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Abstract

Federated search (federated information retrieval or distributed infor-

mation retrieval) is a technique for searching multiple text collections

simultaneously. Queries are submitted to a subset of collections that

are most likely to return relevant answers. The results returned by

selected collections are integrated and merged into a single list. Fed-

erated search is preferred over centralized search alternatives in many

environments. For example, commercial search engines such as Google

cannot easily index uncrawlable hidden web collections while feder-

ated search systems can search the contents of hidden web collections

without crawling. In enterprise environments, where each organization

maintains an independent search engine, federated search techniques

can provide parallel search over multiple collections.

There are three major challenges in federated search. For each query, a

subset of collections that are most likely to return relevant documents

are selected. This creates the collection selection problem. To be able

to select suitable collections, federated search systems need to acquire

some knowledge about the contents of each collection, creating the col-



lection representation problem. The results returned from the selected

collections are merged before the final presentation to the user. This

final step is the result merging problem.

The goal of this work, is to provide a comprehensive summary of the

previous research on the federated search challenges described above.
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Introduction

Internet search is one of the most popular activities on the web. More

than 80% of internet searchers use search engines for finding their infor-

mation needs [Spink et al., 2006]. In September 1999, Google claimed

that it received 3.5 million queries per day.1 This number increased to

100 million in 2000,2 and has grown to hundreds of millions since.3 The

rapid increase in the number of users, web documents and web queries

shows the necessity of an advanced search system that can satisfy users’

information needs both effectively and efficiently.

Since Aliweb [Koster, 1994] was released as the first internet search

engine in 1994, searching methods have been an active area of research,

and search technology has attracted significant attention from indus-

trial and commercial organizations. Of course, the domain for search

is not limited to the internet activities. A person may utilize search

systems to find an email in a mail box, to look for an image on a local

machine, or to find a text document on a local area network.

1 http://www.google.com/press/pressrel/pressrelease4.html, accessed on 17 Aug 2010.
2 http://www.google.com/corporate/history.html, accessed on 17 Aug 2010.
3 http://www.comscore.com/Press_Events/Press_Releases/2010/8/comScore_Releases_

July_2010_U.S._Search_Engine_Rankings, accessed on 17 Aug 2010.
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Commercial search engines use programs called crawlers (or spiders)

to download web documents. Any document overlooked by crawlers

may affect the users perception of what information is available on

the web. Unfortunately, search engines cannot easily crawl docu-

ments located in what is generally known as the hidden web (or deep

web) [Raghavan and Garćıa-Molina, 2001]. There are several factors

that make documents uncrawlable. For example, page servers may be

too slow, or many pages might be prohibited by the robot exclusion

protocol and authorization settings. Another reason might be that some

documents are not linked to from any other page on the web. Further-

more, there are many dynamic pages—pages whose content is generated

on the fly—that are crawlable [Raghavan and Garćıa-Molina, 2001] but

are not bounded in number, and are therefore often ignored by crawlers.

As the size of the hidden web has been estimated to be many times

larger than the number of visible documents on the web [Bergman,

2001], the volume of information being ignored by search engines is

significant. Hidden web documents have diverse topics and are written

in different languages. For example, PubMed4—a service of the US

national library of medicine—contains more than 20 million records of

life sciences and biomedical articles published since the 1950s. The US

census Bureau5 includes statistics about population, business owners

and so on in the USA. There are many patent offices whose portals

provide access to patent information, and there are many other websites

such for yellow pages and white pages that provide access to hidden

web information.

Instead of expending effort to crawl such collections—some of which

may not be crawlable at all—federated search techniques directly pass

the query to the search interface of suitable collections and merge their

results. In federated search, queries are submitted directly to a set of

searchable collections—such as those mentioned for the hidden web—

that are usually distributed across several locations. The final results

are often comprised of answers returned from multiple collections.

From the users’ perspective, queries should be executed on servers

4 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed, accessed on 17 Aug 2010.
5 http://www.census.gov, accessed on 17 Aug 2010.
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that contain the most relevant information. For example, a government

portal may consist of several searchable collections for different organi-

zations and agencies. For a query such as ‘Administrative Office of the

US Courts’, it might not be useful to search all collections. A better al-

ternative may be to search only collections from the www.uscourts.gov

domain that are likely to contain the relevant answers.

