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ABSTRACT
Set intersection is a fundamental operation in information retrieval
and database systems. This paper introduces linear space data struc-
tures to represent sets such that their intersection can be computed
in a worst-case efficient way. In general, given k (preprocessed)
sets, with totally n elements, we will show how to compute their
intersection in expected time O(n/

√
w + kr), where r is the in-

tersection size and w is the number of bits in a machine-word. In
addition,we introduce a very simple version of this algorithm that
has weaker asymptotic guarantees but performs even better in prac-
tice; both algorithms outperform the state of the art techniques for
both synthetic and real data sets and workloads.

1. INTRODUCTION
Fast processing of set intersections is a key operation in many

query processing tasks in the context of databases and information
retrieval. For example, in the context of databases, set intersections
are used in the context of various forms of data mining, text analyt-
ics, and evaluation of conjunctive predicates. They are also the key
operations in enterprise and web search.

Many of these applications are interactive, meaning that the la-
tency with which query results are displayed is a key concern. It
has been shown in the context of search that query latency is criti-
cal to user satisfaction, with increases in latency directly leading to
fewer search queries being issued and higher rates of query aban-
donment [10, 17]. As a consequence, significant portions of the
sets to be intersected are often cached in main memory.

This paper will study the performance of set intersection algo-
rithms for main-memory resident data. Note that these techniques
are also relevant in the context of large disk-based (inverted) in-
dexes, when large fractions of these reside in a main memory cache.
There has been considerable study of set intersection algorithms in
information retrieval (e.g., [12, 4, 11]). Most of these papers as-
sume that the underlying data structure is an inverted index [23].
Much of this work (e.g., [12, 4]) focuses on adaptive algorithms
which use the number of comparisons as measure of overhead.
For in-memory data, additional structures which encode additional
skipping-steps [18], tree-based structures [7], or hash-based algo-
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rithms become possible, which often outperform inverted indexes;
e.g., using hash-based dictionaries, intersecting two sets L1, L2

requires expected time O(min(|L1|, |L2|)), which is a factor of
Θ(log(1 + max(|L1|/|L2|, |L1|/|L2|))) better than the best pos-
sible worst-case performance of comparison-based algorithms [6].
In this work, we propose new set intersection algorithms aimed at
fast performance.These outperform the competing techniques for
most inputs and are also robust in that – for inputs where they are
not optimal – they are close to the best-performing algorithm. The
tradeoff for this gain is a slight increase in the size of the data struc-
tures, when compared to an inverted index; however, in user-facing
scenarios where latency is crucial, this tradeoff is often acceptable.

1.1 Contributions
Our approach leverages two key observations: (a) If w is the size

(in bits) of a machine-word, we can encode a set from a universe
of w elements in a single machine word, allowing for very fast in-
tersections. (b) For the data distributions seen in many real-life ex-
amples (in particular search applications), the size of intersections
is typically much smaller than the smallest set being intersected.

To illustrate the second observation, we analyzed the 10K most
frequent queries issued against the Bing Shopping portal. For 94%
of all queries it held that the size of the full intersection was at least
one order of magnitude smaller than the document frequency of the
least frequent keyword; for 76% of the queries the difference was
two orders of magnitude. By exploiting these two observations, we
make the following contributions.

(i) We introduce linear-space data structures to represent sets
such that their intersection can be computed in a worst-case ef-
ficient way. Given k sets, with n elements in total, these data
structures allow us to compute their intersection in expected time
O(n/

√
w + kr), where r is the size of the intersection and w is

the number of bits in a machine-word; when the size of the inter-
section is an order of magnitude (or more) smaller than the size of
the smallest set being intersected, our approach yields significant
improvements in execution time over previous approaches.

To the best of our knowledge, the best asymptotic bound for fast
set intersection is achieved by the O

(
(n(log2 w)2)/w + kr

)
algo-

rithm of [6]. However, note that the bound relies on a large value
of w; in practice, w is small (and constant), and w < 216 = 65536
bits implies 1/

√
w < (log2 w)2/w. More importantly, [6] requires

complex bit-manipulation, making it slow in practice, which we
will demonstrate empirically in Section 4.

(ii) We describe a much simpler algorithm that computes the in-
tersection in expected O(n/αm +mn/

√
w + kr

√
w) time, where

α is a constant determined by w, and m is a parameter. This al-
gorithm has weaker guarantees in theory, but performs better in
practice, and gives significant improvements over the various data
structures typically used, while being very simple to implement.
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2. BACKGROUND AND RELATED WORK
Algorithms based on Ordered Lists: Most work on set intersec-
tion focuses on ordered lists as the underlying data structure, in par-
ticular algorithms using inverted indexes, which have become the
standard data structure in information retrieval. Here, documents
are identified via a document ID, and for each term t, the inverted
index stores a sorted list of all document IDs containing t.

Using this representation, two sets L1, L2 of similar sizes (i.e.,
|L1| ≈ |L2|) can be intersected efficiently using a linear merge
by scanning both lists in parallel, requiring O(|L1|+ |L2|) oper-
ations (the “merge step” in merge sort). This approach is wasteful
when set sizes differ significantly or only small fractions of the sets
intersect. For very different set sizes, algorithms have been pro-
posed that exploit this asymmetry, requiring log

(|L1|+|L2|
|L1|

)
+ |L1|

comparisons at most (for |L1| < |L2|) [16].
To improve the performance further, there has recently been sig-

nificant work on so-called adaptive set-intersection algorithms for
set intersections [12, 4, 13, 1, 2, 5]. These algorithms use the total
number of comparisons as measure of the algorithm’s complexity
and aim to use a number of comparisons as close as possible to
the minimum number of comparisons ideally required to establish
the intersection. However, the resulting reduction in the number of
comparisons does not necessarily result in performance improve-
ments in practice: for example, in [2], binary search based algo-
rithms outperform a parallel scan only when |L2| < 20|L1|, even
though several times fewer comparisons are needed.
Hierarchical Representations: There are various algorithms for
set intersections based on variants of balanced trees (e.g. [9], treaps
[7], and skip-lists [18]), computing the intersection of (preprocessed)
sets L1, L2 in O(|L1| log(|L2|/|L1|)) (for |L1| < |L2|) opera-
tions. However, while some form of “skipping” is commonly used
as part of algorithms based on inverted indexes, skip-lists (or trees)
are typically not used in the scenarios outlined above (with static
set data) due to the required space-overhead. A novel and compact
two-level representation of posting lists aimed at fast intersections
in main memory was proposed in [19].
Algorithms based on Hashing: Using a hash-based representation
of sets can speed up the intersection of sets L1, L2 with |L1| �
|L2| significantly (expected time O(|L1|) – by looking up all el-
ements of L1 in the hash-table of L2); however, because of the
added indirection, this approach performs poorly for less skewed
set sizes. A new hashing-based approach is proposed in [6]: here,
the elements in sets L1, L2 are mapped using a hash-function h to
smaller (approximate) representations h(L1), h(L2). These repre-
sentations are then intersected to compute H = h(L1) ∩ h(L2).
Finally, the set of all elements in the original sets that map toH via
h are computed and any “false positives” removed. As the hashed
images h(L1), h(L2) to be intersected are smaller than the original
sets (using fewer bits), they can be intersected more quickly. Given
k sets of total size n, their intersection can be computed in expected
time O

(
(n log2 w)/w + kr

)
, where r = |

⋂
i Li|.

Score-based pruning: In many IR engines it is possible to avoid
computing full intersections by leveraging scoring functions that
are monotonic in the individual term-wise scores; this makes it
possible to terminate the intersection processing early using ap-
proaches such as TA [15] or document-at-a-time (DAAT) process-
ing (e.g., [8]). However, in practice, this is often not possible, ei-
ther because of the complexity of the scoring function (e.g., non-
monotonic machine-learning based ranking functions) or because
full intersection results are required. Our approach is based on par-
titioning the elements in each set into very small (≈8 elements)
groups, for which we have fast intersection schemes. Hence, DAAT-

approaches can be combined with our work by using these small
groups in place of individual documents.
Set intersections using multiple cores: Techniques that exploit
multi-core architectures to speed up set intersections are described
in [20, 22].The use of multiple cores is orthogonal to our approach
in the sense that our algorithms can be parallelized for these archi-
tectures as well; however, this is beyond the scope of our paper.

3. OUR APPROACH
Notation: We are given a collection ofN sets S = {L1, . . . , LN},
where Li ⊆ Σ and Σ is the universe of elements in the sets; let
ni = |Li| be the size of set Li. Suppose elements in a set are
ordered, and for a setL, let inf(L) and sup(L) be the minimum and
maximum elements of a set L, respectively. We usew to denote the
size (number of bits) of a word on the target processor. Throughout
the paper we will use log to denote log2. Finally, we use [w] to
denote the set {1, . . . , w}. Our approach can be extended to bag
semantics by additionally storing element frequency.
Framework: Our task is to design data structures such that the
intersection of multiple sets can be computed efficiently. We dif-
ferentiate between a pre-processing stage, during which we reor-
ganize each set and attach additional index structures, and an on-
line processing stage, which uses the pre-processed data structures
to compute intersections. An intersection query is specified via
a collection of k sets L1, L2, . . . , Lk (to simplify notations, we
use the offsets 1, 2, . . . , k to refer to the sets in a query through-
out this section); our goal is to compute L1 ∩ L2 ∩ . . . ∩ Lk ef-
ficiently. Note that pre-processing is typical of most non-trivial
data structures used for computing set intersections; even building
simple non-compressed inverted indexes requires sorting the post-
ing lists as a pre-processing step. We require the pre-processing
stage to be time/space-efficient in that it does not require more than
O(ni logni) time (necessary for sorting) and linear space O(ni).

