Verifying Stateful Programs with
Substructural State and Hoare Types

Johannes Borgstrom *

Department of Information Technology,
Uppsala University, Sweden

borgstrom@acm.org

Abstract

A variety of techniques have been proposed to verify stateful func-
tional programs by developing Hoare logics for the state monad.
For better automation, we explore a different point in the design
space: we propose using affine types to model state, while relying
on refinement type checking to prove assertion safety.

Our technique is based on verification by translation, starting
from FX, an imperative object-based surface language with speci-
fications including object invariants and Hoare triple computation
types, and translating into FINE, a functional language with depen-
dent refinements and affine types. The core idea of the translation
is the division of a stateful object into a pure value and an affine to-
ken whose type mentions the current state of the object. We prove
our methodology sound via a simulation between imperative FX
programs and their functional FINE translation.

Our approach enables modular verification of FX programs sup-
ported by an SMT solver. We demonstrate its versatility by several
examples, including verifying clients of stateful APIs, even in the
presence of aliasing, and tracking information flow through side-
effecting computations.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Security, Verification, Languages, Theory

Keywords Security type systems, dependent types, affine types

1. Introduction

Several recent papers propose a verification methodology for state-
ful functional programs by developing Hoare logics for the state
monad (Borgstrom et al. 2010; Nanevski et al. 2006; Swierstra
2009). Tools based on this approach are known to be powerful. For
example, the Ynot tool has been used to carry out interactive proofs
of correctness for programs that manipulate B+ trees (Malecha
et al. 2010), a pointer structure with tricky sharing properties.
While such successes make a good case for interactive machine-
assisted proofs in a Hoare logic for the state monad, this paper ex-

* The first author was employed by Microsoft Research, Cambridge, for the
duration of his work on this paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLPV’11, January 29, 2011, Austin, Texas, USA.

Copyright © 2011 ACM 978-1-4503-0487-0/11/01. .. $10.00

Juan Chen

Microsoft Research, Redmond
juanchen@microsoft.com

Nikhil Swamy

Microsoft Research, Redmond
nswamy@microsoft.com

plores a different point in the design space of a program logic for
stateful functional programs. Our primary motivation is to auto-
mate verification of functional programs that use local state, such
that program components can be verified independently. We aim
to develop a verification methodology based on classical first-order
logic, for which powerful off-the-shelf solvers already exist. (In
contrast, tools like Ynot work with separation logic to recover mod-
ularity. Although the situation is improving (Chlipala et al. 2009),
automation for separation logic remains a significant challenge.)

Our work considers a well-known alternative to monadic state
as the basis of a verification methodology: substructural state, by
which we mean state modeled using linear (use-once) or affine
(use-at-most-once) types (Wadler 1990). Our insight is that the
problem of verifying stateful functional programs can be factored
into two pieces. First, we can use an affine type system to model
the stateful behavior of the program in a purely functional style.
Then, to prove the safety of assertions in the program, we can rely
on automated refinement type checking for a first-order classical
logic. Affine types partition the state of the program into a number
of disjoint pieces, thus yielding a modular verification procedure
without necessitating the use of the separation logic connectives.

In addition to improved automation, modeling state using affine
types is attractive since it enables combinations of Hoare logic
with other program verification disciplines. We work out one such
example in detail in §5.1, where we combine our basic approach
with a discipline of fractional capabilities to control aliasing.

Concretely, our work is based on FINE (Swamy et al. 2010a),
a purely functional language with a type system containing depen-
dent refinements and affine types. Our contributions include:

e We present FX (§3), an extension of the term syntax of FINE
with stateful commands including object allocation, deletion
and mutation. We also extend the type language with Hoare
types (Nanevski et al. 2006) to give specifications (in the style
of Hoare triples) to stateful code in FX.

e We show how to translate FX programs to FINE (§4), using
FINE’s affine types to model state, and dependent refinements
for the translation of Hoare types. The core idea is to divide
a stateful object into a pure value and an affine token whose
type mentions the current state of the object. We prove that our
translation is a simulation, which implies that refinement type
checking in FINE guarantees assertion safety for FX.

e We demonstrate the effectiveness of our approach on a variety
of examples (§5), which, although simpler than the B+ trees
verified interactively in Ynot, are still known to be challeng-
ing. Our examples include a conference management program
previously verified for authorization properties by Swamy et al.
(2010a); a client of a stateful API of collections and iterators
studied by Bierhoff and Aldrich (2007); and an encoding of in-

formation flow tracking suitable for use with programs that may
leak information via side effects (an enhancement of a tech-
nique studied by Swamy (2008)).

Although the results of this paper are limited (primarily) to first-
order programs, we discuss the extension to the higher-order case
in §5.3. The remainder of this section presents a short overview of
our work and some technical challenges that we solve.

1.1 Marrying substructural and dependent types

Linear types have been known as an effective tool for modeling
state for the last 20 years (Wadler 1990), roughly as long as the
monadic approach. Yet, with a few notable exceptions, verification
tools and programming languages have only seldom adopted linear
types as model of state. One reason for this, particularly in the type-
based approach to verification, is the subtle interaction between lin-
ear and dependent types. The metatheory of an arbitrary mixture of
these types is usually considered intractable. For example, Linear
LF (Cervesato and Pfenning 2002), perhaps the canonical presen-
tation of linearity and dependency, restricts linear values from ap-
pearing as indices in types. FINE has a similar restriction on affine
indices, placing seemingly severe limitations on expressiveness.

For a sense of the difficulty, consider implementing a function
incr = Ax:alnt. x+1 that increments an affine integer x:alnt. Since
x is affine, its storage might be reclaimed when read, and x +
1 can then either be written into a freshly allocated variable or
into the old location of x. A more precise type of incr could be
x:alnt — {y:alnt | y>x}. This is the type of a dependent function
from affine integers x to affine integers y, where the refinement type
to the right of the arrow states that the returned value y is greater
than x. However, this type is illegal in Linear LF and FINE, because
the refinement formula y>x is interpreted as a type, and the affine
values x and y cannot be used at the type level.

A key technical contribution of our work is to surmount this
difficulty by combining value-indexed types and affine capabili-
ties (Walker et al. 2000) to permit unrestricted refinements of state-
ful values. In our solution, the type of an increment function, say
incr2, could be x:int — Token x — (y:{y:int | y > x} x Token y), where
Token :: int = A is a dependent type constructor that constructs an
affine type from an int-typed value. (The kind of affine types is A.)
The type of incr2 indicates that to increment x, client code must
present a token for x. The incr2 function destructs the token for x,
produces y, and a new token for y. By making Token x affine, we
ensure that the client can no longer use x in a context that expects a
mutable integer. By indexing the type of the token with the value of
x, a token of one value cannot be confused with a token for another.
Finally, by separating x from its token, we can use x in refinement
formulas, e.g., in the formula y > x in the return type of incr2.

1.2 Shielding programmers from affinity

Clearly, requiring the programmer to directly manipulate tokens
is far from optimal-—mutable values and their tokens have to be
threaded through the program in a functional style. Additionally,
exposing affinity to the programmer is also questionable, since it
limits the use of library code—data structures that contain affine
values become affine themselves, making it hard to use, say, a
standard non-affine lists to hold affine values.

To counter these difficulties, we present FX, a surface syntax
with imperative commands that hides the low-level plumbing of to-
kens and affinity from the programmer. To illustrate FX, consider a
snippet of an FX implementation of ConfWeb, a verified conference
management tool we had previously implemented directly in FINE.

1 type review = {txt:string; u:user]}

2 val upd_review: r:review — x:string —

3 {(s1) T} _:unit {(s2) s2(r).txt=x && s2(r).u=sI(r).u}
4 let upd_review r x = r.txt := x

Here, we define a mutable object type review of reviews, with fields
for review text and the reviewer u. Line 4 shows the implementa-
tion of a function upd_review that updates a review r by assigning
to its txt field. FX programmers can use imperative commands like
assignment rather than threading mutable objects through the pro-
gram. Mutable objects can also be placed in standard data struc-
tures, without having to re-implement libraries to deal with affinity.

Specifications in FX are written using Hoare types, a nota-
tion resembling Hoare triples. Lines 2-3 show the specification of
upd_review, with the form x:t1 — {(sI) ®}r:t2 {(s2) ¥}, where the for-
mula ¢ is a pre-condition on the function argument x:t1 and pre-
state sI; r:t2 is the name and type of the return value; and ¥ is a
post-condition on the argument x, the pre-state sz, the return value
r, and the post-state s2.

The main technical development of this paper is a translation
from FX to FINE that introduces affine tokens and threads stateful
values and their tokens through the program. The main results are
Theorem 1, which establishes that the translation is a simulation,
and Corollary 2, which establishes progress for FX programs that
translate to well-typed FINE programs.

2. Overview

We begin with a brief review of FINE, then discuss ConfWeb, a
conference management application we previously implemented in
FINE. This application motivates, in part, the need for better sup-
port for imperative features. §2.2 presents the design of FX using
examples from ConfWeb. §2.3 presents informally our methodol-
ogy of verifying FX programs via translation to FINE.

2.1 A brief review of FINE

FINE is an experimental, purely functional programming language
on the .NET platform. The principal novelty of FINE is in its type
system, which is designed to support static verification of safety
properties via a mixture of refinement and substructural types. FINE
has, thus far, focused primarily on verifying security properties, in-
cluding authorization and information flow controls. However, by
design, FINE has little in it that is security-specific. This paper is a
step towards putting FINE to use for the general-purpose verifica-
tion of programs that mix both functional and imperative idioms.
We discuss several elements of FINE’s design next—for details,
consult our prior papers (Chen et al. 2010; Swamy et al. 2010a).