However, federated search techniques are not limited to the web

and can be useful for many enterprise search systems. Any organiza-

tion with multiple searchable collections can apply federated search

techniques. For instance, Westlaw6 provides federated search for le-

gal professionals covering more than 30,000 databases [Conrad et al.,

2002a;b; Conrad and Claussen, 2003]. The users can search for case law,

court documents, related newspapers and magazines, public records,

and in return, receive merged results from heterogeneous sources. Fed-

Stats7 is an online portal of statistical information published by many

federal agencies. The crawls for the original centralized search in Fed-

Stats could be updated only every three months. Therefore, a federated

search solution was requested and this was the main focus of the FedLe-

mur project [Avrahami et al., 2006].8 FedStats enables citizens, busi-

nesses, and government employees to find useful information without

separately visiting web sites of individual agencies.

Federated search can be also used for searching multiple catalogs

and other information sources. For example, in the Cheshire project,9

many digital libraries including the UC Berkeley Physical Sciences Li-

braries, Penn State University, Duke University, Carnegie Mellon Uni-

versity, UNC Chapel Hill, the Hong Kong University of Science and

Technology and a few other libraries have become searchable through

a single interface at the University of Berkeley. Similarly, The European

Library10 provides a federated search solution to access the resources

of 47 national libraries.

6 http://www.thomsonreuters.com/products_services/legal/legal_products/393832/

Westlaw , accessed on 17 Aug 2010.
7 http://search.fedstats.gov, accessed on 17 Aug 2010.
8FedStats search is currently powered by google.com.
9 http://cheshire.berkeley.edu/, accessed on 17 Aug 2010.
10 http://search.theeuropeanlibrary.org/portal/en/index.html, accessed on 17 Aug

2010.
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Fig. 1.1 The architecture of a typical federated search system. The broker stores the repre-

sentation set (the summary) of each collection, and selects a subset of collections for the

query. The selected collections then run the query and return their results to the broker,
which merges all results and ranks them in a single list.

1.1 Federated search

In federated search systems,11 the task is to search a group of inde-

pendent collections, and to effectively merge the results they return for

queries.

Figure 1.1 shows the architecture of a typical federated search sys-

tem. A central section (the broker) receives queries from the users and

sends them to collections that are deemed most likely to contain rel-

evant answers. The highlighted collections in Figure 1.1 are those se-

lected for the query. To route queries to suitable collections, the broker

needs to store some important information (summary or representa-

tion) about available collections. In a cooperative environment, collec-

11Also referred to as distributed information retrieval (DIR).
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tions inform brokers about their contents by providing information such

as their term statistics. This information is often exchanged through

a set of shared protocols such as STARTS [Gravano et al., 1997] and

may contain term statistics and other metadata such as collection size.

In uncooperative environments, collections do not provide any informa-

tion about their contents to brokers. A technique that can be used to

obtain information about collections in such environments is to send

sampling (probe) queries to each collection. Information gathered from

the limited number of answer documents that a collection provides in

response to such queries is used to construct a representation set ; this

representation set guides the evaluation of user queries and ranking

collections. The selected collections receive the query from the broker

and evaluate it on their own indexes. In the final step, the broker ranks

the results returned by the selected collections and presents them to

the user.

Federated search systems therefore need to address three major is-

sues: how to represent the collections, how to select suitable collec-

tions for searching; and how to merge the results returned from collec-

tions.12 Brokers typically compare each query to representation sets—

also called summaries [Ipeirotis and Gravano, 2004]—of each collection,

and estimate the goodness of the collection accordingly. Each represen-

tation set may contain statistics about the lexicon of the corresponding

collection. If the lexicon of the collections is provided to the central

broker—that is, if the collections are cooperative—then complete and

accurate information can be used for collection selection. However, in

an uncooperative environment such as the hidden web, the collections

need to be sampled to establish a summary of their topic coverage.