The size of intersection |L1 ∩ L2| is a lower bound of the time
needed to compute the intersection. Our method leverages two key
ideas to approach this lower bound: (i) The intersection of two
sets in a small universe can be computed very efficiently; in par-
ticular, if the two sets are subsets of {1, 2, . . . , w}, we can encode
them as single machine-words and compute their intersection using
a bitwise-AND. (ii) A small number of elements in a large universe
can be mapped into a small universe.

partitioning via sorting/hashing

partitioning via sorting/hashing

h : Σ → [w]

h : Σ → [w]

Lp
1

h(Lq
2)

Lq
2

h(Lp
1). . .. . .h(L2

1)h(L1
1) . . . . . . . . .

L1
1 L2

1 . . . . . . . . . . . . . . .

. . .. . .L2
2L1

2 . . . . . .

. . .. . .h(L2
2)h(L1

2) . . . . . .

|h(Lp
1) ∩ h(Lq

2)| ≈ |Lp
1 ∩ Lq

2|(with the help of h(Lp
1) ∩ h(Lq

2))
compute Lp

1 ∩ Lq
2:

L1

L2

Figure 1: Algorithmic Framework
We leverage these two ideas by first partitioning each set Li

into smaller groups Lji ’s, which are intersected separately. In the
pre-processing stage, we map each small group into a small uni-
verse [w] = {1, 2, . . . , w} using a universal hash function h and
encode the image h(Lji ) with a machine-word. Then, in the on-
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line processing stage, to compute the intersection of two small
groups Lp1 and Lq2, we first use a bitwise-AND operation to com-
pute H = h(Lp1)∩h(Lq2), and then try to “recover” Lp1 ∩L

q
2 using

the inverse mapping h−1 from H . The union of Lp1 ∩ L
q
2’s forms

L1 ∩ L2. Moreover, if the intersection L1 ∩ L2 is of a small size
compared to |L1| and |L2| (seen in practice), a large fraction of the
small groups with overlapping ranges has an empty intersection;
thus, by using the word-representations ofH to detect these groups
quickly, we can skip much unnecessary computation, resulting in
significant speed-up. The resulting algorithmic framework is illus-
trated in Figure 1. Given this overall approach, the key questions
become how to form groups, what structures to be used to represent
them, and how to process intersections of these small groups.

We will discuss these details in the following sections. All the
formal proofs of analytical results are deferred to the appendix.

3.1 Intersection via Fixed-Width Partitions
We first consider the case when there are only two setsL1 andL2

in the intersection query. We will present a pair of pre-processing
and online processing algorithms, which we use to illustrate the
basic ideas of our algorithms. We subsequently refine and extend
our techniques to k sets in Section 3.2.

In the pre-processing stage, L1 and L2 are sorted, and parti-
tioned into groups (recall w is the word width)

L1
1, L

2
1, . . . , L

dn1/
√
we

1 , and L1
2, L

2
2, . . . , L

dn2/
√
we

2

of equal size
√
w (except the last ones).

In the online processing stage (Algorithm 1), the small groups
are scanned in order. If the ranges of Lp1 and Lq2 overlap, we may
have Lp1 ∩ L

q
2 6= ∅. The intersection Lp1 ∩ L

q
2 of each pair of over-

lapping groups is computed (line 8) in some iteration. And finally,
the union of all these intersections is L1 ∩ L2. Since each group is
scanned once, line 2-10 repeat for O((n1 + n2)/

√
w) iterations.

The major remaining question now becomes how to compute
Lp1 ∩ L

q
2 efficiently with proper pre-processing? For this purpose,

we map each group Lp1 or Lq2 into a small universe for fast inter-
section, and we leverage single-word representations to store and
manipulate sets from a small universe.
Single-Word Representation of Sets: We represent a set A ⊆
[w] = {1, 2, . . . , w} using a single machine-word of width w by
setting the y-th bit as 1 iff y ∈ A. We refer to this as the word
representationw(A) ofA. For two setsA andB, the bitwise-AND
w(A)∧w(B) (computed in O(1) time) is the word representation
ofA∩B. Given a word representation w(A), all the elements ofA
can be retrieved in linear time O(|A|) 1. In the rest of this paper, if
A ⊆ [w], we useA to denote both a set and its word representation.
Pre-processing Stage: Elements in a set Li are sorted as {x1

i , x
2
i ,

. . . , xnii } (i.e., xki < xk+1
i ) and Li is partitioned as follows:

L1
i = {x1

i , . . . , x
√
w

i }, L2
i = {x

√
w+1

i , . . . , x2
√
w

i }, . . . (1)

Lji = {x(j−1)
√
w+1

i , x
(j−1)

√
w+2

i , . . . , xj
√
w

i }, . . . (2)

For each small group Lji , we compute the word-representation of
its image under a universal hash function h : Σ → [w], i.e.,
h(Lji ) = {h(x) | x ∈ Lji}. In addition, for each position y ∈ [w]

and each small group Lji , we also maintain the inverted mapping
h−1(y, Lji ) = {x | x ∈ Lji and h(x) = y}, i.e., for each y ∈ [w]

1We use the following well-known technique: (⊕ is bitwise-XOR)
(i) lowbit = ((w(A)− 1)⊕ w(A)) ∧ w(A) is the lowest 1-bit of w(A).
For the smallest element y in A, we have 2y = lowbit.
y = log(lowbit) ∈ A can be computed using the machine instruction
NLZ (number of leading zeros) or pre-computed lookup tables.
(ii) Set w(A) as w(A) ⊕ lowbit and repeat (i) to scan the next smallest
element until w(A) becomes 0.

we store the elements in Lji with hash value y, in a short list which
supports ordered access. We ensure that the order of these elements
is identical across different h−1(y, Lji )’s and Li’s; in this way, we
can intersect these short lists using a linear merge.

EXAMPLE 3.1. (PRE-PROCESSING AND DATA STRUCTURES)
Suppose we have two sets L1 = {1001, 1002, 1004, 1009, 1016,

1027, 1043}, L2 = {1001, 1003, 1005, 1009, 1011, 1016, 1022,
1032, 1034, 1049}. And, let w = 16 (

√
w = 4). For simplicity,

h is selected to be h(x) = (x − 1000) mod 16. L1 is parti-
tioned into 2 groups: L1

1 = {1001, 1002, 1004, 1009}, L2
1 =

{1016, 1027, 1043}, and L2 is partitioned into 3 groups: L1
2 =

{1001, 1003, 1005, 1009}, L2
2 = {1011, 1016, 1022, 1032},

L3
2 = {1034, 1049}. We pre-compute: h(L1

1) = {1, 2, 4, 9},
h(L2

1) = {0, 11}, h(L1
2) = {1, 3, 5, 9}, h(L2

2) = {0, 6, 11},
h(L3

2) = {1, 2}. We also pre-process h−1(y, Lpi )’s: for example,
h−1(0, L2

1) = {1016}, h−1(0, L2
2) = {1016, 1032}, h−1(11, L2

1)
= {1027, 1043}, and h−1(11, L2

2) = {1011}. 2

1: p← 1, q ← 1, ∆← ∅
2: while p ≤ n1 and q ≤ n2 do
3: if inf(Lq2) > sup(Lp1) then
4: p← p + 1
5: else if inf(Lp1) > sup(Lq2) then
6: q ← q + 1
7: else
8: compute (Lp1 ∩ Lq2) using IntersectSmall
9: ∆← ∆ ∪ (Lp1 ∩ Lq2)

10: if sup(Lp1) < sup(Lq2) then p← p + 1 else q ← q + 1
11: ∆ is the result of L1 ∩ L2

Algorithm 1: Intersection via fixed-width partitioning

Online Processing Stage: The algorithm used to intersect two sets
is shown in Algorithm 1. Since elements in Li are sorted, Algo-
rithm 1 ensures that if the ranges of any two small groups Lp1, L

q
2

overlap, their intersection is computed (line 8). After scanning all
such pairs, ∆ must then contain the intersection of the whole sets.

Now the question is: how to compute the intersection of two
small groups Lp1 ∩ L

q
2 efficiently? For this purpose, we introduce

the algorithm IntersectSmall (Algorithm 2) , which:
(i) first computes H = h(Lp1) ∩ h(Lq2) using a bitwise-AND;
(ii) for each (1-bit) y ∈ H , intersects the corresponding inverted
mappings using the linear merge algorithm.

IntersectSmall(Lp1, Lq2): computing Lp1 ∩ Lq2
1: Compute H ← h(Lp1) ∩ h(Lq2)
2: for each y ∈ H do
3: Γ→ Γ ∪ (h−1(y, Lp1) ∩ h−1(y, Lq2))

4: Γ is the result of Lp1 ∩ Lq2

Algorithm 2: Computing the intersection of small groups

EXAMPLE 3.2. (ONLINE PROCESSING)
Following Example 3.1, to compute L1 ∩L2, we need to compute
L1

1∩L1
2, L2

1∩L2
2, andL2

1∩L3
2 (pairs with overlapping ranges): for

example, for computingL2
1∩L2

2, we first compute h(L2
1)∩h(L2

2) =
{0, 11}; then L2

1 ∩ L2
2 =

⋃
y=0,11

(
h−1(y, L2

1) ∩ h−1(y, L2
2)
)

=

{1016}. Similarly, we can compute L1
1 ∩ L1

2 = {1001, 1009}.
Finally, we find h(L2

1) ∩ h(L3
2) = ∅, and thus L2

1 ∩ L3
2 = ∅. So,

we have L1 ∩ L2 = {1001, 1009} ∪ {1016} ∪ ∅. 2

Note that word representations and inverted mappings for Li are
pre-computed, and word-representations can be intersected using
one operation. So the running time of IntersectSmall is bounded
by the number of pairs of elements, one from Lp1 and one from Lq2,
that are mapped to the same hash-value. This number can be shown
to be equal (in expectation) to the intersection size plus O(1) for
each group Lji . Using this, we obtain Algorithm 1’s running time:
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THEOREM 3.3. Algorithm 1 computes L1 ∩ L2 in expected
O
(
n1+n2√

w
+ r
)

time, where r = |L1 ∩ L2|.