Value-indexed types. Types in FINE can be indexed both by types
(e.g., listint) as well as by values. For example, array int 17 could
represent the type of an array of 17 integers, where the index 17:nat
is a natural number value. FINE prohibits non-value expressions
from appearing as type indices, in effect forbidding type-level com-
putations. This restriction limits expressiveness, but considerably
simplifies FINE’s metatheory and implementation.

Dependent function types. Functions in FINE are, in general, given
dependent function types, i.e., their range type depends on their
argument. Dependent function types are written x:t —t’, where the
formal name x of the parameter of type t is in scope in t’. For
example, the type of a function that allocates an array of »n integers
can be given the type n:nat —array int n. When a function is non-
dependent, we simply drop the formal name.

Refinement types. A refinement type in FINE is written {x:t | ¢},
where ¢ is a formula in which x may appear free. Formulas are
drawn from the same syntactic category as types, although, for
readability, we typeset formulas differently and use distinct meta-
variables (¢ versus t). In practice, types are refined by formu-
las from a first-order logic with equality, extended with user-
defined predicates. For example, we may give the (partial) spec-
ification Va.l:list a— {m:list a| Vx:a. Inx I < Inxm} to a list per-
mutation. Universal quantifiers in formulas are represented using

dependent arrows and existential quantifiers using dependent pairs;
In is a user-defined predicate for list membership; and connectives
like < are represented using indexed types (we elaborate below).

Refinement type checking. A refinement type {x:t | ¢ } is inhabited
by values v:t, for which ¢ [v/x] is derivable. Derivability is defined
with respect to assumptions induced by the program context (e.g.,
equalities due to pattern matching) as well as a set of assumptions
that axiomatize user-provided predicates. We formalize this using
an LCF-style (Milner 1979) kernel for FINE, which contains the
inference rules for a classical first-order logic with equality, ex-
tended with constructors corresponding to user-provided axioms.
As such, user-provided axioms must be used with care, since faulty
axioms compromise soundness. Derivability is decided by relying
on Z3 (de Moura and Bjorner 2008), an SMT solver. Formally,
refinement types are viewed as X-types. However, we include a
program transformation (somewhat similar to the coercions used
by Sozeau (2006)) that systematically inserts pack/unpack opera-
tions so as to equip refinement types with a subtyping relation that
allows programmers to view {x:t | ¢ } as a subtype of t.

Affine types. Dependent refinements in FINE bear close resem-
blance to constructs found in related languages like F7 (Bengtson
et al. 2008) and Sage (Flanagan 2006), despite several technical dif-
ferences. A substantial difference in FINE however, is the addition
of affine types. The interaction between dependent and affine types
in FINE is strictly regulated by the no-affine-indices restriction—
this prohibits the use of values with affine types as type indices. As
such, FINE is closely related to Linear LF (Cervesato and Pfenning
2002), which integrates linear and dependent types, with a similar
restriction that prevents linear resources being mentioned in types.
This paper shows that even with this restriction, the combination of
dependent and affine types available in FINE provides a powerful
set of primitives for verifying programs that use mutable local state.

Kind language. To enforce the no-affine-indices restriction (as well
as to keep account of type constructors) FINE employs a system of
kinds. The (slightly simplified) syntax of kinds is shown below:

kinds k = x|A|lack=k|xt=k

Types in FINE are divided into two basic kinds: «, the kind of nor-
mal non-affine types, and A, the kind of affine types. A x-kinded
type can be coerced to the A universe using the modality i, e.g.,
int::x, while jint::A. Type constructors are given arrow kinds, which
come in two flavors. The first, a::k = k' is the kind of type func-
tions that construct a k’-kinded type from a k-kinded type o. Just as
at the term level, type-level arrows are dependent—the type vari-
able « can appear free in k. Type functions that construct value-
indexed types are given a kind x:t = k, where x names the in-
dex of type ¢t and x can appear free in k. In both cases, when
the kind is non-dependent, we simply drop the name of the in-
dex. The no-affine-indices manifests itself as a restriction on kinds
x:t = k, where the domain type ¢+ must have kind x. For exam-
ple, the kind of list is x=- *; the kind of the value-indexed array
constructor is x=> nat = *; the kind of the propositional connec-
tive And is x= = x; the kind of the user-defined predicate In is
oix= o= list o= *.

Module system. Aside from the core type system, FINE has a
simple module system to define certain types private to a module,
which in effect forces clients of the module to view values of
these private types abstractly. FINE uses the module system to
prove secrecy and authenticity properties. In this paper, the module
system comes in handy for the definition of unforgeable capabilities
and the corresponding authenticity property plays a crucial role in
proving the correctness of our translation from FX to FINE.
Proof-carrying compilation. Finally, it is worth mentioning that
FINE is compiled in a proof-carrying style to DCIL, .NET byte-

type user=int
type NoConflict :: user = user = %
assume nc_sym: Vul, u2. NoConflict ul u2 = NoConflict u2 ul
val checkNC: ul:user — u2:user — {b:bool | b=true <> NoConflict ul u2}
type review = {txt:string; u:user]}
type paper = {authors:list user; revs:list review | Vu:user, r:review.
(In u self.authors && In r self.revs) = NoConflict u r.u}
(* Allocation function with a Hoare type *)
val mk_review: txt:string — u:user — {(sI) T} r:review
{(s2) s2(r).txt=txt && s2(r).u=u}
let mk_review txt u = new review{txt=txt; u=uf}
(% Pure library function can operate on a list of mutable objects *)
val for_all: Vo ::x, Pi:at = *.
fi(x:a — {b:bool | b=true = Px}) —l:list a —
{b:bool | b=true < Vx:a. Inx 1= Px}
(* Impure function mutates a paper; also given a Hoare type *)
val add_review: p:paper — r:review —
{(s) not(In s(r) s(p).revs)} o:option review
{(®) (In s(r) (p).revs || t(o)=Some s(r))&& ...}

let add_review p r =

if for_all<user,NoConflict r.u> (checkNC r.u) p.authors

then let tl = (p.revs :=: Nil) in p.revs :=: Cons r tl; None

else Some r

Figure 1. Invariants on mutable objects in ConfWeb

code enhanced with dependent and affine types in a backwards-
compatible way. In addition to certification, compilation to DCIL
allows FINE to interoperate easily with the other .NET languages.
By virtue of the translation of the forthcoming sections, FX too en-
joys a proof-carrying translation to DCIL (Chen et al. 2010).

2.2 ConfWeb: A first taste of FX

Our prior work on FINE included the development of an application
ConfWeb, a conference management tool based on the Continue
server (Krishnamurthi 2003). Continue’s behavior is governed
by an authorization policy, modeled with liberal use of object-
orientation and mutable state in Alloy (Jackson 2002). A basic data
structure in the model is a paper, an object with mutable fields
holding a paper submission and list of its associated reviews. An
invariant on paper ensures that the reviews of a paper are from
reviewers not conflicted with the paper’s authors. Our prior imple-
mentation of ConfWeb modeled many of these stateful features, but
some features (including invariants on mutable objects like paper)
proved to be too cumbersome to implement directly in FINE.

In this section, we introduce FX, a surface syntax for FINE
with direct support for mutable objects. FX considerably simplifies
programming with mutable objects and makes an implementation
of ConfWeb more faithful to its original specification. Subsequent
sections shows how mutable state can be systematically translated
away via translation to purely functional FINE programs.

Figure 1 shows a fragment of ConfWeb written in FX. The key
data structure in ConfWeb is paper (line 6), a mutable object with
fields containing the authors of a paper and its reviews (in addition
to other fields, not shown). We verify that this program preserves
the no-conflict invariant on paper. The full program translates to a
109-line FINE program that is verified automatically in 8 seconds.

Mutable objects and invariants. FX extends FINE with a notation
for records with mutable fields—we call these types objects, al-
though our core calculus for FX does not include other OO features
like inheritance. Object types are of the form {fl:tl;..;fn:tn | ¢},
where each fi is a mutable field of type ti, and the formula ¢ is
an object invariant in which the name seif refers to the object itself.
Values of non-object types like string and int are immutable.

The paper object and its invariant. Line 6 defines paper, an ob-
ject with a field authors (a list of immutable integers, standing

for user ids); and a field revs, a list of objects representing the
reviews of a paper. The invariant on paper is a formula which
uses two user-defined predicates. The first predicate, In, stands
for list membership. The predicate NoConflict is a binary predi-
cate to reflect the absence of conflict-of-interest between a pair
of users. Line 2 shows the kind of NoConflict and line 3 shows a
user-provided axiom that asserts that NoConflict is symmetric. Rather
than provide further axioms to define NoConflict, at line 4 we show
the signature of a trusted external function checkNC, where we
use dependent refinement types to assert that checkNC decides
the NoConflict relation. The implementation of checkNC consults a
database that records conflict-of-interest declarations by authors
and PC members—interoperability between FINE and the rest of
.NET allows us to implement checkNC in F# and to call it from FX.

Impure functions and Hoare types. At line 11, we show the im-
plementation of a function mk_review, which allocates a new review
object. Its specification at lines 9-10 shows the type of an impure
function, which, in general, has the form x:t — {(s1) ®}r:t’ {(s2) ¥},
as explained in §1.2. For mk_review, the pre-condition & is trivial—
T, which always holds. The post-condition ¥ contains terms of the
form s2(r)—this stands for the value of the mutable object r in the
state s2. In this case, s2(r) is a record value of the object type review.
The post-condition of mk_review states that the fields of the returned
object r contain the arguments passed to the function.

Interacting with libraries. Next, at lines 13-15, we show the type
of for_all, a library function on lists. This is a higher-order function
whose argument f is a (pure) boolean-valued function over the o-
typed elements of its second argument |, where f decides some
property P of the list elements. The type we give to for_all is
polymorphic in both o and P. The return type indicates that for_all
returns true if, and only if, f returns true on each element of I. The
type also indicates that both f and for_all are pure, since neither of
them has a Hoare type. This pure function can be programmed in
FINE and verified against its specification. The implementation is
entirely standard—we omit it here for brevity.