This technique is known as query-based sampling [Callan and Connell,

2001] or query probing [Gravano et al., 2003].

Once the collection summaries are generated, the broker has suf-

ficient knowledge for collection selection. It is usually not feasible to

search all collections for a query due to time constraints and band-

width restrictions. Therefore, the broker selects a few collections that

are most likely to return relevant documents based on their summaries.

12We briefly describe other common challenges such as building wrappers in Chapter 2.
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The selected collections receive the query and return their results to

the broker.

Result merging is the last step of a federated search session. The

results returned by multiple collections are gathered and ranked by the

broker before presentation to the user. Since documents are returned

from collections with different lexicon statistics and ranking features,

their scores or ranks are not comparable. The main goal of result merg-

ing techniques is computing comparable scores for documents returned

from different collections, and ranking them accordingly.

1.2 Federated search on the web

The most common forms of federated search on the web include Vertical

search, Peer-to-Peer (P2P) networks, and metasearch engines. Verti-

cal search—also known as aggregated search—blends the top-ranked

answers from search verticals (e.g. images, videos, maps) into the web

search results. P2P search connects distributed peers (usually for file

sharing), where each peer can be both server and client . Metasearch

engines combine the results of different search engines in single result

lists.

1.2.1 Vertical (aggregated) search

Until recently since their first appearance, web search engines used to

only show text answers in their results. Users interested in other types

of answers (e.g. images, videos, and maps), had to directly submit their

queries to the specialized verticals.

In 2000, the Korean search engine Naver13 introduced comprehen-

sive search and blended multimedia answers in their default search

results. In May 2007, Google launched aggregated search (universal

search) “to break down the walls that traditionally separated [their]

various search properties and integrate the vast amounts of informa-

tion available into one simple set of search results”.14 In aggregated

search, the top-ranked answers from other information sources (e.g. im-

13 http://www.naver.com, accessed 17 Aug 2010.
14 http://googleblog.blogspot.com/2007/05/universal-search-best-answer-is-still.html,

accessed 17 Aug 2010.



1.2. Federated search on the web 7

Fig. 1.2 The outputs of three major search engines for the query “dog”. The top-ranked

answers from the image vertical are blended in the final results.

age vertical) are merged with the default text results. Universal search

substantially increased the traffic of Google’s non-text search verticals.

For instance, the traffic of Google Maps increased by more than 20%.15

Since then, all other major search engines such as Yahoo!16 and Bing

have adapted aggregated search techniques. Figure 1.2 shows the re-

sults returned by three major search engines for the query “dog”. It

can be seen that all search engines merge some image answers along

with their text results.

An aggregated search interaction consists of two major steps: verti-

cal selection and merging. In the first step, the verticals relevant to the

query are selected. A few examples of common verticals that are uti-

lized by current search engines are: images, videos, news, maps, blogs,

groups and books. The answers returned from the selected verticals are

integrated with the default web results in the merging step.

Aggregated search was discussed in a workshop at SIGIR 2008 [Mur-

dock and Lalmas, 2008] as a promising area of research. Less than a

year after, Diaz [2009] proposed a click-based classifier for integration

of news answers into web search results—as the first large-scale pub-

lished study on aggregated search that won the best paper award at

15 http://searchengineland.com/070608-091826.php, accessed 17 Aug 2010.
16Yahoo! has recently launched a new website (http://au.alpha.yahoo.com/) that applies

aggregated search on a greater number of data sources.
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WSDM 2009.17 Arguello et al. [2009b] proposed a classification-based

method for vertical selection. The authors trained a classifier with fea-

tures derived from the query string, previous query logs, and vertical

content. They tested their techniques on a framework of 18 verticals,

for which they won the best paper award at SIGIR 2009.18 Diaz and

Arguello [2009] showed that integrating users feedback such as clicks

can significantly improve the performance of vertical selection methods.

Aggregated search is a new area of research, and has opened several

directions for future work; what search verticals shall be selected for

a query? How can the results of different verticals be merged into a

single list? Do users prefer aggregated search results? How aggregated

search changes users’ search behaviors?