To achieve a better bound, we optimize the group sizes: with L1

and L2 partitioned into groups of sizes s∗1 =
√
wn1/n2 and s∗2 =√

wn2/n1, respectively, L1 ∩ L2 can be computed in expected
O(
√
n1n2/w+ r) time. A detailed analysis of the effect of group

size on running times can be found in Section A.1.1.
Overhead of Pre-processing: If only the bound in Theorem 3.3 is
required, then to pre-process a set Li of size ni, it is obvious that
O(ni logni) time and O(ni) space suffice: we only need to parti-
tion a sorted list into small groups of size

√
w, and for each small

group, construct the word representation and inverted mapping in
linear time using the hash function h.

To achieve the better bound O(
√
n1n2/w+r), we need multiple

“resolutions” of the partitioning of a set Li. This is because, as
discussed above, the optimal group size s∗1 =

√
wn1/n2 of the

set L1 also depends on the size n2 of the set L2 to be intersected
with it. For this purpose, we partition a set Li into small groups
of size 2, 4, . . . , 2j , etc. To compute L1 ∩ L2 for the given two
sets, suppose s∗i is the optimal group size of Li; we then select the
actual group size s∗∗i = 2t s.t. s∗i ≤ s∗∗i ≤ 2s∗i , obtaining the
same bound. A carefully-designed multi-resolution data structure
enabling access to these groups consumes only O(ni) space forLi.
We will describe and analyze this structure in Section 3.2.1.

THEOREM 3.4. To pre-process a set Li of size ni for Algo-
rithm 1, we need O(ni logni) time and O(ni) space (in words).

Limitations of Fixed-Width Partitions: The main limitation of
the proposed approach is that it is difficult to extend to more than
two sets, because the partitioning scheme we use is not well-aligned
for more than two sets: for three sets, e.g., there may be more than
O((n1 + n2 + n3)/

√
w) triples of small groups that overlap. We

introduce a different partitioning scheme to address this issue in
Section 3.2, which extends to k > 2 sets.

3.2 Intersection via Randomized Partitions
In this section, we will introduce an algorithm based on a ran-

domized partitioning scheme to compute the intersection of two or
more sets. The general approach is as follows: instead of fixed-
width partitions, we use a hash function g to partition each set into
small groups, using the most significant bits of g(x) to group an
element x ∈ Σ. This reduces the number of combinations (pairs)
of small groups we have to intersect, allowing us to prove bounds
similar to Theorem 3.3 for computing intersections of k > 2 sets.
Pre-processing Stage: Let g be a hash function g : Σ → {0, 1}w
mapping an element to a bit-string (or binary number); we use
gt(x) to denote the t most significant bits of g(x). We say that for
two bit-strings z1 and z2, z1 is a t1-prefix of z2, iff z1 is identical
to the highest t1 bits in z2; e.g., 1010 is a 4-prefix of 101011.

To pre-process a setLi, we partition it into groupsLzi = {x | x ∈
Li and gt(x) = z} for all z ∈ {0, 1}t (some t). As before, we
compute the word representation of the image of each Lzi under
another hash function h : Σ→ [w], and inverted mappings h−1.
Online Processing Stage: This stage is similar to our previous
algorithm: to compute the intersection of two sets L1 and L2, we
compute the intersections of pairs of overlapping small groups, one
from each set, and finally take the union of these intersections.

In general, suppose L1 is partitioned using gt1 : Σ → {0, 1}t1 ,
and L2 is partitioned using gt2 : Σ → {0, 1}t2 . Assume n1 ≤ n2

and t1 ≤ t2. We now intersect sets L1 and L2 using Algorithm 3.
The major improvement of Algorithm 3 compared to Algorithm 1
is that in Algorithm 1, we need compute Lp1 ∩ L

q
2 when the ranges

of Lp1 and Lq2 overlap; in Algorithm 3, we compute Lz11 ∩L
z2
2 (also

using Algorithm 2) when z1 is a t1-prefix of z2 (this is a necessary
condition for Lz11 ∩ L

z2
2 6= ∅; so Algorithm 3 is correct). This

significantly reduces the number of pairs to be intersected.

1: for each z2 ∈ {0, 1}t2 do
2: Let z1 ∈ {0, 1}t1 be the t1-prefix of z2

3: Compute Lz11 ∩ Lz22 using IntersectSmall(Lz11 , Lz22 )

4: Let ∆← ∆ ∪ (Lz11 ∩ Lz22 )
5: ∆ is the result of L1 ∩ L2

Algorithm 3: 2-list Intersection via Randomized Partitioning
Based on the choices of parameters t1 and t2, we can either parti-

tion L1 and L2 into the same number of small groups (yielding the
bound of Theorem 3.5), or into small groups of the (approximately)
identical sizes (yielding Theorem 3.6).

THEOREM 3.5. Algorithm 3 computes L1 ∩ L2 in expected
O
(√

n1n2√
w

+ r
)

time (r = |L1∩L2|), with t1 = t2 = dlog
√

n1n2
w
e.

THEOREM 3.6. Algorithm 3 computes L1 ∩ L2 in expected
O
(
n1+n2√

w
+ r
)

time (r = |L1 ∩L2|), using t1 = dlog(n1/
√
w)e

and t2 = dlog(n2/
√
w)e.

Note that when n1 6= n2, Theorem 3.5 has a better bound than
Theorem 3.6. But we can extend Theorem 3.6 to k-set intersection.
Extension to More Than Two Sets: Suppose we want to compute
the intersection of k sets L1, . . . , Lk, where ni = |Li| and n1 ≤
n2 ≤ . . . ≤ nk. Li is partitioned into groups Lzi ’s using gti : Σ→
{0, 1}ti . Note that gti ’s are generated from the same hash function
g. We use ti = dlog(ni/

√
w)e and proceed as in Algorithm 4.

Algorithm 4 is almost identical to Algorithm 3, but is general-
ized to k sets: for each zk ∈ {0, 1}tk , we pick the group iden-
tifiers zi to be the ti-prefix of zk, and we only intersect groups
Lz11 , L

z2
2 , . . . , L

zk
k , where z1, z2, . . . , zk share a prefix of size t1.

Also, we extend IntersectSmall (Algorithm 2) for k groups: we
first compute the intersection (bitwise-AND) of hash images (their
word-representations) of the k groups Lzii ’s; and, if the result H =⋂k
i=1 h(Lzii ) is not zero, for each (1-bit) y ∈ H , we intersect the k

corresponding inverted mappings h−1(y, Lzii )’s. Details and anal-
ysis are deferred to the appendix.

THEOREM 3.7. Using ti = dlog(ni/
√
w)e, Algorithm 4 com-

putes the intersection
⋂k
i=1 Li of k sets in expected O(n/

√
w + kr)

time, where r =
∣∣∣⋂ki=1 Li

∣∣∣ and n =
∑k
i=1 ni =

∑k
i=1 |Li|.

1: for each zk ∈ {0, 1}tk (ti = dlog(ni/
√

w)e) do
2: Let zi be the ti-prefix of zk for i = 1, . . . , k − 1

3: Compute
⋂k
i=1 L

zi
i using extended IntersectSmall

4: Let ∆← ∆ ∪ (
⋂k
i=1 L

zi
i )

5: ∆ is the result of
⋂k
i=1 Li

Algorithm 4: k-list Intersection via Randomized Partitioning

3.2.1 A Multi-resolution Data Structure
Recall that in some algorithms (e.g., Theorem 3.5), the selection

of the number of small groups used for a set Li depends on the
(size of) other sets being intersected with Li. So by naively pre-
computing the required structures for each possible group size, we
would incur excessive space requirements. In this section, we de-
scribe a data structure that supports access to partitions of Li into
2t groups for any possible t, using only O(ni) space. It is illus-
trated in Figure 2. To support the algorithms introduced so far, this
structure must also allow us:
(i) for each Lzi , to retrieve the word-representation h(Lzi ), and
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Figure 2: Multi-Resolution Partition of Li

(ii) for each y ∈ [w], to access all elements in h−1(y, Lzi ) =
{x | x ∈ Lzi and h(x) = y} in time linear in its size |h−1(y, Lzi )|.
Multi-resolution Partitioning: For the ease of explanation, we
suppose Σ = {0, 1}w and choose g as a random permutation of Σ.
To pre-process Li, we first order all the elements x ∈ Li according
to g(x). Then any small group Lzi = {x | x ∈ Li and gt(x) = z}
forms a consecutive interval in Li (partitions of different resolu-
tions are formed for t = 1, 2, . . .).