Mutation and controlled aliasing. Finally, at lines 17-23, we show
the type and implementation of a function add_review that tries to
add a review to a paper. Informally, the implementation checks that
the review’s author is not conflicted with any of the paper’s authors
and, if the check succeeds, adds the review to the paper and returns
None. Otherwise, add_review leaves the paper unchanged and re-
turns the review to the caller. The type shows an impure function,
where the precondition requires the review r to not be present in the
paper p’s revs list; the returned value is an option review, where the
post-condition shows that the review r has been stored in the paper
p, or that r is contained in the returned option value.

The implementation of add_review reveals several subtleties of
FX. First, to properly model stateful invariants on objects, FX for-
bids constructing aliases to mutable objects. (§5.1 shows how to re-
lax this restriction.) If a mutable object o is stored in another object
c’s f field, then a field projection c.f constructs an alias to the ob-
ject o. As a result, FX does not permit unrestricted field projection.
Instead, we provide other operations to emulate field projections
(which get compiled to a small set of function calls in FINE).

At line 22, we call for_all, providing explicit instantiations for
its type and predicate parameters, o and P respectively. We apply
checkNC to r.u; project p.authors; and pass both to for_all. The
projections here are safe since the type of for_all is pure, and hence
does not create any unsafe aliases to p. Additionally, since the
user type is immutable, it is always safe to project r.u. If the no-
conflict check fails, we return r to the caller. Otherwise, we update
the paper, adding the new review r to p.revs and returning None.
The update uses FX’s swap command, c.f :=: v, which replaces the
f field of ¢ with the value v and returns the original contents of

00O\ W AW =

c.f. We first swap out the original list of reviews from p; add our
new review to it; and then swap the extended list back in. Note
that it here would have been safe to project p.revs and use it in
a normal assignment p.revs := Cons r p.revs, since this creates no
aliases. Projections of fields that contain primitive or immutable
types are also safe. However, swap is the appropriate primitive
for languages with linearity (Ahmed et al. 2007) or affinity. Our
technical report discusses these and other conditions under which
projections and assignments are acceptable, and shows how they
can be encoded in FINE.

In both branches of add_review, the mutable object r is stored
within another object—in the then-branch, within p; in the else-
branch, in the returned option object. Since creating unrestricted
aliases to mutable objects is forbidden, and the caller retains a
reference to r, we need to indicate to the caller that its reference
r is invalidated. We use the absence of a sub-term «r) in the post-
condition to indicate that r is invalidated in the post-state, i.e., that
it may no longer be used by the caller. By contrast, the type of
upd_review shows that the review r is still accessible to the caller by
mentioning s2(r) in its post-condition. Currently, FX cannot express
that a reference has been conditionally consumed, e.g., returning
a boolean success code b from add_review to indicate in the post-
condition that r is consumed only if b=true.

2.3 Verifying FX programs via translation to FINE

This section sketches the translation of FX to FINE. The main
idea is to thread record values corresponding to mutable objects
through the program in a purely functional style. For this functional
translation to be sound, we also thread affine capabilities for each
object to render stale record values unusable. As discussed in §1,
by making the capabilities affine, while giving record values *-
kinded types, we circumvent the no-affine-indices restriction and
give precise refinement types (corresponding to object invariants,
pre- and post-conditions) to the functional translation of imperative
FX code. As a result, we can rely on FINE’s automated refinement
type checking system to verify FX programs.

A module for FX primitives. The translation is organized around
a FINE module, Prims, which collects definitions of FX primitives.
Certain types will be private to Prims, and the metatheory of FINE
(specifically, the value abstraction theorem provided by its module
system) guarantees that clients of Prims treat these types abstractly.

Objects and constructors. An object with mutable fields in FX,
say rreview, where review = {{txt:string; u:user]} from Figure 1,
is represented (roughly) in FINE as a pair of 1) a record value
r:review where review is a record type in FINE, {txt:string; u:user};
and 2) a token value v:Token r, used as a capability for r, where
Token::a::x=> a= A, is a constructor of an affine, value-indexed
type. Given an object type declaration in FX, we generate sev-
eral public functions in Prims, corresponding to constructors, field
updates, etc., as shown below. Imperative commands in FX get
translated into calls to these functions.

private type Token:: a::x = a=- A = | MkToken: x:ac — Token x
private type review = {txt:string; u:user}
val mkReview: txt:string — u:user — unit —

(r:review % Token r % {_:unit | r.ext=txt && r.u=u})
val reviewUpdTxt: rireview — txt:string — (Token r x unit) —

(r’:review * Token r* * {_:unit | r’.txt=txt && r’.u=r.u})
val reviewRead Txt: r:review — (Token r * unit) —

(txt:string * Token r % {_:unit | r.ext=txt})

The function mkReview is the constructor function of review. In
addition to the constructed record value r and its token, it returns
a unit value refined with a formula recording information about
the contents of r. The reviewUpdTxt function updates the txt field.
Its arguments include r the object to be updated and its token; the
return type shows r’ and its token, where the refined unit shows that

[\

NN R WD~

r differs from r in only its txt field. We also show reviewRead Txt,
a pure function that serves as a projection function for the txt field.
Note that all three functions take seemingly redundant unit-typed
arguments and return refined units—we include these because, as
we shall see, they help keep our translation uniform.

Finally, the Token type, which has a single constructor Mk Token,
is declared private to Prims to ensure that its values cannot be
manufactured directly by clients. Likewise, the review record type
is also private. Stateful operations on r:review (e.g., updating one
of its fields) require a client to present a v:Token r attesting to
the validity of r; the operation consumes the token, rendering r
invalid for further use in stateful operations. Pure operations like
reviewRead Tt thread the token back to the caller for further use.

Hoare types. The FINE type below is the translation of the FX type
rireview — {(s1) sI(r).u=1} x:int {(s2) s2(r).u=s1(r).u+x}.

r:review — (Token r x {_:unit | ru=I1}) —
(x:int * r’:review * Token r* % {_:unit | r’.u=r.u+x})

This type shows a function that takes as arguments tokens for all the
variables x where s1(r) is a subterm in the pre- or post-condition; in
this case a token for r, since only sI(r) is mentioned. In addition
to the token, we have a unit argument refined with the translation
of the pre-condition. The return type of the function shows x:int
the value returned by the impure FX computation. We also include
in the return type all variables y where s2(y) is a subterm of the
post-condition (i.e., r,); tokens for these values; and, the translation
of the post-condition formula expressed as a refinement on a unit
value. The scoping rules of dependent functions, pairs (aka sums),
and refinement types naturally allow the post-condition to describe
properties of the initial value of r in the pre-state, the returned value
x, and the value of r in the post-state, (i.e., r’).

Adapting libraries to work with mutable objects. A significant ad-
vantage of our token-based translation is that it lends itself naturally
to the re-use of types and libraries that were originally constructed
for purely functional programs. For example, we show below how
the standard list library can be adapted to work with lists of mutable
objects. The list type shown below is the standard type for a list of
non-affine values. FX programs are free to use the constructors of
list directly to store immutable values within them, and to pattern
match on lists to extract immutable values as well. But, we require
a bit more care to store mutable objects within lists, since the con-
structed list would capture a reference to the object. For this, we
provide functions in Prims that construct and destruct lists while
managing tokens appropriately.

type list :: x= x= Nil : list
| Cons: a—list a—list
val mkCons: hd:a —tl:list « — (Token hd x Token tl * unit) —
(:list o Token | * {_:unit | I=Cons hd tI})
val unCons: l:list & — (Token | * {_:unit | 3hd,dl. I=Cons hd tI}) —
(hd:a * tl: list a* Token hd * Token tl % {_:unit | I=Cons hd tl})
val mkNil: unit — (I:list o % Token | % {_:unit | I=Nil})

The function mkCons takes an object value hd:a and a list of object
values tl:list «; tokens for each of them; consumes the tokens for
hd and tl and returns a new list |, a token for I, and a refined unit
capturing the structure of |. While it is possible for a client program
to pattern match against | to extract its components, to mutate any
object in I, a client must destruct | by presenting | and its token to
unCons; proving a pre-condition that | is indeed a Cons-cell; and
receiving the components of |, tokens for each of them, and a post-
condition relating the components to the original I.

By adopting a token-based approach, not only have we been
able to circumvent the no-affine-indices restriction, but we have
been able to store mutable objects in standard lists, operate over
these lists using the standard implementations of map, fold, for_all,
etc., since these functions are pure. Impure functions that need

[« XN N SO SR

AW N =

to explicitly manipulate the objects in a list, need to be written
and verified in FX. Even if the no-affine-indices restriction were
to somehow be lifted, representing mutable objects using affine
types directly would lead to significant difficulties. For example, if
our translation were to translate the mutable object rev in FX to an
affine record arev::A, then we would need an alternative type of list,
say alist :: A — A, in which to store arev::A values and a duplicate
standard library to operate over alist « values (which would be
much more cumbersome to write, since we would have to pay
attention to the affinity of both the list and of the a-typed values
it contains). Even in a system like F® (Mazurak et al. 2010), which
supports sub-kinding between normal and linear kinds, we would
have to construct separate libraries to work with linear and non-
linear lists. Tokens make life much easier!

Nested objects and object invariants. Translating objects with
nested objects does not add any further complexity. Object invari-
ants too are easily translated using refinement types. The translation
of the FX type paper (from Figure 1) is shown below. The construc-
tor and destructor are similar to those for list and thus omitted.

private type paper = {self:{authors:list user; revs: list rev} |
Vu:user, r:rev. In u self.authors && In r self.revs = NoConflict u r.u }
val swapRevs: p:paper — newrl:list rev — (Token p * Token newrl *
{,:unit | Yu:user, r:rev. In u p.authors && In r newrl = NoConflict u r.u})
(oldrl:list rev % p’:paper x Token oldrl x Token p’ *
{_:unit | p’.authors=p.authors && p’.revs=newrl && p.revs=oldrl})

The refinement on the paper record shows the invariant from FX.
Swapping a new value newrl into the revs field of a paper p calls
swapRevs and has to prove that newrl satisfies the object invariant.
The tokens of the old record p and the new field value newrl are
consumed. The token for the old field value oldrl is available again.