1.2.2 Peer-to-peer networks

Lu [2007] showed that the search task in a peer-to-peer network is

closely related with the research topic of federated search. A peer-to-

peer network (P2P) consists of three main types of objects; informa-

tion providers, information consumers, and a search mechanism that

retrieves relevant information from providers for consumers.

The P2P network architectures can be divided into four categories:

broker-based P2P networks (e.g., the original Napster music file-sharing

system19) have a single centralized service that also contains docu-

ment lists shared from peer nodes. The centralized service responds

to queries from consumers by returning the pointers of relevant docu-

ments. In Decentralized P2P architectures such as Gnutella v0.420 each

peer node can serve as both provider and consumer. Hierarchical P2P

architectures such as , Gnutella v0.621, Gnutella222, BearShare23 and

17 http://www.wsdm2009.org, accessed 17 Aug 2010.
18 http://sigir2009.org, accessed 17 Aug 2010.
19 http://www.napster.com, accessed 17 Aug 2010.
20 http://rfc-gnutella.sourceforge.net/developer/stable/index.html, accessed 17

Aug 2010.
21 http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html, accessed 17 Aug

2010.
22 http://g2.trillinux.org/index.php?title=Main_Page, accessed 17 Aug 2010.
23 www.bearshare.com, accessed 17 Aug 2010.
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Swapper.NET24 utilize local directory services that often work with

each other for routing queries and merging search results. Structured-

based P2P networks such as CAN [Ratnasamy et al., 2001] and Chord

[Stoica et al., 2003] often use distributed hash tables for searching and

retrieving files.

The search mechanism in P2P network addresses similar research

problems of federated search such as representing useful contents of

peer nodes and local search directories (collection representation), rout-

ing queries to relevant nodes or directories (collection selection), and

combining search results (result merging). Early search mechanism in

P2P networks focused on named-based or controlled based representa-

tion with simple query routing mechanism such as flooding and simple

merging methods based on the frequency of term matching or content-

independent features. More recent studies [Lu and Callan, 2003a; 2006;

Lu, 2007] explored full-text representations with content-based query

routing and relevance-based results integration. Therefore, improving

collection representation, collection selection and result merging in fed-

erated search can have a direct impact on the quality of search in P2P

networks.

1.2.3 Metasearch engines

Metasearch engines provide a single search portal for combining the

results of multiple search engines. Metasearch engines do not usually

retain a document index; they send the query in parallel to multiple

search engines, and integrate the returned answers. The architecture

details of many metasearch engines such as Dogpile,25 MetaCrawler

[Selberg and Etzioni, 1995; 1997a], AllInOneNews [Liu et al., 2007],

ProFusion [Gauch and Wang, 1996; Gauch et al., 1996a], Savvysearch

[Dreilinger and Howe, 1997], iXmetafind [Han et al., 2003], Fusion

[Smeaton and Crimmins, 1997], and Inquirus [Glover et al., 1999;

Lawrence and Giles, 1998] have been published in recent years.

Figure 1.3 shows the answers returned by Metacrawler [Selberg and

Etzioni, 1997a] for the query “federated search”. It can be seen that

24 http://www.revolutionarystuff.com/swapper, accessed 17 Aug 2010.
25 http://www.dogpile.com/dogpile/ws/about?_IceUrl=true, accessed on 17 Aug 2010.
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Fig. 1.3 The results of the query “federated search” returned from Metacrawler [Selberg

and Etzioni, 1997a] metasearch engine. It can be seen that the results are merged from
different sources such as Google, Yahoo! and Bing search engines.

the presented results are merged from different search engines such as

Yahoo! and Google, Ask and Bing.

Compared to the centralized search engines, metasearch engines

have advantages such as broader coverage of the web and better search

scalability [Meng et al., 2002]. The index and coverage of commercial

search engines are substantially different. Many of the pages that are

indexed by one search engine may not be indexed by another search

engine. Bar-Yossef and Gurevich [2006] suggested that the amount of

overlap between the indexes of Google and Yahoo! is less than 45%.