Note: in all of our algorithms, universal hash functions and ran-
dom permutations are almost interchangeable (when used as g) –
the differences being that (i) a permutation induces a total order-
ing of elements (in this data structure, this property is required),
whereas hashing may result in collisions (which we can overcome
by using the pre-image to break ties) and (ii) there is a slight dif-
ference in the resulting probability of, e.g., elements being grouped
together (hashing results in (limited) independence, whereas per-
mutations result in negative dependence – we account for this by
using the weaker condition in our proofs).
Word Representations of Hash Mappings: Now, for each small
group Lzi , we need to pre-compute and store the word representa-
tion h(Lzi ). Note the total number of small groups is ni/2+ni/4+
. . .+ ni/2

t + . . . ≤ ni. So this requires O(ni) space.
Inverted Mappings: We need to access all elements in h−1(y, Lzi )
in order, for each y ∈ [w]. If we were to store these mappings for
each Lzi explicitly, this would require O(ni logni) space. How-
ever, by storing the inverted mappings h−1(y, Lzi )’s implicitly, we
can do better, as follows:

For each group Lzi , since it corresponds to an interval in Li,
we can store the starting and ending positions in Li, denoted by
left(Lzi ) and right(Lzi ). These allow us to determine if an element
x belongs to Lzi . Now, to enable the ordered access to the inverted
mappings, we define, for each x ∈ Li, next(x) to be the “next”
element x′ to x on the right s.t. h(x′) = h(x) (i.e., with minimum
g(x′) > g(x) s.t. h(x′) = h(x)). Then, for each Lzi and each
y ∈ [w], we store the position first(y, Lzi ) of the first element x′′

in Lzi s.t. h(x′′) = y. Now, to access all elements in h−1(y, Lzi ) in
order, we can start from the element at first(y, Lzi ), and follow the
pointers next(x), until passing the right boundary right(Lzi ). And,
in this way, all elements in the inverted mapping are retrieved in the
same order as g(x) – which we require for IntersectSmall.
Space Requirements: For all groups of different sizes, the total
space for storing h(Lzi )’s, left(Lzi )’s, right(Lzi )’s, first(y, Lzi )’s
and next(x)’s is O(ni). So the whole multi-resolution data struc-
ture requires O(ni) space. A detailed analysis is in the appendix.

When the group size ti depends only on ni (e.g., in Algorithm 4),
“single-resolution” in pre-processing suffices, and the above multi-
resolution scheme (for selecting ti online) is not necessary.

THEOREM 3.8. To pre-process a set Li of size ni for Algo-
rithm 3-4, we need O(ni logni) time and O(ni) space (in words).

3.3 From Theory to Practice
In this section, we describe a more practical version of our meth-

ods. This algorithm is simpler, uses significantly less memory,
straight-forward data structures, and, while it has worse theoreti-
cal guarantees, is faster in practice. The main difference is that –
for each small group Lzi , we only store the elements in Lzi and their
images under m ≥ 1 hash functions (i.e., we do not maintain in-
verted mappings, trading off a complex O(1)-access for a simple
scan over a short block of data). Also, we use only a single parti-
tion for each set Li. Having multiple word representations of hash
images (different hash functions) for each small group allows us to
detect empty intersections of small groups with higher probability.
Pre-processing Stage: As before, each set Li is partitioned into
groups Lzi ’s using a hash function gti : Σ → {0, 1}ti . We will
show that a good selection of ti is dlog(ni/

√
w)e, which depends

only on the size of Li. Thus for each set Li, pre-processing with a
single partitioning suffices, saving significant memory. For each
group, we compute word representations of images under m (inde-
pendent) universal hash functions h1, . . . , hm : Σ → [w]. Note
that we only require a small value of m in practice (e.g., m = 2).
Online Processing Stage: The algorithm for computing ∩iLi we
use here (Algorithm 5) is identical to Algorithm 4, with two ex-
ceptions: (1) When needed, ∩iLzii is directly computed by a linear
merge of Lzii ’s (line 4), using O(Σi|Lzii |) time. (2) We can skip
the computation of ∩iLzii if, for some hj , the bitwise-AND of the
corresponding word representations hj(Lzii )’s is zero (line 3).

1: for each zk ∈ {0, 1}tk (ti = dlog(ni/
√

w)e) do
2: Let zi be the ti-prefix of zk for i = 1, . . . , k − 1
3: if ∩ki=1hj(L

zi
i ) 6= ∅ for all j = 1, . . . , m then

4: Compute
⋂k
i=1 L

zi
i by a linear merge of Lz1, . . . , Lzk

5: Let ∆← ∆ ∪ (
⋂k
i=1 L

zi
i )

6: ∆ is the result of
⋂k
i=1 Li

Algorithm 5: “Simple” Intersection via Randomized Partitioning

Analysis: To see why Algorithm 5 is efficient, we observe that: if
Lz11 ∩ L

z2
2 = ∅, then with high probability, hj(Lz11 ) ∩ hj(Lz22 ) =

∅ for some j = 1, . . . ,m. So most empty intersections can be
skipped using the test in line 3. With the probability of a “suc-
cessful filtering” (i.e. given ∩iLzii = ∅, ∩ihj(Lzii ) = ∅ for some
hash function hj , j = 1, . . . ,m) bounded by the Lemmas A.1 and
A.3, we can derive Theorem 3.9. Detailed analysis of this proba-
bility (both theoretical and experimental) and overall complexity is
deferred to Appendix A.5.

THEOREM 3.9. Using ti = dlog(ni/
√
w)e, Algorithm 5 com-

putes
⋂k
i=1 Li in expected O

(
max(n,knk)
α(w)m

+ mn√
w

+ kr
√
w
)

time
(r=|⋂ki=1 Li|, n=

∑k
i=1 ni, α(w)= 1

1−β(w) for β(w) used in Lemma A.3).

3.3.1 Data Structure for Storing Lzi

In this section, we describe the simple and space-efficient data
structure that we use in Algorithm 5. As stated earlier, we only
need to partition Li using one hash function gti ; hence we can
represent each Li as an array of small groups Lzi ’s, ordered by z.
For each small group, we store the information associated with it
in the structure shown in Figure 3. The first word in this struc-
ture stores z = gti(L

z
i ). The second word stores the structure’s

length len. The following m words represent the hash images
h1(Lzi ), . . . , hm(Lzi ) of Lzi . Finally, we store the elements of Lzi
as an array in the remaining part. We need ni/

√
w such blocks for
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len h1(L
z
i )z

len

Lz
ihm(Lz

i )

m words

Figure 3: The Structure for a Pre-processed Small Group Lzi

Li in total. The first word z can be also computed on-the-fly, as
these small groups are accessed sequentially in Algorithm 5. So,
if we store len using one word, and one word for each element of
Lzi , then we need totally m + 1 + |Lzi | words for each group Lzi ,
and thus ni(1 + (m + 1)/

√
w) words to store the pre-processed

Li. The overhead of the pre-processing is dominated by the cost of
sorting Li (the remaining operations are trivial).

THEOREM 3.10. To pre-process a set Li of size ni for Algo-
rithm 5, we need O(ni(m+ logni)) time, and O(ni(1 +m/

√
w))

(words) space.
We describe methods for compressing this structure in Appendix B.

3.4 Intersecting Small and Large Sets
An important special case for set intersection are asymmetric in-

tersections where the sizes n1 and n2 of the sets that are inter-
sected vary significantly (w.l.o.g., assume n1 � n2). In this sub-
section, using the same multi-resolution data structure as in Sec-
tion 3.2.1, we present an algorithm HashBin that computesL1∩L2

in O(n1 log(n2/n1)) time. This bound is also achieved by other
previous works, e.g., SmallAdaptive [5], but our algorithm is even
simpler in online processing. It is also known that algorithms based
on hash-tables only require O(n1) time for this scenario; however,
unlike HashBin, they are ill-suited for less asymmetric cases.
Algorithm HashBin: When intersecting two sets L1 and L2 with
sizes n1 � n2, we focus on the partitioning induced by gt : Σ →
{0, 1}t, where t = dlogn1e for both of them, and g is a random
permutation of Σ. To compute L1 ∩ L2, we compute Lz1 ∩ Lz2 for
all z ∈ {0, 1}t and take the union. To compute Lz1 ∩Lz2, we iterate
over each x ∈ Lz1, and perform a binary search to check whether
x ∈ Lz2 using O(log |Lz2|) time. This scheme can be extended to
multiple sets by searching for x in Lzi if found in Lz1, . . . , Lzi−1.

THEOREM 3.11. The algorithm HashBin computes L1 ∩ L2

in expected O
(
n1 log n2

n1

)
time. The pre-processing of a list Li

requires O(ni logni) time and O(ni) space.

The proof of Theorem 3.11 and how HashBin uses the multi-
resolution data structure is deferred to the Section A.6 in the ap-
pendix. The advantage of HashBin is that, since it is based on the
same structure as the algorithm introduced in Section 3.2, we can
make the choice between algorithms online, based on n1/n2.

4. EXPERIMENTAL EVALUATION
We evaluate the performance and space requirements of four of

the techniques described in this paper: (a) the fixed-width parti-
tion algorithm described in Section 3.1 (which we will refer to as
IntGroup); (b) the randomized partition algorithm in Section 3.2
(RanGroup) (c) the simple algorithm based on randomized parti-
tions described in Section 3.3 (RanGroupScan); and (d) the one
for intersecting sets of skewed sizes in Section 3.4 (HashBin).
Setup: All algorithms are implemented using C and evaluated on
a 4GB 64-bit 2.4GHz PC. We employ a random permutation of the
document IDs for the hash function g and 2-universal hash func-
tions for h (or hj’s). For RanGroup, we use m = 4 (the number
of hash functions hj), unless noted otherwise.