As an example, we show how to translate an FX expression
p.revs :=: Cons r tl; None using swapRevs:

let newrl, tok_newrl = mkCons r tl (tok_r, tok_tl, ()) in

let orl, p’, tok_orl, tok_p’, - = swapRevs p newrl (tok_p, tok_newrl, ()) in
let none, tok_none, () = mkNone () in

none, p’, tok_none, tok_p’, ()

Atline 1, we construct the new review list newrl by calling mkCons.
We then call swapRevs to swap newrl in and the old field value orl
out, creating a new record p’. We create a record none correspond-
ing to None at line 3. At line 4, in addition to returning none, we
thread out p’ and its token, since it represents an updated object
that may be accessed later.

3. Formalization of core FX

This section formalizes the syntax and the dynamic semantics of
a core subset of FX. As mentioned previously, FX is considered a
surface syntax for FINE. FX has no static semantics of its own. In-
stead, we introduce the notion of type shapes for FX and formalize
a simple syntactic analysis of FX to compute these shapes. Type
shapes serve only to facilitate the translation of FX to FINE (§4),
where the types of an FX program can be interpreted using FINE’s
type system. We show that this interpretation is sound by proving a
simulation between FX programs and their FINE counterparts.
Core FX is a lambda calculus augmented with imperative com-
mands for object allocation, deletion, and mutation. It uses a
monomorphic typing discipline based around dependent functions,
Hoare types and objects with mutable fields. Its syntax is below.

Core syntax of FX
I

T:=TC|x:t— C|{f:7| o} types
C:={(s)®}r:t{(s)¥} Hoare types
¢, O,V :=Pp|Vx1.® | It formulas

| OAD [DV || T|L
S:u=assume ¢ | P k|S;S signature

pu=vl]s(n)|p.f atoms
vi=1|c|error | Ax:T.e values
nu=x|{ names
e:x=v|vV |letx=eineé |e:C | assert (s)® terms

| newr {f =]} | destruct vas {f =x}ine|v.f:=:V
|

FX kinds are the same as those in FINE (see §2.1) and omitted
here. FX types 7 include nullary type constants 7C, like unit. Ab-
stractions are given impure, dependent function types, x:7 — C,
where x names the formal and is bound in the computation type C,
whose syntax was described in §1.2. (Pure function types x:T — 7’
are sugar for x:t — {(s)T}7'{(¢)T}, since the pre- and post-
conditions T do not mention any objects.) We also have object
types {{f:T |], which can be thought of as records with mutable
fields f1:71,..., fu:Ty. The formula ¢ specifies an object invariant,
referring to each of the fields using self. f7,. .., self. f,.

Formulas are ranged over by ¢, ®, and ¥, and are first order
formulas defined over a set of n-ary base predicates P over atoms
p. The atoms include FX values v; field projections (which are not
themselves values in FX); and terms of the form s(7), which stands
for the value of an object named 7 in the state s. We use ¢ for
object invariants, which cannot refer to state variables, while ¢ and
¥ may contain state variables.

A signature S collects top-level user-specified assumptions
assume ¢ and declarations of predicates P :: k of an FX program.
The assumptions are global and do not refer to state variables. The
predicate declarations specify kinds (k) of predicates (P).

Values in FX are names (variables x or memory locations /);
constants ¢, where the type of each constant c is denoted T'C,; error,
used only during execution to indicate failures; or lambda abstrac-
tions. Expressions e are required to be in A-normal form (Flanagan
et al. 1993). Dependent typing in FX and in FINE only permits val-
ues to index types—A-normal form helps ensure that expressions
do not escape into the type level. The expression forms include the
standard function application v V' and let-binding let x = ¢ in ¢’; the
form e:C ascribes a computation type C to e; and assert (s5)®P asserts
formula @ of the current state s.

The imperative fragment of FX includes two core constructs for
object allocation and deletion. Allocation is new; {f = v]}, which
creates a new object of type 7 initializing its fields fi,...,f, to
Vi,...,vn. Expression destruct v as {{f = xJ} in e destructs an object
v, and binds the contents of its fields fi,..., f,; to fresh variables
X1,...,%, in e. The fresh variables x; are in scope within e, while
v is no longer accessible in e or later in the program. Using these
two constructs alone, we can encode field updates, field swaps, etc.
However, we include field swaps, v.f :=:1/, as a primitive as well,
since we use this in our examples. This instruction assigns the new
value V' to the field f of v and returns the old value of the field.

3.1 Dynamic semantics

Runtime configurations in FX are expressions e paired with a store
0, a finite map from memory locations ¢ to object values {f = v[}.
We show the key rules in the dynamic semantics of FX below,
omitting standard rules for beta and let reduction—these can be
found in our technical report. Congruence rules are elided.

The semantics has the form (e,6) — (¢’,0'), and is mostly
as one would expect, except for two subtleties. First, to specify
progress for FX, it is convenient to ensure that FX programs never
get stuck. Instead, we mark certain evaluation steps as erroneous
and define safe FX programs as those that are guaranteed to re-
duce without taking erroneous steps. Specifically, when evaluating
assert (s)® we check whether the current values in the store satisfy
the formula &, under the assumptions in the signature S. Subterms
s(¢) in ® are replaced with ¥y, which is a location-free object value
corresponding to o(¢) (where 6 + £ | ¥ is in §4). Assertions evalu-

ate to the error value if the check fails (the last rule). Although some
care has to be taken to translate the two-state predicate ¥ properly,
the translation of ascriptions (e:C) to assertions is straightforward.

The other subtlety is that bindings in the store ¢ are tagged with
a superscript t, indicating whether a location represents allocated
(&) or freed () memory. These tags have no impact on the reduc-
tion of FX programs, but the translation of FX to FINE uses these
tags to prove that if an FX program is translated to a well-typed
FINE program, it never references freed memory. The reduction
rule for new creates a new memory location ¢ and tags it with .
The rule for destruct substitutes the bound variables with the object
contents in e and tags the destructed location with &. Finally, the
rule for swap updates the object and returns the old value.

Expressions with failures such as assertion failures or missing
fields evaluate to the error value.

Selected dynamic semantics of FX: (e,0) — (¢/,0”)

I .
c:=oc+{{—{f=v}}'|e wheret:=@|6
(assert (s)@,0) — ((),0) if S = ®@[vy/s(0)],Vl € FV (D)

where 6 - ¢ i)
((e{(s)@} rnT{()¥}),0) —
(let - = assert (s)® inlet x = ¢ in
let _ = assert (t)¥[x/r,6(¢)/s({)] in x,0)
(new; {f =v},0) — (Lo +{{— {f=v]}}?¥) ¢¢dom(o)
(destruct £ as {f =x] ine,c+{{— {f =v}}') =
(el/xlizy, o +{t—{f =v}}7)
(fi=v,o+{t—{f=V}}) —
i,o+{t—={fi=vi- 1)

| (e,0) — (error, o) e # v otherwise |

3.2 Computing type shapes

In preparation for the translation of FX to FINE, we define a sim-
ple syntactic analysis of FX programs to compute fype shapes.
Type shapes describe an equivalence relation on computation types,
where types that describe expressions with the same footprint (i.e,
the set of locations read or written) are placed in the same equiva-
lence class. The footprint of an expression (and hence the shape of
its type) guides the translation of §4 since it determines the values
that we must thread into and out of a translated FX expression.

Formally, we define two functions, iv (input variables) and ov
(output variables), from computations types C to sets of names
X,Y C 2", Given a computation type C = {(s)®}r:7{(r)¥},
iv(C) = {n | s(n) € Subterms(®,¥)} and ov(C) = {n | t(n) €
Subterms (W)} \ {r}. We write C ~ {X} r:7' {Y'}, when X = iv(C),
Y =ov(C), and T ~ 7. The last relation, T ~ 7’ is a structural con-
gruence on type shapes lifted into function types, i.e., T ~ 7 and
x:71 — C| ~ x:7p — C, when 7] ~ 73 and C| ~ C,, where we write
Cy~CywhenC) ~{X}rt{Y}and C; ~ {X} r:t{Y}.

Intuitively, the input variables of an expression e (strictly, e’s
type C) represent the objects that may be read, modified, deleted,
or stored inside other objects by e; the output variables represent
the subset of the input variables (excluding the returned value r)
that are still accessible after e has been evaluated.

The first judgment I' - v ~ 7 says that the value v (if it type
checks in FINE) has a type that is in the same shape equivalence
class as 7, where I" maps names to their types. Likewise, the
judgment I' - e ~ C says that an expression (if it type checks in
FINE) has a type that is in the same equivalence class as C. In some
cases, we overload notation and write I' - e ~ {X} r:t{Y}, with
the obvious meaning, i.e., the type of e is in the equivalence class
described by {X } r:7 {Y }. We also write 17:7, X to conditionally add
a name to an input or output variable set—mn:7,X means 1,X when
7T is an object type, and X otherwise.

Computing type shapes: I'Fv~tandI'Fe~C
I

I'tn~T(n) I'kc~TC.