1.3 Outline

This paper presents a comprehensive summary of federated search tech-

niques. This section provides a road map for the remaining chapters.

In Chapter 2, we compare the collection representation sets (sum-
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maries) in cooperative and uncooperative environments. We also dis-

cuss several approaches for improving incomplete summaries, including

the previous research on estimating the size of collections from sampled

documents. We end this chapter by describing wrappers, the programs

used for interacting with the interfaces of hidden-web collections, and

summarizing available techniques for evaluating the quality of collec-

tion summaries.

In Chapter 3, we compare different collection selection methods by

categorizing the current techniques into two main groups; lexicon-based,

and document-surrogates. The former group mainly consists of tech-

niques that are more suitable for cooperative environments, while the

latter group includes collection selection methods based on incomplete

sampled documents. We also provide an overview of the previous work

on query-classification in the context of federated search. In the last

section of this chapter, we discuss the common metrics for evaluating

the effectiveness of collection selection methods.

In Chapter 4, we discuss several federated search merging tech-

niques. We also provide a brief summary of commonly used blending

techniques in closely related areas of data fusion and metasearch.

In Chapter 5, we discuss common datasets used for evaluating the

federated search techniques. This is important because relative per-

formance of federated search methods can vary significantly between

different testbeds [D’Souza et al., 2004b; Si and Callan, 2003a].26

Finally, in Chapter 6 we present our conclusions and discuss direc-

tions for future work.

26We use the term testbed to refer to a set of collections that are used together for federated
search experiments (collection selection and result merging).
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Collection representation

In order to select suitable collections for a query, the broker needs to

know about the contents of each collection as well as other important

information (e.g., size). For example the query “basketball” may be

passed to sport-related collections, while for the query “Elvis” collec-

tions containing articles about music might be more appropriate.

For this purpose, the broker keeps a representation set for each col-

lection. This is illustrated in Figure 2.1. The representation set of each

collection contains information about the documents that are indexed

by that collection, and can be generated manually on the broker by

providing a short description of the indexed documents [Chakravarthy

and Haase, 1995; Manber and Bigot, 1997]. However, representation

sets created manually are usually brief and cannot capture many terms

that occur in a collection. In practice, collection representation sets

are therefore usually generated automatically, and their comprehen-

siveness depends on the level of cooperation in the federated search

environment.

In cooperative environments, representation sets may contain the

complete lexicon statistics of collections and many other useful meta-

data [D’Souza et al., 2004a; Gravano et al., 1997; Xu and Callan, 1998;

12
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Collection
        A

Collection
       B

Collection
        C

Global Information
     (Distributed)

Collection representation sets
 (Centralized on the broker)

Representation C

Representation B

Representation A

Fig. 2.1 The representation of distributed collections on a central broker. The broker stores

a subset of the global information, available at collections, centrally.

Zobel, 1997; Yuwono and Lee, 1997]. In such a scenario, the broker has

extensive knowledge about each collection and can effectively calculate

the score of collections. In uncooperative federated search, collections

do not publish their representation sets. Therefore, the broker typi-

cally downloads a limited number of documents from each collection

and uses these as the representation set [Callan et al., 1999; Callan and

Connell, 2001].

This chapter provides an overview of the previous work on collection

representation.

2.1 Representation sets in cooperative environments

In cooperative environments, collections may provide the broker with

comprehensive information about their searchable documents.

In the STARTS protocol [Gravano et al., 1997], the broker stores
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several types of source metadata, that are used for server selection and

other purposes such as query mapping and result merging. Some of the

source metadata attributes used by the STARTS protocol are: score

range, stopword list, supported fields and sample results. In addition

to server selection metadata, the information about the query language

of each server is also available in the representation sets. The query

language defined by the STARTS protocol consists of two main com-

ponents: filter expression, and ranking expression. The filter expression,

is used to narrow down search to documents that are more likely to be

relevant on each server. Using the filter expressions, the user can spec-

ify the fields that the query has to match in each document in the final

results (e.g. title ‘‘harry potter’’, author ‘‘J.K. Rowling’’).