We compare our techniques to the following competitors: (i) set
intersection based on a simple parallel scan of inverted indexes:
Merge; (ii) set intersection based on skip lists: SkipList [18]; (iii)

set intersection based on hash tables: Hash (i.e., we iterate over the
smallest setL1, looking up every element x ∈ L1 in hash-table rep-
resentations of L2, . . . Lk); (iv) the algorithm of [6]: BPP; (v) the
algorithm proposed for fast intersection in integer inverted indices
in main memory [19, 21]: Lookup (using B = 32 as the bucket-
size, which is the best value in our and the authors’ experience);
and (vi) various adaptive intersection algorithms based on binary
search/galloping search: SvS, Adaptive [12, 13, 3], BaezaYates
[1, 2], and SmallAdaptive [5]. Note that BaezaYates is general-
ized to handle more than two sets as in [5].
Implementation: For each competitor, we tried our best to opti-
mize its performance. For example, for Merge we tried to mini-
mize the number of branches in the inner loop; we also store post-
ings in consecutive memory addresses to speed up parallel scans
and reduce page walks after TLB misses. Our implementation of
skip lists follows [18], with simplifications since we are focusing
on static data and do not need fast insertion/deletion. We also sim-
plified the bit-manipulation in BPP [6] so that it works faster in
practice for small w. For the algorithms using inverted indexes,
we initially do not consider compression on the posting lists, as we
do not want the decompression step to impact the performance re-
ports. In Section 4.1 we will study variants of the algorithms incor-
porating compression. With regards to skip-operations in the index
note that since we use uncompressed posting lists, algorithms such
as Adaptive can perform arbitrary skips into the index directly.
Datasets: To evaluate these algorithms we use both synthetic and
real data. For the experiments with synthetic datasets, sets are
generated randomly (and uniformly) from a universe Σ. The real
dataset is a collection of more than 8M Wikipedia pages. In each
experiment for the synthetic datasets, 20 combinations of sets are
randomly generated, and the average time is reported.
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Figure 4: Varying the Set Size
Varying the Set Size: First, we measure the performance when in-
tersecting only 2 sets; we use synthetic data, the lists are of equal
size and the size of the intersection is fixed at 1% of the list size;
the results are shown in Figure 4. We can see that the perfor-
mance of the different techniques relative to each other does not
change with varying list size. Hash performs worst, as the (rel-
atively) expensive lookup operation needs to be performed many
times. SkipList performs poorly for the same reason. The BPP
algorithm is also slow, but this is because of a number of com-
plex operations that need to be performed, which are hidden as a
constant in the O()-notation. The same trend held for the remain-
ing experiments as well; hence, for readability, we did not include
BPP in the subsequent graphs. For the same reason we only show
the best-performing among the adaptive algorithms in the evalua-
tion; if one adaptive algorithm dominates another on all parameter
settings in an experiment, we don’t plot the worse one.

Among the remaining algorithms, RanGroupScan (40%-50%
faster than Merge) and IntGroup perform the best (RanGroup
performs similarly to IntGroup and is not plotted). Interestingly,
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the simple Merge algorithm is next, outperforming the more so-
phisticated algorithms, followed by Lookup and the best-performing
adaptive algorithm.
Varying the Intersection Size: The size of the intersection r is
an important factor concerning the performance of the algorithms:
larger intersections mean fewer opportunities to eliminate small
groups early for our algorithms or to skip parts of the set for the
adaptive and skiplist-based approaches. Here, we use synthetic
data, intersecting two sets with 10M elements and vary r = |L1 ∩
L2| between 500 and 10M. The results are reported in Figure 5. For
r < 7M (70% of the set size) RanGroupScan and IntGroup per-
form best. Otherwise, Merge becomes the fastest and RanGroup-
Scan the 2nd-fastest alternative; here, the performance of Ran-
GroupScan is very similar to Merge, all the way to r = 10M .
Among the remaining algorithms, RanGroup slightly outperforms
Merge for r < 5M , Lookup is the next-best algorithm and SvS
and Adaptive perform best among the adaptive algorithms.
Varying the Sets Size Ratios: As we illustrated in the introduction,
the skew in set sizes is also an important factor in performance.
When sets are very different in size, algorithms that iterate through
the smaller set and are able to locate the corresponding values in
the larger set quickly, such as HashBin and Hash, perform well. In
this experiment we use synthetic data and vary the ratio of set sizes,
setting |L2| = 10M and varying |L1| between 16K and 10M. The
size of the intersection is set to be 1% of |L1| and we define the ratio
between the list sizes as sr = |L2|/|L1|. Here, the differences
between the algorithms become small with growing sr (for this
reason, we also don’t report them in a graph, as too many lines
overlap). For sr < 32, RanGroupScan performs best; for larger
sr, Lookup and Hash perform best, until a ratio of sr ≥ 100 – for
this and larger ratios, Hash outperforms the remaining algorithms,
followed by Lookup and HashBin. Generally, both HashBin and
RanGroupScan perform close to the best-performing algorithm.
The adaptive algorithms require more time than RanGroupScan
for sr ≤ 200 and more time than HashBin for all values of sr;
Skiplist and BPP perform worst across all values of sr.
Varying the Number of Keywords: In this experiment, we var-
ied the number of sets k = 2, 3, 4, fixing |Li| = 10M for i =
1, . . . , k, with the IDs in the sets being randomly generated using
a uniform distribution over [0, 2 × 108]; the results are reported
in Figure 6. In this experiment, we use m = 2 hash images
for RanGroupScan. For multiple sets, RanGroupScan is the
fastest, with the difference becoming more pronounced for 3 and 4
keywords, since, with additional sets, intersecting the hash-images
(word-representations) yields more empty results, allowing us to
skip the corresponding groups. RanGroup is the next-best per-
forming algorithm; we don’t include results for IntGroup here, as
it is designed for intersections of two sets (see Section 3.1). In-
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terestingly, the simple Merge algorithm again performs very well
when compared to the more sophisticated techniques; the Lookup
algorithm is next, followed by the various adaptive techniques.
Size of the Data Structure: The improvements in speed come at
the cost of an increase in space: our data structures (without com-
pression) require more space than an uncompressed posting list –
the increase is 37% (RanGroupScan for m = 2), 63% (Ran-
GroupScan for m = 4), 75% (IntGroup) or 87% (RanGroup).
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Figure 7: Normalized Execution Time on a Real Workload

Experiment on Real Data: In this experiment, we used a “work-
load” of the 104 most frequent (measured over a week in 2009)
queries against the Bing.com search engine. As the text corpus, we
used a set of 8 Million Wikipedia documents.
Query characteristics: 68% of the queries contain 2 keywords,
23% 3 keywords and 6% 4 keywords. As we have illustrated be-
fore, a key factor for performance is the ratio of set sizes – among
the 2-word queries, the average ratio |L1|/|L2| is 0.21, for 3-word
queries the average ratio |L1|/|L2| is 0.31 and the average ratio
|L1|/|L3| is 0.09, and for 4-word queries, the |L1|/|L2| ratio is
0.36 and the |L1|/|L4| ratio is 0.06 – note that |L1| ≤ |L2| ≤
|L3| ≤ |L4|. The average ratio of intersection size to |L1| is 0.19.

To illustrate the relative performance of the algorithms over all
queries we plotted their average running times in Figure 7: here, the
running time of Merge is normalized to 1. Both RanGroup and
RanGroupScan significantly outperform Merge, with the latter
performing the best overall; interestingly, when used for all queries
(as opposed to only for the large skew case it was designed for)
HashBin still performed better than Merge. The remaining algo-
rithms performed in similar order to the earlier experiments, with
the one exception being SvS which outperformed both Merge and
Lookup for this more realistic data. Overall, the RanGroupScan
was the best-performing algorithm for 61.6% of the queries, fol-
lowed by RanGroup (16%) and Hashbin (7.7%) – among the re-
maining algorithms not proposed in this paper, Lookup performed
best in 6.4% of the queries and SvS for 3.6% of the queries. All of
the other techniques were best for 2.1% of the queries or fewer. We
present additional experiments for this data set in the Appendix C.2.
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4.1 Experiments on Compressed Structures
To illustrate the impact of compression on performance, we re-

peated the first experiment above, intersecting two sets of identical
size, with the size of the intersection fixed to 1% of the set size.
Varying the set size, we report the execution times and storage re-
quirements for the three algorithms that performed best overall in
the earlier experiments – Merge, Lookup and RanGroupScan
(since we are interested in small structures here, we only usem = 1
hash images in RanGroupScan) – when being compressed with
different techniques: we used the standard techniques based on γ-
and δ-coding (see [23], p.116) to compress the parts of the post-
ing data stored and accessed sequentially for the three algorithms,
and the compression technique described in Appendix B for Ran-
GroupScan (which we refer to as RanGroupScan Lowbits). The
results are shown in Figure 8; here, we omitted the results for γ-
encoding as they were essentially indistinguishable from ones for
δ-coding. RanGroupScan outperforms – in terms of speed – the
other two algorithms using the same compression scheme; the other
two algorithms perform similarly to each other, as the decompres-
sion now dominates their run-time. Using our encoding scheme of
Appendix B improves the performance significantly.

Looking at the graph, we can see that the storage requirement for
RanGroupScan (using our own encoding) is between 1.3-1.9x of
the size of the compressed inverted index and between 1.2-1.6x of
the compressed Lookup structure. At the same time, the perfor-
mance improvements are between 7.6-15x (vs. Merge) or 7.4-13x
(vs. Lookup). Furthermore, by increasing the number of hash im-
ages to m = 2, we obtain an algorithm that significantly outper-
forms the uncompressed Merge, while requiring less memory.
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Figure 8: Running Time and Space Requirement
Experiment on Real Data: We repeated this experiment using
the real-life data/workload described earlier and the compressed
variants of RanGroupScan, Lookup and Merge. Again, Ran-
GroupScan Lowbits performed best, improving run-times by a
factor of 8.4x (vs. Merge + δ-coding), 9.1x (Merge + γ-coding),
5.7x (Lookup + δ-coding), 6.2x (Lookup + γ-coding), respec-
tively. However, our approach required the most space (66% of the
uncompressed data), whereas Merge (26% / 28% for γ- / δ-coding)
and Lookup (35% / 37%) required significantly less.