Fxtke~C
I'tAx:t.e ~x:t—C

I'tvi~(xt —>C) Thkwn~7
'y vy~ Clv2/]

X ={n|s(n) € Subterms(®)}
I'+ assert (s)® ~ {X}_:unit{X}

'cver
I'tv~{vt}irt{}

U={frt|¢} TFv~T
Tk (newy {f =v}) ~ {vt} ' {}
rl—le{[f?|¢} FFVQNT/(
'+ (V].fk = VZ) ~ {V],Vzlfk}rlfk {V]}

'te~C C~C
I't(eC)~C

Tkv~ {fit]| ¢} LztFe~{X}re{r}
' destructvas {f =z} ine ~ {X\ {Z}Uv}rt{V\z}

F)—el N{X]}x:‘rl{Yl} F,x:rl |‘€2~{X2}I‘ZT2{Y2}
| Thletx=epine; ~ {XUX\ {x})} n{h U\ X2)\ {x}}

The first four rules compute shapes for values and function applica-
tion. An object value v, when used in an expression context, can be
given a computation type that includes itself as an input variable,
and no output variables. We give assert expressions assert (s)® a
shape where the input and output variables are the same, namely
those referenced by @, i.e., all the objects mentioned in an asser-
tion are still accessible after the assertion has been evaluated. An
expression e can be ascribed the type C, (using e:C) so long as the
ascription does not change the shape of the type.

When computing type shapes for the imperative operations, we
pay attention to the aliasing relationships induced by each opera-
tion. However, we do not attempt to check here that FX programs
respect the aliasing constraints on the object graph necessary for
assertion safety—all checking is left to FINE. With this principle
in mind, consider the rule for new. It states that the input variables
are the stateful field values ¥, while the output variable set is empty.
Since references to each of the v are captured by the newly allocated
object, the empty output variable set indicates that the ¥ should no
longer be accessed directly by the program. The swap statement is
similar. Its input variables include the object being updated v; and
the new contents of the field v, (if its type 7; is an object type);
the output variables only include v since the reference to v, has
been captured by v;. For a destruct expression, the input variables
include v, the object being destructed, and e’s input variables but
not the 7 since these are locally bound; for the same reason, 7 are
excluded from the output variables. Note that e (or some enclosing
expression) may attempt to use v after it has been destructed—this
situation will be trapped by the FINE type checker. Finally, we have
lets. Here, the input variables are the union of the input variables of
e and ey, excluding the let-bound variable x. The output variables
are the outputs of e, (excluding x) and those outputs of e; that are
not in the footprint of e;.

4. Translating FX to FINE

As sketched in §2.3, FX programs are translated to functional FINE
programs. We formalize this translation here, and prove that the
translation of FX programs preserve their semantics. Since FINE
programs can be verified using refinement type checking, we also
obtain the result that the safety of FX programs can be established
by the FINE type checker. Our description of the translation starts
by describing the role of tokens and their types in our translation.
We then describe the translation of types and finally the translation
of terms. The section concludes with discussion of our main results.

4.1 FX objects, tokens, and ownership

For safety in the presence of mutation and aliasing, we require FX
programs to respect an ownership discipline on the object store.
Affine tokens play a central role in our translation, and serve pri-
marily to enforce this ownership discipline. To illustrate this point,
we first discuss how to represent FX object values in FINE. As
we have seen, FX object values are locations ¢, where a store &
maintains a mapping from locations to records holding the object’s
fields. In FINE, we represent object values as immutable records.
The translation of objects is described by the judgment below.

ocll)={f=v}' obFv|¥ Vi

This rule looks up the binding for a location ¢ in ¢, and produces a
tuple of FINE values, where each 7;, recursively, is the translation
of the components of the object stored at £.! FINE values that
correspond to FX objects are tagged with the location ¢ from which
the value was derived—we explain its significance shortly.

Now, given a store 6 = {1 — {f = O}, consider the simple FX
program and its translation to FINE shown below (eliding irrelevant
unit-values from the FINE versions for clarity).

FX (1) let x =newy{g="/¢]} inlety="¢;.f:=:linx
FINE (1) let x,t0ky = mky{f = 0} t0k;, in
let y, foky = swap.{f = 0}11 toky, in x, 10k,

The FX program allocates a new object x storing the object ¢;
inside it, then updates ¢ and returns x. The program above violates
ownership, since after a single step of execution, the store contains
anew location {5 — {g = ¢1]}*, meaning that a reference to £ has
been captured by ¢», and the very next step mutates ¢; directly.

The image of the FX program under the translation is the FINE
program shown directly beneath it. The FINE program contains
calls to the functions mky and swap; (discussed in §2.3), passing
in FINE values corresponding to the object ¢; (i.e., {f = 0}), and,
importantly, the variable fok,, representing a token or capability
to use the immutable record value in a stateful way. Tokens are,
of course, affine and since fok, is used more than once, the FINE
program fails to type check, and the FX program is dismissed as
potentially unsafe.

Not all violations of ownership are as easily detected as in this
first example. One problematic case is when a reference to an object
is captured by a closure, and somewhere else in the program the
captured object is updated via an alias, as in the example shown
below (with the same initial store o).

FX (2) let g=A_unit.{yinlet _={;.f :=:ling
FINE (2) let g = A _unit.Ax:Token {f = 0}/'.({f = 0}1,x) in
let _ = swap {f =0}11 toky, in g

In this case, we translate the thunk g by adding an additional
argument for the token of the captured object value {f = 0}[‘.
Notice that the type of the token variable (Token {f = 0}{1) is
indexed by the value for which it is a capability. Any operation
that mutates ¢; consumes its token, producing a new token with a
type indexed by the new value. Thus, after an update the thunk g
becomes unusable since a token with the appropriate type cannot
be passed in. (Unless the update does not change the value of the
object, in which case it is still perfectly safe to use g). Since this
program never attempts to use g, it is safe in FX and is also type
correct in FINE. In other words, in addition to tokens being affine,
giving them value-indexed types is also crucial for safety.

! Throughout this section, syntactic elements from FINE are indicated using
the hatted version of the corresponding elements in FX.

Token threading, for all its benefits (recall also the discussion
of §2.3), also makes it harder to prove that our translation from
FX to FINE is a simulation. Informally, we wish to show that
when an FX program e is translated to a well-typed FINE pro-
gram ¢éj, and if e; steps to e, then é; steps (using one or more
steps) to some &, where é; is semantically equivalent to the im-
age of ep under the translation. If we inspect the example pro-
gram FX (2) above, we see that after several steps it reduces to
A_unit.fy, in a store where ¢; — {f = 1}, which translates
to A_unit.Ax:Token { f = 1}%.({f = 1}, x) . However, this FINE
lambda term is syntactically distinct from the value of g in the pro-
gram FINE (2) above—g contains a stale value for ¢;. In proving
our simulation result we show that, despite the syntactic differ-
ences, these two values are in fact semantically equivalent. We use
FINE’s module system (formalized and proved sound previously
using the colored brackets of Grossman et al. (2000)) to show that
stale values that result from the reduction of FINE programs are
semantically irrelevant since these values must always be treated
abstractly. The ¢-superscripts on values facilitate this proof. Our
technical report includes the details.

4.2 Type translation

The translation of FX types T and computation types C to FINE
types % (C is a synonym for ©) is shown below. Throughout the
translation, we use variables named toky for 1’s token. We also
use foks(X) to mean the set of tokens for variables in X, i..,
toks(1,X) = toky,toks(X) with roks(-) = -

Translation of types: T+ 7~ 2and 'F C~ €
I
Vilk~% ThE¢~¢
T {F] 9} ~ {self{f: 2} | 6}
't1~% x:itkCwC C~{X}ro{y}
I'Fxt— C~xit — ({Token x;}y;ex * {-unit | Pre(C)r}) — c

I'+-TC~~TC

CN{X}I‘Z’L’{Y} 'kt~ 1% VijY, l"l—yj:rj rl_‘L'ijj

LEC~ (rnt*{y}:1;}y,er *{Tokeny'}, ey *{ unit | Post(C)r})

where, for C = {(s)®} r:7 {(1)¥} R
Pre(C)r =& if T+ ®[n/s(n)] ~ & A
Post(C)r =¥ it ' ¥n/s(n)lln'/t(n)] ~ ¥

Type constants 7C remain the same. Object types in FX are trans-
lated to refined record types in FINE, with each field type translated
to %;, and the invariant translated to ¢ as described shortly. Func-
tion types x:7 — C are translated to FINE function types that bind
the same parameter x (with translated type 7), tokens for each input
variable of C, and a unit value refined with the translated precondi-
tion Pre(C)r. The function returns a value with the translated com-
putation type C. A computation type C is translated to a dependent
tuple, consisting of the return value r (with the translated return
type 1), the output variables y} and their tokens, and a unit value
whose type is refined with the translated post-condition Pos?(C)r.
The output variables y; are rebound to y;» in the tuple type, meaning
the values of y; at the function exit point.

Translation of FX formulas is straightforward and is defined
by the judgments I' - & ~» & and I'F ¢ ~» ¢. The rules in these
judgments are congruences over the structure of formulas, where,
in the base case, value-indexed predicates Pv are translated to
PV, for T I v; ~ ¥;, the value translation judgment of the next
section. We use two macros Pre(C)r and Post(C)r for translating
pre- and post-conditions of computations to refinement formulas
in FINE. The refinement formula replaces the stateful terms in a

formula, s(n) and 7(n), with the corresponding name bindings for
the immutable values in FINE that correspond to 7.

Translation of signatures. Predicate declarations P :: k are trans-
lated to type constructors in FINE with the same name P and the
same kind k. Assumptions assume ¢ are translated to data construc-
tors in FINE representing proofs of ¢ if ' ¢ ~ ¢. These data
constructors are included in FINE’s LCF-styple proof kernel, along
with the standard first-order logic inference rules (see §2.1).

4.3 Value and expression translation

This section describes the translation of FX expressions. An FX
expression e is translated to a FINE terms é, where the free variables
of é correspond to the object locations / in e. For translation of
source code the translated term é is closed, since store locations do
not occur in the source code of a program.

The value translation judgment I' - v ~ ¥ states that an FX value
v is translated to a FINE value ¥. The translation of FX names
1 (variables or locations) is trivial—these are translated to FINE
variables with the same names, which may be substituted away
when the FINE expression is closed. The rule for translation of
functions is shown below.