The ranking expression provides information about the importance

of different sections of a document for ranking (e.g. body-of-text

‘‘treasure’’). Green et al. [2001] later enhanced STARTS with XML

features in a more sophisticated protocol called SDARTS. The new pro-

tocol is suitable for federated search over multiple XML collections.

The comprehensiveness of information stored in collection represen-

tation sets varies depending on the degree of cooperation between col-

lections, and the complexity of the search protocol. For instance, Gra-

vano et al. [1994b;a; 1999] stored document frequency and term weight

information in the representation sets. In another work by Callan et al.

[1995], the broker stores the document frequency information of the

terms for each collection. The collection representation sets used by

Meng et al. [2001] contain the adjusted maximum normalized weights

that are computed according to the global inverse document frequency,

and the maximum term frequency values in each collection. Similar

statistics have been used by Wu et al. [2001] and Yu et al. [1999; 2002]

Yuwono and Lee [1997] stored the number of documents in each

collection, and the collection frequency1 of terms in the representation

sets of their WISE system. Zobel’s Lexicon Inspection system [Zobel,

1997] also stored the collection frequency statistics and the number of

documents in each collection in representation sets. D’Souza and Thom

[1999] proposed n-term indexing in which they only store the statistics

1The number of collections that contain each term.
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about a maximum of n terms per document in representation sets. The

first-n variant that chooses the first n terms in each document was later

adopted by D’Souza et al. [2000].

In heterogenous environments with diverse data types, collection

representation sets may contain various metadata to improve other

stages of federated search such as collection selection and result merg-

ing. For example, Arguello et al. [2009a;b] stored previous vertical-

specific query logs in their vertical representation sets. For semi-

structured datasets, different fields can be represented by separate

metadata. For example, Kim and Croft [2010] stored title, content,

date, sender and receiver information separately in the representation

set of the email collection they used in their desktop search experi-

ments.

2.2 Representation sets in uncooperative environments

In the absence of cooperation, term statistics are usually approximated

by using a number of documents sampled from collections. Next, we

discuss different methods for sampling documents from uncooperative

collections.

2.2.1 Query-based sampling

Query-based sampling (QBS) [Callan and Connell, 2001; Callan et al.,

1999] was proposed for sampling uncooperative environments where

the broker does not have access to the complete lexicon statistics of

each collection. QBS has been used widely in federated search exper-

iments [Avrahami et al., 2006; Nottelmann and Fuhr, 2003; 2004a; Si

and Callan, 2003a; 2004b; 2005b] and can be described as follows:

(1) An initial query is selected and submitted to the collection.

The query is usually a single term,2 selected from words that

are likely to return many results.

(2) The top n documents for the query are downloaded. Callan

and Connell [2001] have empirically determined that n = 4

2Craswell et al. [2000], and Shokouhi et al. [2007d] used multi-word queries for sampling.
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is an appropriate value for TREC newswire collections.

(3) Sampling continues as long as the stopping criterion has not

been met. The stopping criterion is usually defined in terms

of the number of documents sampled or the number of sam-

pling queries that have been issued. For example, Callan and

Connell [2001] suggested that sampling can stop after down-

loading 300–500 unique documents. Shokouhi et al. [2006a]

later showed that for larger collections, sampling more doc-

uments can significantly improve collection selection.

Callan and Connell [2001] reported that the initial query has mini-

mal impact on the quality of final samples. They proposed two major

sampling strategies for selecting the sampling queries; other resource

description (ord) and learned resource description (lrd). The former se-

lects the sampling (probe) queries from a reference dictionary, while the

latter selects them from the documents already sampled. Callan et al.

[1999] evaluated four strategies for choosing the probe queries (terms)

from the sampled documents (based on their document frequencies,

collection frequencies, average term frequencies, or randomly).

Overall, the ord method produces more representative samples.

However, it is not particularly efficient and often chooses many out

of vocabulary (OOV) terms that do not return any document from

the collection. Among the discussed strategies, using average term fre-

quency and random selection have been suggested to have the best

trade-off between efficiency and effectiveness.