Finally, to illustrate the robustness of our techniques, we also
measured the worst-case latency for any single query: here, the
worst-case latency using Merge + δ-coding was 5.2x the worst-
case latency of RanGroupScan Lowbits. We saw similar results
for Merge + γ-coding (5.6x higher), Lookup + δ-coding (4.4x
higher), and Lookup + γ-coding (4.9x higher).

5. CONCLUSION
In this paper we introduced algorithms for set intersection pro-

cessing for memory-resident data. Our approach provides both
novel theoretical worst-case guarantees as well as very fast per-
formance in practice, at the cost of increased storage space. Our
techniques outperform a wide range of existing techniques and are
robust in that – for inputs for which they are not the best-performing
approach – they perform close to the best one. Our techniques have
applications in information retrieval and query processing scenar-
ios where performance is of greater concern than space.
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[4] J. Barbay, A. López-Ortiz, and T. Lu. Faster Adaptive Set
Intersections for Text Searching. In 5th WEA, pages 146–157, 2006.
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A. PROOFS OF THEOREMS

A.1 Analysis of Algorithm 1
(Proof of Theorem 3.3)

There are a total of O((n1 + n2)/
√
w) pairs of Lp1 and Lq2 to be

checked in Algorithm 1. For each pair, since H = h(Lp1) ∩ h(Lq2)
can be computed in O(1) time and elements in H can be enumer-
ated in linear time, the cost of computing Lp1 ∩ L

q
2 is dominated

by computing h−1(y, Lp1) ∩ h−1(y, Lp2) for every y ∈ H , the cost
of which is in turn determined by the number of pairs of elements
which are mapped to the same location by h; we denote this set as
I = {(x1, x2) | x1 ∈ Lp1, x2 ∈ Lq2, and h(x1) = h(x2)}.

Let I= = {(x1, x2) | x1 = x2} ∩ I denote the pairs of iden-
tical elements (i.e., elements in the intersection) in I and I 6= =
{(x1, x2) | x1 6= x2} ∩ I the remaining pairs of elements that are
hashed to the same value by h but are not identical. Obviously,
|I=| = |Lp1 ∩ L

q
2|. If we can show E [|I6=|] = O(1), the proof is

completed: this is because, for a total of O((n1 + n2)/
√
w) pairs

of Lp1 and Lq2 to be checked, the total running time is∑
p,q

O(E [|I|] + 1) = (
∑
p,q

|I=|+
∑
p,q

(E [|I6=|] + 1)) ·O(1)

= O(r) + (n1 + n2)/
√
w ·O(1) . (3)

Indeed, we can show for each pair of Lp1 and Lq2 that:

E [|I6=|] =
∑

x1∈L
p
1 , x2∈L

q
2,

x1 6=x2

Pr [h(x1) = h(x2)] ≤
√
w ·
√
w · 1

w
= O(1) ,

(4)
for a universal hash function h, which completes the proof. 2

A.1.1 Group Size and Optimizing Running Time
In Algorithm 1, the group size is selected as the “magical num-

ber”
√
w (i.e., |Lp1| = |Lq2| =

√
w). To explain this choice, we

now explore the effect of group size on the running time of Al-
gorithm 1. Suppose in general Li is partitioned into groups of
size si. Extending Equation (4) a bit, we have E [|I6=|] = O(1)
as long as s1 · s2 ≤ w. Then following the same argument as
in (3), a total of O(n1/s1 + n2/s2) pairs are to be checked, and
the expected running time of Algorithm 1 is O(T (s1, s2)), where
T (s1, s2) = n1/s1 + n2/s2 + r. Minimizing T (s1, s2) under
the constraint s1 · s2 ≤ w yields optimal group sizes of s∗1 =√
wn1/n2 and s∗2 =

√
wn2/n1, and the optimal running time is

O(T (s∗1, s
∗
2)) = O(

√
n1n2/w + r). If we now use the group

sizes s′1 = s′2 =
√
w, as in the proof of Theorem 3.3, we obtain a

running time of O(T (s′1, s
′
2)) = O((n1 + n2)/

√
w + r).

O(
√
n1n2/w+ r) is better than O((n1 + n2)/

√
w + r) when

set sizes are skewed (e.g., n1 � n2 or n1 =
√
n2). To achieve

the better bound we leverage that the group size s∗1 =
√
wn1/n2

of the set L1 depends on the size n2 of the set L2 to be intersected
with it, and use a multi-resolution structure which keeps different
partitions of a set, as discussed at the end of Section 3.1.

A.2 Analysis of Algorithm 3
(Proof of Theorem 3.5)

Similar to the proof of Theorem 3.3, the cost of computing Lz11 ∩
Lz22 using IntersectSmall for each pair of small groups Lz11 and
Lz22 is determined by the size of I = {(x1, x2) | x1 ∈ Lz11 , x2 ∈
Lz22 , and h(x1) = h(x2)}. As in A.1, let I= = {(x1, x2) | x1 =
x2} ∩ I and I6= = {(x1, x2) | x1 6= x2} ∩ I . Obviously, |I=| =
|Lz11 ∩ L

z2
2 |, and I 6= is the set of element-pairs that result in a

hash-collision. If we can show E [|I6=|] ≤ O(1), the proof is
complete: because, since t1 = t2 = dlog

√
n1n2/we, there are

O(
√
n1n2/w) pairs of z1 and z2 to be considered (we have z1 =

z2 = z in every iteration), and thus the total running time is∑
z∈{0,1}t2

O(E [|I|] + 1) = (
∑

z∈{0,1}t2

|I=|+
∑

z∈{0,1}t2

(E [|I6=|] + 1)) ·O(1)

≤ O(r) +
√
n1n2/

√
w ·O(1) .

Now we prove that, for each pair (z1, z2), E [|I 6=|] = O(1). Let-
ting Sz11 = |Lz11 − L

z2
2 | and Sz22 = |Lz22 − L

z1
1 |, if Lz11 and Lz22

are fixed, we have (similar to (4) in the proof of Theorem 3.3):

Eh [|I6=| | Sz11 , Sz22 ] = Sz11 · S
z2
2 /w.

Sz11 and Sz22 are random variables determined by the hash func-
tion g. From their definition and the property of 2-universal (2-
independent) hashing, we can prove Eg [Sz11 · S

z2
2 ] ≤ Eg [Sz11 ] ·

Eg [Sz22 ] (using a random permutation g yields the same result).
Also, Eg [Sz11 ]≤Eg [|Lz11 |] = O

(
n1/2

t1
)

= O(
√
n1w/n2), and

similarly Eg [Sz22 ] ≤ O(
√
n2w/n1). Therefore, Eg [Sz1 · Sz2 ] =

Eg [Sz1 ] ·Eg [Sz2 ] ≤ O(w), and thus, E [|I 6=|] =

=Eg [Eh [|I 6=| | Sz1 , Sz2 ]]=Eg

[
Sz1 · Sz2
w

]
≤O(w)

w
=O(1) , (5)

which completes the argument. 2

A.3 Analysis of Algorithm 4
(Proof of Theorem 3.6 and Theorem 3.7)

Theorem 3.6 is special case of Theorem 3.7 for two-set intersec-
tion. So we only present the proof of Theorem 3.7 below.

Consider any element x ∈ Li for each set Li involved in the
intersection computation, i.e., extended IntersectSmall in line 3 of
Algorithm 4, where we compute:

H =

k⋂
i=1

h(Lzii ), and
k⋂
i=1

Lzii =
⋃
y∈H

(
∩ki=1h

−1(y, Lzii )
)
.

Denote the set of all such elements (with h(x) = y ∈ H) by Γ. The
number of such elements |Γ| dominates the cost of Algorithm 4.
We first differentiate two cases of elements in Γ:

(i) x ∈
⋂k
i=1 Li: These r elements are scanned k times, and thus

contribute a factor of O(kr) in the time complexity overall.
(ii) x /∈

⋂k
i=1 Li: We group all these elements into k − 1 sets,

D2, . . . , Dk (an element x may belong to multiple Di’s):

Di = {x ∈ Γ | x ∈ Li∩Li+1∩. . .∩Lk ∧ x /∈ Lj for some j < i}.

Now focus on Di ∩ Lzii for each zi ∈ {0, 1}ti . For any x ∈ Li
but x /∈ Lj for some j < i, letting zj be the tj-prefix of zi, we
have x ∈ Di ∩ Lzii implies that h(x) ∈ H and thus there exists
x′(6= x) ∈ Lzjj such that h(x) = h(x′); so for such an x,

Pr [x ∈ Di ∩ Lzii | x ∈ L
zi
i ]=Pr [h(x) ∈ H | x ∈ Lzii ]

≤
∑

x′∈L
zj
j

Pr
[
h(x) = h(x′)

]
≤ |Lzjj |/w.
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Generalizing Equation (5) in the proof of Theorem 3.5, we have

E [|Di ∩ Lzii |] = Eg

[
Eh

[
|Di ∩ Lzii | | |L

zj
j | for all zj’s

]]
≤
∑
x∈Li

Eg

[
|Lzjj |/w

]
·Pr [x ∈ Lzii ] ≤ ni ·

√
w

w
·
√
w

ni
= O(1)

(as Eg

[
|Lzjj |

]
=
√
w for any j, and Pr [x ∈ Lzii ] =

√
w/ni). So

E [|Di|] ≤ O(ni/
√
w), as Li is partitioned into 2ti = ni/

√
w

groups Lzii ’s over all iterations of Algorithm 4. Then we have

E

[
k∑
i=2

|Di|

]
≤

k∑
i=2

O
(
ni/
√
w
)

= O
(
n/
√
w
)
. (6)

Running Time: As the |Di|’s are bounded as above, a naive imple-
mentation of Algorithm 4 requires O(knk/

√
w + kr) time in ex-

pectation. The iteration of lines 1-4 in Algorithm 4 repeats nk/
√
w

times (suppose n1 ≤ n2 ≤ . . . ≤ nk). In each iteration, we com-
pute H in O(k) time, and each element in Dk needs O(k) com-
parisons to be eliminated.
n/
√
w is potentially smaller than knk/

√
w especially for sets

with skewed sizes. With careful memorization of the partial results⋂j
i=1 h(Lzii ) and

⋂k
i=j h

−1(y, Lzii ) in Algorithm 4, from (i) and
(ii), we now prove the promised running time O(n/

√
w + kr):

The major cost of Algorithm 4 comes from the computation of
(a) H =

⋂k
i=1 h(Lzii ) and (b)

⋂k
i=1 h

−1(y, Lzii ) for each y ∈ H .
Assume n1 ≤ n2 ≤ . . . ≤ nk.