F,XI’E];OF(EZC)Wé r+ T1 Wf]
= ({Token 0 hyei (¢, * {unit | Pre(C)r})
' Ax:1y.(e:C) ~ Ax:Ty.Ay: 1 let toky,_=yiné

This rule follows the translation of function types. We add a pa-
rameter y: %, to receive the tokens for the function’s input variables.
The function body e:C is translated to é, preceded by a let that un-
packs the components of the tuple y, giving token variables their
required names and types, tokp:Token 7). Our formalization does
not attempt to infer types, or pre- and post-conditions for functions.
As such, the rule above expects both the formal parameter x to be
decorated with a type and for the function body to be ascribed a
computation type. In practice, we expect weakest precondition in-
ference to alleviate some of this difficulty, although, of course, an-
notations will be expected at least on recursive functions. Addition-
ally, while our simulation result holds for translations of arbitrary
FX programs (that are well-typed in FINE), in practice we expect
FX programs to be closure-converted prior to translation.

The judgment T;Y I e ~ é (below) translates an FX expression
e to a FINE expression é. The environment includes Y, either empty
(o) or a set of names Y representing the output variables of a
computation. We define an operation @ on output sets: ¥ @ Y’
returns Y’ if ¥ = e, and ¥ otherwise. Intuitively, ¥ corresponds to
locations that may have been modified in expressions preceding e in
ablock of lets. FINE values (and tokens) corresponding to locations
in this set need to be “threaded out” in the translation.

Translation of expressions, ;Y |- ¢ ~ &
I
I'bve~t Thvwvd

T-Ret
Y F v (0,1, 10ks(viT,Y), ()

I'tey~{X}xt {¥1} [el-e) ~ &

Chletx=ejine; ~C T,x:1;Y ©ov(C)-ex~ é)
T-Let

[;Y et x = e) in ey ~ let X, Yy, toky, toky,, = &1 in &;

TE@n/s(m)]~® X =ivy(P)

T-Assert =
I'; o |- assert (5)® ~» ASRTx ()

[ele~é C~{X}rz{Y}

— C={()P}rt{(t)¥} X =1ivs(P) Xp=iv(¥)
I (e:C) ~ let _, Xy, t0ky, ,-= ASRTx, (Pre(C)r) in
let .Y, toks(r:t,Y),_= & in
let _, X;,toky,,.= ASRTY, (Post(C)r) in
(n,Y,t0ks(r:7,Y),())
FFV1V2NC FFV]Wf/\] FFVQW\?Q
T-App — .
e vy vy~ D Dy (toks(iv(C)), ()
't (news {f =v})~C Vi.T'Fv;~7;
T-New
et (newr {f =V[}) ~ mke ¥y -+ ¥y (t0ks(iv(C)), ()
I'E.fri=vm)~C Tky~7 T'Fvy~ iy
T-Upd — -
;e = (vi.fi =1 v2) ~ updy, (¥1, V2, 10ks(iv(C)), ()
Thv~ {Fft} Thvewd Dztpllhe—e
TDestr v~ {f:t]} Vs D , 20T e~ @

[;Y I~ destruct v as {{f = zJ} in e ~~
let Z;, tok, , - = destrg ¥ tok, in é

To illustrate the significance of Y, consider the FX expression
let y=(¢.f :=: 1) iny. The type shape computed for this expres-
sion is {¢} r:int {¢}, indicating that ¢ was modified in the expres-
sion and is still accessible after the expression has been evaluated.
When translating the body of the let (i.e., y), we need to return y as
well as the value and token corresponding to the updated value of
{. The rule (T-Return) does just this. It translates values v that appear
in expression contexts to tuples containing the translated value 7,
any additional values dictated by the output set Y (if any), tokens
for the object values, and finally a unit for the post-condition.

The other aspect of the ¥ environment is illustrated in the trans-
lation of let expressions let x = e in e;. The first premise computes
the shape of the let-bound expression e; for its set of output vari-
ables Y;, and binds names and tokens for these in the translation.
To translate the body e;, we compute the shape C of the entire let
expression for its set of outputs ¥ = ov(C)—these are locations that
may have been modified in either e or e, and are still live, and so,
must be threaded out when translating e;. We do this by translating
e> in a context Y @ ¥, which ensures that Y is threaded out of e5,
unless Y is non-empty, in which case the output variables of some
enclosing let are threaded out of e;.

The remaining rules are mostly straightforward. To translate
assertions, we define the following macros: ivs(®) = {n | s(n) €
Subterms(®)} and ASRTx(®) = ((),X,t0ks(X),(() : {_ : unit |
®1)). Assertions reduce to unit in FX—the first unit value in the
tuple corresponds to this. The last unit value with a refined type
corresponds to a check of the assertion formula. Additionally, we
include values and tokens for each object value ¢ € X. This ensures
that assertions in FINE never refer to stale values, thereby keeping
the behavior of FINE assertions in correspondence with FX. The
ascription form (e:C) is translated, as expected, using a pair of
assertions. The tokens used in the assertion are rebound so that the
capabilities they stand for are not consumed.

Applications (v| v,) are translated to pass in tokens (computed
using the type shape judgment) for the input variables of vy, as well
as a unit value for the precondition (T-App). The FINE type checker
must prove that the unit value can be refined with the precondition
of vy. The translation of new uses the constructor mk of the record
type T (T-New). (The function mkRev in §2.3 is an instance of such
a constructor.) The constructor takes the initial values Vvi,...,v,
for the fields, consumes the tokens for the input variables (again
computed using type shapes), and returns the new record r and its
token rok,. The translation of swaps using (T-Upd) is similar. The

translation of a destruct expression calls the destructor destr; of the
record type T (T-Destr). The destructor consumes the token fok, for
the record to destruct, and returns the field values and their tokens.
These are let-bound and in scope for é, the translated body.

Our main result is Theorem 1, which shows that the translation
from FX to FINE preserves the semantics of the FX program, if the
resulting FINE program is well-typed. More precisely, the transla-
tion is a weak simulation modulo strong bisimilarity. We do not
give meaning to FX programs that translate to ill-typed FINE por-
grams since ill-typed FINE programs are never executed.

From this result we derive Corollary 2, a progress result for
FX that shows that FX programs that translate to well-typed FINE
programs do not reach the error state. An additional result is that the
computation types given to FX programs describe small footprints.
Our technical report gives formalizations of all lemmas and proofs.

Setting up for the simulation. Using the rules of §4.3, an FX ex-
pression e produces é, a FINE program that contains free variables
corresponding to locations ¢ and tokens for locations fok,. Given a
store o that maps locations £ to values vl , free location variables
¢ are eliminated via substitution with the corresponding translated
FINE values ¢’

The semantics of FINE also makes it convenient to handle free
token variables, since it permits affine values to be held in a mem-
ory, M, rather than inlined in the program. We translate the FX store
o to a FINE memory M, which maps free token variables fok; in é to
FINE values MkToken #. The reduction of FINE programs has the
form (M,&) ™ (M’,¢'). Reads from M are destructive, and FINE’s
metatheory establishes that affine values are used at most once.

We present a simplified version of our simulation lemma below,
and illustrate its structure graphically. To type check the FINE
programs é; and é, in the statement below, we use an environment
including a signature Sj,4,. for FX primitives (corresponding to the
Prims module of §2.3), and affine capabilities for every token in M.

FX FINE
(e1,01) ~ (My,8y)
! b+

(€2,00) ~ (M2,8)) = (My,é)

Theorem 1 (Fine programs simulate FX programs). If an FX run-
time configuration (e, 0y) translates to a well-typed FINE config-
uration (M1,éy), and (e, 01) steps to (e, 02), then (ey,02) trans-
lates to a well-typed FINE configuration (My,&}), and (M,,é;)
takes multiple steps to a configuration (My,é;) such that &, is
strongly bisimilar to é,.

Theorem 1 establishes that our translation relation is a simula-
tion up to strong bisimilarity, between &, and &, above. The relation
M, - é, = &, states that &, and é’z reduce in “lock step”, and is de-
rived from a value abstraction theorem provided by FINE’s module
system. In addition to this core simulation result, the full version of
Theorem 1 establishes several other key properties. Among these
are 1. that FX programs that translate to well-typed FINE programs
respect aliasing and ownership constraints on the object graph; and
2. that the types given to effectful expressions only mention loca-
tions that they access or modify.

Theorem 1 also yields an important corollary. Since the error
state cannot be translated to FINE, FX programs that translate to
well-typed FINE programs do not reach the error state.

Corollary 2 (Progress for FX). Given a closed FX program e.
If ;e e~ & where Spyees-s- b € 1 1, then for any reduction
sequence (e,-) 2% (¢',6"), € is guaranteed to not be error.