Craswell [2000], and Shokouhi et al. [2007d] employed query-logs

for sampling, and showed that samples produced by log-based queries

can lead to better collection selection and search effectiveness.

Callan et al. [2000] investigated the effects of query-based sam-

pling on different collection selection algorithms. They compared

CORI [Callan et al., 1995], GlOSS [Gravano et al., 1994a], and

CVV [Yuwono and Lee, 1997]. It was observed that the performance

of GlOSS and CVV decreases dramatically when using incomplete rep-

resentation sets (sampled documents) while the performance of CORI

remained almost unchanged. Monroe et al. [2002] studied the effective-

ness of query-based sampling for sampling web collections and showed
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that QBS can produce effective representation sets.

Traditional query-based sampling has drawbacks. The sampling

queries are selected randomly and thus they may not always return

sufficient number of answers, which can make the sampling process in-

efficient. Furthermore, samples of 300–500 documents may not always

be sufficiently representative of the corresponding collections. Hence,

adaptive sampling techniques have been proposed to address these is-

sues.

Adaptive sampling. The idea of adaptive sampling was first applied

by Shokouhi et al. [2006a]. The authors adaptively chose the sample

size for each collection according to the rate of visiting new vocabulary

in sampled documents. Baillie et al. [2006a] suggested that sampling

should stop when the new sampled documents do not download a large

number of unvisited terms that are likely to appear in future queries.

They divided the sampling process into multiple iterations. At each

iteration, n new documents are added to the current samples. The

impact of adding new sampled documents for answering a group of

queries Q is estimated as:

φk = l(θ̂k, Q)− l(θ̂k−1, Q) = log

(
P (Q|θ̂k)

P (Q|θ̂k−1)

)
(2.1)

where the likelihood l(θ̂k, Q) of generating the terms of training queries

Q by the language model [Ponte and Croft, 1998] of a collection sample

θ̂ is calculated as below:

P (Q|θ̂k) =

n∏
i=1

m∏
j=1

P (t = qij |θ̂k) (2.2)

Here, t = qij is the jth term of the ith query in a representative query

log. P (t|θ̂k) is the probability of visiting the term t by picking a random

term from the language model (θ̂) of the sampled documents at the

kth iteration.3 The length of the longest training query and the size

3The general procedure of estimating language from a document or a collection of docu-
ments can be found elsewhere [Lafferty and Zhai, 2001; Ponte and Croft, 1998].
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of the query set are respectively specified by m and n. Sampling stops

when the value for φk becomes less than a pre-defined threshold. This

approach is reliant on a set of queries or corpus that is representative

of the future information needs of the users of the system.

Caverlee et al. [2006] investigated three stopping criteria for adap-

tive sampling of uncooperative collections:

• Proportional document ratio (PD): In this scenario, the num-

ber of documents sampled from each collection varies accord-

ing to the estimated collection sizes.4 In PD, the same pro-

portion of documents are sampled from each collection.
• Proportional vocabulary ratio (PV): In this approach, the

broker estimates the vocabulary size of each collection, and

downloads the same vocabulary proportion from each collec-

tion by sampling.
• Vocabulary growth (VG): The vocabulary growth technique

aims to download the highest number of distinct terms across

all collection representation sets. When there is a maximum

limit for the number of documents that can be downloaded

by the broker, VG downloads more documents from the col-

lections that return more new terms.

Caverlee et al. [2006] showed that PD and PV produce more rep-

resentative samples and can significantly improve the effectiveness of

collection selection. However, the authors only reported their results for

the CORI collection selection method [Callan et al., 1995]. The impact

of their suggested methodologies on the performance of more effective

collection selection techniques is unclear.

