customized board with 36 Flash chips which has
integrated bandwidth of at most 1.8 GB/s (shown in Figure
1). Specifically, the four caching policies we examined are

e C/B the Flash-aware policy discussed in last section,
which is based on the individual ratio %. By is esti-
mated from the run-time logs. The run-time overhead

for logging is found to be ignorable.

e QTF/DF is based on the ratio of term access fre-
quency and document frequency. It’s the “optimal”
policy in hard disk caching [1] [4].

e Capacity is solely based on capacity requirement, which

doesn’t need any run-time logging.

e QTF is solely based on term access frequency. Note
that this policy is equivalent to C/B when posting lists
are always completely processed.

Figure 2 illustrates our model, as well as the results of dif-
ferent policies, in a more intuitive way. For each policy,
the index terms are sorted according to its respective cri-
terion, thus the accumulative capacity requirement and ac-
cumulative bandwidth requirement of index terms can be
drawn as a curve. All index terms on the left side of the
intersection point between the curve and Flqsn will be al-
located into Flash memory, and those on the right side will
be in DRAM. To maximize Flash size, the intersection point
should go right as much as possible.

C/B does the best job and put more than 95% of the index
data into Flash memory for system with 1GB Flash chip ar-
ray (85% and 75% for 2GB chip and 4GB chip respectively).
QTF, as a previously sub-optimal policy [1], has a simi-
lar curve with C/B and gives comparable allocation result
for system with 4GB Flash chips. However, for 1GB Flash
chips, the DRAM size of QTF is roughly 100% larger than

Flash daughter board.

Figure 1: The customized board with 36 Flash chips
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Figure 2: Accumulative bandwidth-capacity distri-
butions of different allocation policies

that of C/B, because the intersection point in this case falls
into the most different parts of these two curves. QTF/DF
results in a nearly straight line, implying that it almost acts
like randomly picking index terms into Flash memory, and
performs even worse at the starting end of the curve (due to
stopwords actually). Because the curve of QTF/DF is con-
sistently higher than all the Fljqsn lines, almost all index
terms have to be allocated into DRAM under this policy.

4. CONCLUSION

Experimental evidence shows that the previously opti-
mal policy for hard disk doesn’t work for Flash memory.
The Flash-aware optimization should explicitly maximize
the Flash size, under the constraint of memory throughput.
When the integrated bandwidth of Flash memory grows
linearly, the classic greedy algorithm for knapsack is still
”good”; and in our experiments it is able to allocate at most
95% of index data into Flash memory. Meanwhile, a previ-
ously sub-optimal policy becomes close-to-optimal in certain
situations.
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