(% Fragment of a library implementing fractional permissions %)
private type trk a= {v:a; p:rat]}
type Aliases :: (0::% = a=> 0= %)
assume A _refl: Vx:trk o, y:trk o. x.v=y.v < Aliases x y
val split: x:trk o — {(s) T} y:trk &
{(t) Aliases t(x) s(x) && Aliases t(x) t(y) && t(y).p=t(x).p=s(x).p/2 }
val join: x:trk a— y:trk a— {(s) Aliases s(x) s(y)} unit
{(®) Aliases t(x) s(x) && t(x).p=s(x).p+s(y).p }
(% Fragment of a safe wrapper for the Collections API)
type collection a
type iterator a
type coll a= trk (collection a)
type istate = HasMore | Unknown
type iter o= trk {fi:iterator a; c:coll «; st:istate]}
val newColl: unit — {(s) T} c:coll a{(®) t(c).p=1}
val add: c:coll a—y:trk o — {(s) s(c).p=I && s(y).p > 0} unit
{(®) t(c).p=s(c).p && Aliases t(c) s(c) && t(y).p=s(y).p/2 }
val iterator: c:coll a— {(s) s(c).p>0} i:iter o
{(t) t(c).p=s(c).p/2 && Aliases t(c) s(c) &&
t(i).p=1 && Aliases t(c) t(i).v.c && t(i).v.c.p = t(c).p }
val finalize: c:coll a— ititer o — {(s) s(i).p=1 && Aliases c s(i).v.c} unit
{(® 1(i).p=0 && Aliases t(c) s(c) && t(c).p = s(c).p + s(i).v.c.p}
val next: i:iter & — {(s) s(i).p=I && s(i).v.st=HasMore } y:trk o
{(t) t(i).p=s(i).p && t(y).p > 0 && Aliases s(i) (i) && t(i).v.i:s(i).v.i}
val hasNext: i:iter & — {(s) s(i).p>0 } b:bool
{(t) t(i).p=s(i).p && Aliases t(i) s(i) && (b=true < t(i).v.st=HasMore) }
(* A client of the Collections API %)
val client: c:coll @ — {(s) s(c).p=1} unit {(®) t(c).p = s(c).p && t(c).v=s(c).v}
let client c =
let itl = iterator cin
let rec loopl (c:coll o) (itl:iter):
{(s) Aliases s(itl).v.c s(c) && s(itl).p=1 && s(c).p> 0} unit
{(t) t(itl).p=s(itl).p && t(itl).v.c=s(itl).v.c && t(c).p:s(c).p} =
if hasNext itl && ... then
let rec loop2 (c:coll @) (it2:iter) :
{(s) Aliases s(it2).v.c s(c) && s(it2).p=1} unit
{(t) t(c).p:s(c).p+s(it2).v.c.p} =
if hasNext it2 then let a = next it2 in ... loop2 c it2
else finalize c it2 in
let it2 = iterator c in loop2 c it2;
let b = nextitlin... loopl citl
else () in
loopl citl; finalize c itl

Figure 2. Controlled aliasing using fractional permissions

5. Examples

This section illustrates the use of FX using further examples. We
have applied the translation of §4 (manually, at present) to extended
versions of these examples (and the ConfWeb example of §2), and
verified the resulting programs using the FINE type checker.

5.1 Verifying stateful APIs in the presence of aliasing

In this section, we show how to verify two properties of clients
of a stateful API of collections and iterators, even in the presence
of aliasing. First, we ensure that the collection underlying an iter-
ator is never modified while an iteration over the collection is in
progress. Second, we ensure that a client never attempts to extract
elements from an iterator that has been exhausted. Our example is
adapted from the work of Bierhoff and Aldrich (2007), who de-
velop a special-purpose type system that uses linear logic to check
type-state properties in the presence of aliasing, and apply it to
clients of the Java collections library. A variant of this example has
also been studied by Krishnaswami et al. (2009), who verify a sim-
ilar program using interactive proofs in a higher-order separation
logic. In contrast, we enforce an aliasing discipline by developing
a library of fractional permissions (Boyland 2003), and rely on an
SMT solver for assertion checking.

We highlight three elements of our solution. First, the library-
based approach to aliasing illustrates the flexibility of our ap-
proach.This library also illustrates the value of substructural state—
affine tokens introduced by the translation ensure proper use of
the library. Next, we leverage local state, a feature of FX. Permis-
sions are mutable fields within structured, alias-controlled objects.
A similar approach using monadic state would involve explicitly
modeling a map from alias-controlled objects to their permissions.
Finally, we show how the local state of permissions for collections
and iterators can be easily combined, and for these permissions to
be used with a state machine that tracks whether or not an itera-
tor has been exhausted. The modularity afforded by our approach
makes these combinations natural.

The program in Figure 2 contains three parts. First, we have the
interface of our permissions library. Next, we show the interface of
a wrapper to an underlying implementation of the .NET collections
library. Although not shown, the wrapper is programmed in FX and
contains calls to the permissions library to manage aliases. Finally,
we show a client program that uses the wrapped collections library.
Although we have yet to formalize this, we conjecture that for
clients that verify against the wrapper, calls to the wrapper can be
replaced with direct calls to the underlying library.

Permissions library. Lines 1-9 of Figure 2 show the interface of our
fractional permissions library. At a high level, our library defines a
type trk a that associates a permission p:rat (a rational number)
with an a-typed value. Using split, a client can construct an alias
y to a tracked object x, but the permission previously associated
with x is split between x and y. The join function allows a client to
destroy y, an alias of x, coalescing the permission previously asso-
ciated with y into x’s new permission. The library implementation
(not shown) directly manipulates the private permission field, and
uses A_refl to generate its post-condition Aliases. Two tracked val-
ues are Aliases if they refer to the same underlying object.

Wrapper of the collections library. Lines 10-27 show the interface
of our wrapper of the .NET collection API. The abstract types
collection o and iterator a correspond to the types implemented by
the .NET library. We then define coll a, the tracked version of a
collection a. The type iter o is the tracked version of an iterator and
associates a permission with a record of three fields, and illustrates
how local state in FX can be easily composed. The first field, i, is
the iterator itself; the second field c:coll o holds a tracked reference
to the collection from which the iterator was derived; the last field
represents a state machine to track when an iterator is exhausted.

At line 16 we show the signature of newColl, a function that al-
locates a new collection. Its post-condition shows that the returned
collection has a full permission. The add function (17-18) allows
an object y to be added to the collection c. Since this mutates the
underlying collection, the pre-condition of add requires c to hold a
full permission. Since c captures a reference to y, the post-condition
shows the permission of y halved.

Lines 19-20 shows show the signature of iterator, which pro-
duces an iterator i over a collection c. Calling iterator requires only
a non-zero permission on c, but the post-condition shows that it
consumes half of ¢’s permission, since the iterator captures a ref-
erence to the collection from which it was derived. By halving the
permission of ¢, we ensure that ¢ cannot be modified while the it-
erator is still live. The implementation of iterator (not shown) calls
split to stash a reference to c in the returned object. The finalize op-
eration (22-23) allows an iterator i to be destroyed, so long as there
are no other aliases to i. Its post-condition restores the permission
to the collection from which the iterator was derived—the imple-
mentation of finalize calls to join.

The function next (24-25) allows a client to extract a tracked
object from an iterator. The pre-condition of next requires the
iterator to be in a state where it has more elements. In the post-

module InfoFlow
type level = High:level | Low:level | J:level — level — level
type LEQ :: level = level = *
assume Lattice_assumptions: LEQ Low High, ...
(* The program counter sensitivity level, initially Low)
private type pc = {v:levell}
let pc=new pc{ v=Low]}
(* An abstract monad for leveled data *)
private type L :: x= level = x= MkL : o — l:level =L al
val return: l:level - a—L ol
val bind: l:level — m:{m:level | LEQIm} — pcl:level »x:L al —

f:(—{(s2) s2(pe).v=J Ipcl } L Bm {(52°) s2’(pc)=s2(pc) }) —

{(s1) LEQ s1(pc).v pc1 } L Bm {(sI’) sI’(pc)=s1(pc) }
let bind | m pcl (MkL x _) f=1let tmp = pc.vin pc.v :=J | pcl;

let r=fxin pcv:=tmp;r
(* Channels on which to send data (side effects) *)
type Ch :: x= level = «
val write: o — I:level — Ch al —{(s1) LEQ sI(pc).v I} unit
{62) s2(pe)=s1(pc)}
end
val client: L str Low — L str High — Ch str High —
{(s1) s1(pc).v=Low } L str High {(s2) s2(pc)=s1(pc) }
let client Ix1 Ix2 chan = bind Low High Low Ix1 (fun x1 —
bind High High High Ix2 (fun x2 —
let x = strcat x1 x2 in (write x High chan); return High x))

Figure 3. Tracking information flow through side-effects

condition, the state of the iterator is updated to indicate that it
may or may not have more elements. In order to establish the pre-
condition of next, clients can call and test the result of hasNext.

A client program. Lines 29-44 show a client function that takes a
collection c with a full permission, extracts an iterator itl (line 31),
and iterates over itl using loopl and finalizes the iterator afterward
(line 44), leaving ¢ with a full permission. At each iteration of
loopl, we extract another iterator it2 from c (line 41) and iterate
over it in loop2 and finalize it2 before exiting loop2 (line 40).
Concurrent modifications to the collection c (say, by calling add)
would fail to type check, since c has less than a full permission.

Notice that aside from the annotation with loop invariants, the
client function is fairly direct. Pleasingly, client contains no explicit
calls to split or join. All these operations are factored into the imple-
mentation of the wrapped collection API, and the specifications of
this API in effect manage the implicit aliasing behavior of the client
program. Clients can also call split and join directly to explicitely
manage aliases, should the need arise.

Translating to FINE. Translating Figure 2 to FINE is relatively
straightforward. We first closure-convert the nested loops, hoisting
them to the top-level. Thereafter, the translation follows the rules
of §4 directly (which generalizes readily to handle type abstraction
and application). Our implementation uses a more complex model
for permissions that maintains separate fractions for read and write
permissions; a larger API for collections, including functions to
remove elements from collections and to query the size of a col-
lection; and finally, a more complex client program. The resulting
FINE program is 244 lines long, and its verification involves prov-
ing 29 goals, which are discharged in 15 seconds.

5.2 Tracking implicit information flows through impure code

Our second example develops an information-flow tracking li-
brary suitable for programs with side-effects. The basic idea is
to combine a monadic treatment of dependency (as in DCC (Abadi
et al. 1999)) with the program-counter technique used (originally)
by Fenton (1973) in his Data Mark Machine. In short, we represent
a-typed data protected at security level | as values of the type L al,
where the type L represents a family of monads arranged in a lat-

tice according to the ordering on security levels. Additionally, we
maintain a global stateful value pc that accounts for the influence
of protected data on reaching the current program point. Effectful
operations (such as writing a message to a channel) have precon-
ditions (expressed as constraints on pc) to ensure that they are not
control dependent on secret data.