For (a), as zi is the ti-prefix of zj if i ≤ j, we can memorize⋂j
i=1 h(Lzii ) for each zj . Then, for example, reuse h(L1

1)∩h(L10
2 )

when computing h(L1
1)∩h(L10

2 )∩h(L100
3 ) and h(L1

1)∩h(L10
2 )∩

h(L101
3 ). In this way, the computation of H for different combina-

tions of z1, . . . , zk requires
∑
i O(ni/

√
w) = O(n/

√
w) time.

For (b), for each combination of z1, . . . , zk, we compute the
result the inverse order (from i = k to i = 1): the partial re-
sults

⋂k
i=j h

−1(y, Lzii ) (for all y ∈ H , all zk’s, and some j)
have their total size bounded by |Dj | + r. Using the hash-table-
based approach to compute the intersection, the total running time
is bounded by the total size of the partial results. So from (6), the
total running time is O(n/

√
w + kr) in expectation. 2

A.4 Analysis of the Multi-resolution Structure
(Proof of Theorem 3.8)

The time bound is trivial, because we only require sorting and
scanning of each set. The total space for storing h(Lzi )’s, left(Lzi )’s,
and right(Lzi )’s is O(ni), as there are O(ni + ni/2 + ni/4 + . . .)
= O(ni) groups of different sizes. For next(x)’s we also only need
O(ni) space, as there are ni elements in the set. We now analyze
the space needed for first(y, Lzi )’s to complete the proof.

To store first(y, Lzi ) for each y ∈ [w] and each z, storing the
difference between first(y, Lzi ) and left(Lzi ) suffices; so we need
O(log |Lzi |) bits. To store first(y, Lzi )’s for all y ∈ [w] in a group
Lzi , we need O(w · log |Lzi |/w) = O(log |Lzi |) words. Consider
the partitioning induced by gt : Σ → {0, 1}t for some t, letting
t̄ = dlognie− t, there are O(ni/2

t̄) groups Lzi ’s generated by gt,
so the space we need for all these groups is: (log(·) is concave)

O(
∑
z∈{0,1}t log |Lzi |) ≤ O(2t · log(ni/2

t)) = O((ni/2
t̄) · t̄).

Therefore, for all resolutions t = 1, 2, . . . , dlognie, the total space
needed for first(y, Lzi )’s is O(

∑
t̄ t̄ · ni/2

t̄) ≤ O(ni). 2

A.5 Analysis of Algorithm 5
(Proof of Theorem 3.9)

A.5.1 Probability of Successful Filtering
Recall in Algorithm 5, sets are partitioned into small groups by

hash function g, and m universal hash functions h1, . . . , hm are
used to test whether the intersection of small groups is empty.

It is efficient because of the following observation: if Lz11 ∩
Lz22 = ∅, then hj(Lz11 ) ∩ hj(Lz22 ) = ∅ for some j = 1, . . . ,m
(so-called “successful filtering”) with high probability. But once a
“false positive” happens (i.e., ∩iLzii = ∅ but ∩ihj(Lzii ) 6= ∅ for
any hash function h1, . . . , hm), we have to scan the two or k small
groups for the intersection. So to analyze Algorithm 5, the key
point we need to establish is that successful filtering happens with
a constant probability for two or k small groups.We first verify the
above intuition, by assuming that |Lzii | is

√
w:

LEMMA A.1. For two small groups Lz11 and Lz22 with |Lz11 | =
|Lz22 | =

√
w, given a universal hash function h : Σ → [w], if

Lz11 ∩ L
z2
2 = ∅, then h(Lz11 ) ∩ h(Lz22 ) = ∅ with probability at

least
(
1− 1√

w

)√w (≈ 0.3436 for w = 64).

PROOF. Since Lz11 ∩ L
z2
2 = ∅, for each x2 ∈ Lz22 , we have

h(x2) /∈ h(Lz11 ) holds with probability 1− |h(Lz11 |)/w. So,

Pr [h(Lz1) ∩ h(Lz2) = ∅] ≥
(
1−
|h(L

z1
1 )|
w

)|Lz22 | ≥ (
1−
|Lz11 |
w

)|Lz22 |
,

as |h(Lz11 )| ≤ |Lz11 |. So, when |Lz11 | = |L
z2
2 | =

√
w, we have

Pr [h(Lz1) ∩ h(Lz2) = ∅] ≥
(

1− 1√
w

)√w
.

In general, although the sizes of the small groups |Lzi | are ran-
dom variables, they are unlikely to deviate from

√
w by much. This

is important since groups of larger sizes result in poorer filtering
performance of the word representations hj(Lzii )’s (incurring more
false positives). Using Chernoff bounds we can show that:

PROPOSITION A.2. For any group Lzii defined in Algorithm 5
(i.e., partitionLi by gti : Σ→ {0, 1}ti with ti = dlog(ni/

√
w)e),

we have: (i)
√
w
2
≤ E [|Lzii |] ≤

√
w;

(ii) Pr [|Lzii | ≤ (1 + ε)
√
w] ≥ 1−exp

(
−
√
wε2

3

)
, for 0 < ε < 1;

(iii) Pr [|Lzii | ≤ δ(w)
√
w] ≥ 1− 1

4
√
w

, where the constant δ(w)=

1+
(

6 ln(4
√
w)√

w

)1/2 (≈ 2.6122 for w = 64).

PROOF. In this proof we use a random permutation as g : Σ→
Σ, and define gt(x) to be the t most significant bits of g(x). How-
ever, note that we can use a hash function here as well, if we use the
pre-image to break any ties resulting from hash collisions (thereby
resulting in a total ordering).

For the group Lzii , define Yx = 1 if x ∈ Lzii (i.e., gti(x) = zi),
and Yx = 0 otherwise. So |Lzii | =

∑
x Yx. Then (i) is from the

fact that Pr [Yx = 1] = 1/2ti and the linearity of expectation.
For a random permutation g, we can prove that the {Yx | x ∈ Li}

are negatively associated [14], so the Chernoff bounds can be still
applied. As in (i), we have µL =

√
w/2 ≤ µ = E [|Lzii |] ≤√

w = µH . To prove (iii), we use the Chernoff bound:
Pr [|Lzii | > (1 + ε)µ] < exp(−µε2/3) ≤ exp(−µLε2/3) [14].
To prove (ii), we can use a tighter bound: for 0 < ε < 1,
Pr [|Lzii | > (1 + ε)µH ] < exp(−µHε2/3) [14].

Note that the same bounds hold when a hash function is used as g.
Lemma A.3 extends Lemma A.1 for k groups, whose sizes are ran-
dom variables determined by the hash function g.
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LEMMA A.3. For k groups Lzii ’s (for i = 1, . . . , k, partition
Li by gti : Σ→ {0, 1}ti where ti = dlog(ni/

√
w)e), if ∩iLzii =

∅, then ∩ih(Lzii ) = ∅ with at least constant probability

β(w) =
(

1− 1+δ(w)
√
w

4
√
w

)
·
(

1− δ(w)√
w

)δ(w)
√
w

(or β2(w) below),

where δ(w) is a constant determined by w, as in Proposition A.2.

PROOF. Since ∩iLzii = ∅, for any xk ∈ Lzkk , there exists some
Lzj s.t. xk /∈ Lzjj ; now, for this small group Lzjj , if for any xj ∈
L
zj
j we have h(xk) 6= h(xj), i.e., xk /∈ h(L

zj
j ), we say that xk is

collision-free. If |Lzjj | ≤ δ(w)
√
w, from the union bound,

Pr [xk is collision-free] ≥ 1−
∣∣Lzjj ∣∣
w
≥ 1− δ(w)√

w
, (7)

where δ(w) is defined in Proposition A.2. Note that ∩ih(Lzii ) = ∅
implies that every xk in Lzkk is collision-free. So, if furthermore
|Lzkk | ≤ δ(w)

√
w, we have

Pr [∩ih(Lzii ) = ∅] ≥
(

1− δ(w)√
w

)δ(w)
√
w

.

The derivation of (7) assumes independence of the randomized
hash function h. If h is generated from a random permutation p,
i.e., taking the prefix of p(x) as h(x), then by considering negative
dependence [14], a similar (a bit weaker) bound can be derived.