We prove two properties of client programs: Low channels never
carry data marked High-security; and Low channels are never used
at High security-level program points. Although we have not proved
noninterference for the program of Figure 3, a similar encoding was
proved noninterferent by Swamy (2008).

Note that this program uses no local states, but a single global
state pc. As such, this program could easily be modeled and ver-
ified using a monadic treatment of state. However, this example
highlights two features of FX. First, it illustrates the ability of FX to
handle programs that manipulate global state. Second, it serves as
initial evidence that our approach generalizes to higher order pro-
grams. Our information flow library example uses a second-order
function bind, where the type of its function argument is parame-
terized by the preceding arguments to the bind function. We discuss
some further generalizations to higher order programs in §5.3.

The API. Figure 3 shows a module InfoFlow (lines 1-20) which
defines the monad L «!| and exports it abstractly to the client (21-
25). InfoFlow begins with a definition of the security levels using
the type level, which stands for a two-point lattice, ordered by
the relation LEQ. The ordering is axiomatized by user-provided
assumptions—we show one such assumption at line 4; the others
are standard. At line 6, we define the type pc, a mutable object
with a single field, v, which will hold the sensitivity of the program
counter—we initialize pc to Low at line 7. We define the L al type
at line 9 and the type of function return at line 10, which allows any
value to be injected into the monad using any level.

To appreciate the type of bind in Figure 3, it is instructive
to consider a type of bind for flow controls in purely functional
code: l:level = m:{m:level [LEQIm} —x:L al —f:(a—L fm)—LBm
This version of bind allows f to view the protected data x:L ol at
the unprotected type o, but the constraint LEQ I m ensures that the
result f computes from x is at least as secret as x itself. However,
this model is only sound if f is a pure function—nothing prevents f
from writing its unprotected «-typed argument to a public channel.

The program-counter pc serves to prevent such leaks, as seen in
two parts of InfoFlow. First, at lines 16-19 we define Ch «l, the type
of a channel on which to send (or receive) a-typed data to parties
privileged to view data at secrecy level |. To protect against leaks via
implicit flows, the pre-condition of write states that the sensitivity
of the program counter pc must not be greater than I. Next, consider
the type of bind at line 11—we give the function f passed to bind
the type o — {(sZ) s2(pc).v=lec1} LBm {(sZ’) s2’(pc)=s2(pc)}. This type
allows f to view the protected data x:L «| at its underlying type o.
But, the pre-condition on f’s type says that the state of pc is elevated
to be the join of pcl (the value of pc at the time write is called) and
| (the level on the secret data x). This ensures that f cannot satisfy
the pre-condition of write if f calls write using a channel c:Ch a2,
for some 2 less secret than .

A proof of noninterference for this scheme relies crucially on
f treating pc values abstractly—we achieve this by marking the pc
type private. This ensures, for example, that f cannot mutate the
pc itself. The only mutation of pc occurs in the implementation of
bind, which elevates the pc before calling f; then restores it before
returning the value computed by f.

The client program concatenates Low and High strings, writes
the result on a High channel, and returns a High string. The explicit
level arguments to bind (e.g., the three occurrences of High on line
24) lead to some syntactic noise—this could easily be eliminated
with some inference for implicit parameters.

Translating to FINE. As previously, translating Figure 3 to FINE
begins with a closure-conversion step, turning the global vari-
able pc into an argument of every stateful function. The resulting
FINE program is 81 lines long, and produces 7 verification goals
that are discharged automatically in 6 seconds.

5.3 Extension to higher-order programs

Although our token-threading translation works equally well for
both first- and higher-order programs, we have yet to formalize an
extension of the assertion language of FX to work with higher-order
stateful code. However, this extension is fairly natural, since the
kind language of FINE allows us to write types for higher-order
programs. §2.2 shows such an example where the type of for_all
abstracted over the predicate P decided by its argument f. However,
in for_all, the argument f was required to be a pure function. Our
technical report (Borgstrom et al. 2010) contains a detailed example
showing how to extend this scheme to higher-order stateful code.

6. Related work, conclusions and future work

Our work is perhaps most closely related to the work of Charguéraud
and Pottier (2008), who show how to functionalize imperative pro-
grams using a translation based on linear capabilities. Like us, they
prove their translation sound via a simulation argument. However,
their work does not include a program logic, although motivated by
the desire to verify programs; our work includes the use of Hoare
types and their translation to refinement types. Additionally, in the
absence of a logic, Charguéraud and Pottier embed a specific alias-
ing discipline into their calculus, (based on the adoption and focus
constructs of Fiahndrich and DeLine (2002)). In contrast, because
of the expressiveness of refinement types, we show how aliasing
controls can be encoded using a library of fractional permissions.

Linear capabilities for accessing aliased objects are also treated
in the linear core calculus L3 (Ahmed et al. 2007), where a higher
level surface language is left as future work. Our use of tokens in
the translation of FX to FINE, is closely related to Walker et al.’s
calculus of capabilities (Walker et al. 2000). Whereas Walker et al.
prove a syntactic type soundness property for the capability cal-
culus (which is sufficient for their domain of safe memory man-
agement), we prove the correctness of our token-based translation
using a simulation argument. The ATS language (Zhu and Xi 2005)
combines stateful views with indexed types for full verification,
where stateful views are described using linear logic. This gives
ATS the ability to reason directly about pointer manipulations, but
at a price, since linear logic is hard to automate. FX is also related to
HOOP (Flanagan et al. 2006), a language that uses dependent types
to express refinements on imperative objects. However, unlike FX,
refinements in HOOP can only mention immutable data.

Finally, our work is closely related to the work of Borgstrom
et al. (2010), who use Hoare types for a state monad to verify state-
ful computations. Here a monolithic state is threaded through the
entire program, making it difficult (without resorting to separation
logic, as in Ynot), to reason locally about parts of the state or to
mix stateful idioms. In contrast, FX programs use local state in the
form of mutable objects, and, as illustrated by the example of §5.1,
permits multiple stateful idioms to be combined in a modular way.

In summary, we have presented FX, a functional language with
support for mutable objects. We show how FX programs can be
translated to functional FINE programs, using affine types to model
state and refinement type checking for verification. Future work
includes an implementation and a source language type system.
We also intend to work on applying FX to higher-order programs,
building on a recent enhancement of FINE to support abstraction
over predicates (Swamy et al. 2010b).

References

M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of
dependency. In POPL, 1999.

A. Ahmed, M. Fluet, and G. Morrisett. L3: A linear language with loca-
tions. Fundamenta Informaticae, 77(4):397-449, 2007.

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.
Refinement types for secure implementations. In CSF, 2008.

K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects.
OOPSLA, 2007.

J. Borgstrom, J. Chen, and N. Swamy. Hoare-types for programming with
affinity. Technical Report TR-2010-95, MSR, 2010.

J. Borgstrom, A. Gordon, and R. Pucella. Roles, stacks, histories: A triple
for Hoare. J. Funct. Program., 2010. To appear.

J. Boyland. Checking interference with fractional permissions. In SAS,
pages 55-72. Springer, 2003.

I. Cervesato and F. Pfenning. A linear logical framework. Inf. Comput., 179
(1), 2002.

A. Charguéraud and F. Pottier. Functional translation of a calculus of
capabilities. In ICFP ’08, 2008.

J. Chen, R. Chugh, and N. Swamy. Type-preserving compilation of end-to-
end verification of security enforcement. In PLDI ’10. ACM, 2010.

A. Chlipala, G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Effec-
tive interactive proofs for higher-order imperative programs. In ICFP,
2009.

L. de Moura and N. Bjorner. Z3: An efficient SMT solver. In TACAS, 2008.

M. Fihndrich and R. DeLine. Adoption and focus: practical linear types for
imperative programming. In PLDI, 2002.

J. Fenton. Information Protection Systems. PhD thesis, U. Cambridge,
1973.

C. Flanagan. Hybrid type checking. In POPL, 2006.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In PLDI, 1993.

C. Flanagan, S. N. Freund, and A. Tomb. Hybrid types, invariants, and
refinements for imperative objects. In FOOL/WOOD ’06, 2006.

D. Grossman, G. Morrisett, and S. Zdancewic. Syntactic type abstraction.
ACM TOPLAS, 22(6):1037-1080, 2000. ISSN 0164-0925.

D. Jackson. Alloy: a lightweight object modelling notation. TOSEM, 11(2),
2002.

S. Krishnamurthi. The Continue server. In PADL, 2003.

N. R. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendsen, and A. Buisse.
Design patterns in separation logic. In TLDI, 2009.

G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Toward a verified
relational database management system. In POPL, 2010.

K. Mazurak, J. Zhao, and S. Zdancewic. Lightweight linear types in System
F°. In TLDI, 2010.

R. Milner. LCF: A way of doing proofs with a machine. In MFCS, 1979.

A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation
in Hoare type theory. In ICFP, 2006.

M. Sozeau. Subset coercions in Coq. In TYPES. Springer-Verlag, 2006.

N. Swamy. Language-based Enforcement of User-defined Security Policies.
PhD thesis, University of Maryland, College Park, August 2008.

N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization and
information flow policies in Fine. In ESOP, 2010a.

N. Swamy, J. Chen, C. Fournet, K. Bharagavan, and J. Yang. Security pro-
gramming with refinement types and mobile proofs. Technical Report
MSR-TR-2010-149, Microsoft Research, 2010b.

W. Swierstra. A Hoare logic for the state monad. In TPHOLs, 2009.

P. Wadler. Linear types can change the world! In PROGRAMMING
CONCEPTS AND METHODS. North, 1990.

D. Walker, K. Crary, and G. Morrisett. Typed memory management via
static capabilities. ACM TOPLAS, 22(4), 2000.

D. Zhu and H. Xi. Safe programming with pointers through stateful views.
In PADL, 2005.