From Proposition A.2(iii), with probability at least 1− 1
4
√
w

, we
have |Lzii | ≤ δ(w)

√
w for a group Lzii . Given |Lzkk | ≤ δ(w)

√
w,

there are at most min{k, δ(w)
√
w} Lzjj ’s involved in the analy-

sis of (7). From the union bound, with probability at least 1 −
1+δ(w)

√
w

4
√
w

, we have |Lzjj | ≤ δ(w)
√
w for all of these 1+δ(w)

√
w

groups. So, with probability at least

β1(w) =
(

1− 1+δ(w)
√
w

4
√
w

)
·
(

1− δ(w)√
w

)δ(w)
√
w

,

(notice the independence between g and h) we have ∩ih(Lzii ) = ∅.
If we use Proposition A.2(ii) to bound the probability of |Lzkk | ≤

3
√
w/2 (then there are at most min{k, 3

√
w/2} Lzjj ’s involved in

the analysis of (7)), we can derive a tighter bound in a similar way:

β2(w) =
(

1− exp
(
−
√
w

12

)
− 3

8

)
·
(

1− δ(w)√
w

)3
√
w/2

.

Thus, we have shown the probability of successful filtering (β1(w)
or β2(w) as a conservative lower bound) is at least a constant de-
pending only on the machine-word width w (but independent on
the number and the sizes of sets), and increases with w. It can be
magnified to 1 − (1 − β(w))m by using m > 1 word images of
independent hash functions for filtering.

A.5.2 Filtering Performance in Practice
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Figure 9: Filtering Performance in Experiments

In this section we evaluate the efficiency of the word images for
filtering. In Figure 9, we have plotted the probability that, for dif-
ferent numbers m of hash functions, a given pair of small groups
with an empty intersection is filtered; as before, we usew = 64. As
the datasets, we use the synthetic data from the first experiment in
Section 4 (with an intersection size of 1% of the set size) and the 2-
word queries described in the experiments on real data derived from

Bing/Wikipedia. As we can see, the probabilities are very similar
for both datasets, with slightly better filtering performance for the
asymmetric real data. Moreover, the real-life successful-filtering
probabilities are significantly better than the theoretical bounds de-
rived in Lemma A.1 and Lemma A.3 (where m = 1).

A.5.3 Proof of Theorem 3.9
For any zk ∈ {0, 1}tk , let zi be its ti-prefix (as in Algorithm 5).

For computing
⋂
i L

zi
i , there are two cases:

(i) If
⋂
i L

zi
i = ∅, from Lemma A.3, we have

⋂
i hj(L

zi
i ) 6= ∅

with probability at most 1 − β(w), and thus
⋂
i hj(L

zi
i ) 6= ∅ for

all j = 1, . . . ,m with probability at most (1 − β(w))m. So we
wastefully compute

⋂
i L

zi
i with probability at most (1− β(w))m.

(ii) If
⋂
i L

zi
i 6= ∅, we must have

⋂
i hj(L

zi
i ) 6= ∅ for all j, and

compute
⋂
i L

zi
i . Case (ii) happens at most r = |

⋂
i Li| times.

We compute
⋂
i L

zi
i using the linear merge algorithm in linear

time O
(∑

i |L
zi
i |
)
, or O(k

√
w) time in expectation. In case (i),

since there are nk/
√
w groups inLk, for all groups, this contributes

a factor O(max(n, knk)(1− β(w))m); and in case (ii), this con-
tributes a factor O(kr

√
w) (since (ii) happens at most r times).

We also need to test whether
⋂k
i=1 hj(L

zi
i ) 6= ∅ for all j =

1, . . . ,m. Since there are n/
√
w groups Lzii ’s, with careful mem-

orization of partial results (e.g., reusing hj(L1
1) ∩ hj(L10

2 ) when
computing hj(L1

1)∩hj(L10
2 )∩hj(L100

3 ) and hj(L1
1)∩hj(L10

2 )∩
hj(L

101
3 )), this contributes a factor O(mn/

√
w) in total.

So from the above analysis, Algorithm 5 needs a total of

O

(
max(n, knk)

α(w)m
+
mn√
w

+ kr
√
w

)
(8)

time in expectation, where α(w) = 1/(1− β(w)). 2

A.6 Analysis of Algorithm HashBin
(Proof of Theorem 3.11)

For HashBin, the intuition is: in the resulting partitioning, we
have O(1) element in each group Lz1, and O(n2/n1) elements in
each group Lz2. The expected running time is:

E

 ∑
z∈{0,1}t

(|Lz1| log |Lz2|)


=

∑
z∈{0,1}t

(E [|Lz1|] log |Lz2|) (suppose |Lz2|’s are fixed)

=
∑

z∈{0,1}t
log |Lz2| (because E [|Lz1|] = 1)

≤ n1 log(n2/n1) (
∑

z∈{0,1}t
|Lz2| = n2 and log(·) is concave). 2

A.6.1 HashBin using the Multi-resolution Structure
Algorithm HashBin works on a simplified version of the multi-

resolution data structure (Figure 2) introduced in Section 3.2.1.
Here, we use a random permutation g : Σ → Σ to partition sets

into small groups. To pre-process Li, we first order all the elements
in Li according to g(x). Then any small group Lzi = {x | x ∈
Li and gt(x) = z} (for any t) corresponds to a consecutive interval
in Li. For each small group Lzi , we only need to store its starting
position left(Lzi ) and ending position right(Lzi ).

For each x ∈ Lz1, we need to check whether x ∈ Lz2. Suppose
Lz2 = {x1, x2, . . . , xs}. Although elements in Lz2 are not sorted
in their own order, they are ordered as g(x1) ≤ g(x2) ≤ . . . ≤
g(xs) in the preprocessing. So to check whether x ∈ Lz2, we can
binary-search whether g(x) is in {g(x1), g(x2), . . . , g(xs)}, since
the random permutation g is a one-to-one mapping from Σ to Σ.
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Figure 10: Preprocessing Overhead
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Figure 11: Preprocessing Overhead (with compression)

B. COMPRESSION FOR ALGORITHM 5
For each small group Lzi , we can use the standard techniques

based on γ- and δ-coding (see [23], p.116) to compress the ele-
ments stored sequentially at the end of the block associated with
Lzi . However, the decoding of γ- and δ-coding is expensive.

As an alternative, we describe simple but effective (i.e., efficient
in decoding) compression technique for Algorithm 5 in the follow-
ing:
(i) Instead of storing the length len of each structure, we can store
the size |Lzi |, since the structure length len can be derived from
|Lzi |. As proved in Proposition A.2, |Lzi | is usually very small, so
we store it using unary code (e.g., 011 = 2).
(ii) Only if |Lzi | > 0, we store h1(Lzi ), h2(Lzi ), . . ., hm(Lzi ) in the
following m words.
(iii) To store elements of Lzi in the remaining part of this block,
we can use the standard techniques based on γ- or δ-coding. We
present another compression technique here, which is specifically
designed for our algorithm. Its decoding is much more efficient
than γ- or δ-coding. First, for the purpose of partitioning sets into
small groups, we use a random permutation as g. Then, assuming
|Σ| = 2w (the worst case), instead of storing each x ∈ Lzi , we
store lowbitsti(x) = g(x) mod 2w−ti , i.e., the lowest w − ti bits
of g(x); and the remaining highest ti bits of g(x) correspond to
z = gti(x). In online-processing, decoding in this compression
scheme can be done efficiently: to get g(x) for an element x ∈ Lzi ,
we concatenate z = gti(x) to lowbitsti(x). Since g is a one-to-one
mapping from Σ to Σ, the intersection of L1 and L2 is equivalent
to the intersection of g(L1) and g(L2).
Following is some basic analysis to establish an upper bound of
the space consumed by our compression technique. Recall ti =
dlog(ni/

√
w)e. There are ni/

√
w small groups in Li in total.

Storing all of them requires:
(i) ni + ni/

√
w bits for |Lzi |’s (since

∑
z |L

z
i | = ni);

(ii) at most mw · ni/
√
w bits for hj(Lzi )’s; and

(iii) (w− ti) · ni bits for all elements (we store g(x) mod 2w−ti ).

C. ADDITIONAL EXPERIMENTS

C.1 Preprocessing Overhead
In this section, we evaluate the time taken to construct the novel

structures when given a set Li as input. Our approach is similar to
inverted indexes (and nearly all of the competing algorithms) in that
the elements have to be sorted during pre-processing; thus, to put
the construction overhead in perspective, we also measure and plot
the overhead of sorting using an in-memory quicksort (averaging
the time over 10 random instances). Figure 10 shows the results for
the construction time for the data structures without compression
for different set sizes |Li|. Note that we use a log-scale on the
y-axis to better separate the different graphs. As we can see, the
additional construction overhead is generally a small fraction of
the sorting overhead.

Figure 11 shows the overhead for constructing different com-
pressed structures. We also plot the overhead for compressing the
sets without additional hash images (resulting in the structures used
in the compressed Merge, i.e., Merge Gamma and Merge Delta).
Again, the required overhead is only a small fraction of the sorting
overhead; also, the preprocessing time for the Lowbits compres-
sion scheme which yields the best intersection performance in Sec-
tion 4.1 is significantly lower than the alternatives.

C.2 More Experiments on Real Data
In this section, we present a breakdown of the experiments on

real data in Section 4; to understand how the number of keywords
in a query affect the relative performance in this scenario, we plot-
ted the distribution of average intersection times for 2-, 3- and 4-
keyword queries separately in Figure 12. As we can see, the relative
performances are similar as seen earlier with three exceptions: (a)
the Merge algorithm performs worse with increasing number of
keywords (as it cannot leverage the asymmetry in any way), (b) in
contrast, Hash performs increasingly better, but still remains (close
to) the worst performer, and (c) for 4-keyword queries, RanGroup
slightly outperforms RanGroupScan.
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Figure 12: Normalized Execution Time on a Real Workload
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