2.2.2 Improving incomplete samples

A few approaches have been suggested for improving the quality of col-

lection samples. Ipeirotis and Gravano [2002] proposed focused probing

based on the following principle: queries related to a topical category

4A summary of collection size estimation techniques is provided in Section 2.3.
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are likely to retrieve documents related to that category. Focused prob-

ing applies a trained rule-based document classifier such as RIPPER

[Cohen, 1996] for sampling. The probe queries for sampling are ex-

tracted from the classification rules. For example, if the classifier de-

fines (Basketball→Sport)—that is documents containing “basketball”

are related to sport—and then “basketball” is used as the query and

the returned documents are classified as sport-related. As sampling

continues, the probe queries are selected according to more specific

classification rules. This allows collections to be classified more accu-

rately according to the specificity and coverage of the documents they

return from each class. In addition, the generated samples are argued

to be more representative [Ipeirotis and Gravano, 2008] as they can

reflect the topicality of collections more effectively.

There are often many terms in collections that occur in only a few

documents, and thus these terms often do not appear in the samples

downloaded by query-based sampling or focused-probing. The Shrink-

age technique [Ipeirotis, 2004; Ipeirotis and Gravano, 2004] has been

proposed to solve this problem and to improve the comprehensiveness

of collection samples. The shrinkage method is based on the assump-

tion that topically related collections share the same terms. Collections

are first classified under a set of categories. The vocabulary statistics

of each sample are then extended using the samples of other collections

in the same category.

In Q-pilot [Sugiura and Etzioni, 2000] the description of each

search engine is created by combining the outputs of three methods;

front-page, back-link, and query-based sampling. The first method

extracts the terms available on the query interface of search engines,

while the second method generates a summary from the contents of

web pages that have links pointing to the search engine front page. A

similar strategy has been used by Lin and Chen [2002] to construct the

representation sets of hidden web search engines. In HARP [Hawking

and Thomas, 2005], the representation set of each collection consists of

the anchor-text [Craswell et al., 2001] of URLs available in a crawled

repository that are targeting that collection. Hedley et al. [2004a;b;c;d]

suggested a two-phrase sampling technique (2PS) to produce more

representative samples from the hidden web collections. The 2PS
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method is similar to traditional query-based sampling but differs in a

few aspects. In 2PS, the initial query is selected from the collection

search interface, while in query-based sampling the first query is a

frequently-used term or a term extracted from a dictionary. In addition,

2PS detects the templates of web pages and does not select HTML

markup terms from the templates for sampling. Instead, it uses the

terms that are selected from the text content of web pages. Such terms

are more likely to return representative documents from collections.

The size of collection summaries can cause efficiency problems on

brokers with space constraints. Lu and Callan [2002], and Shokouhi

et al. [2007d] proposed several pruning strategies for reducing the size of

collection summaries with minimal impact on final search effectiveness.

A more brief summary of the techniques described above has been

provided by Aksoy [2005].

2.3 Estimating the collection size

The size of a collection is used in many collection selection methods,

such as ReDDE [Si and Callan, 2003a], KL-Divergence [Si et al., 2002],

and UUM [Si and Callan, 2004b], as an important parameter for rank-

ing collections. In an uncooperative environment, information regarding

the size of collections is not usually available. Hence a broker must es-

timate the collection size. This section summarizes current techniques

for estimating the size of collections in uncooperative environments.

Capture-recapture. Using estimation as a way to identify a collec-

tion’s size was initially suggested by Liu et al. [2001], who introduced

the capture-recapture method for federated search. This approach is

based on the number of overlapping documents in two random samples

taken from a collection: assuming that the actual size of collection is N ,

if we sample a random documents from the collection and then sample

(after replacing these documents) b documents, the size of collection

can be estimated as N̂ = ab
c , where c is the number of documents com-

mon to both samples. However, Liu et al. [2001] did not discuss how

random samples can be obtained.
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Multiple Capture-recapture. The capture-recapture technique

originates from ecology, where a given number of animals is captured,

marked, and released. After a suitable time has elapsed, a second set is

captured; by inspecting the intersection of the two sets, the population

size can be estimated.

This method can be extended to a larger number of samples to give

multiple capture-recapture (MCR) [Shokouhi et al., 2006b]. Using T

samples of size k, the total number of pairwise duplicate documents D

should be:

D =

(
T

2

)
E(X) =

T (T − 1)

2
E(X) =

T (T − 1)k2

2N
(2.3)

Here, N is the size of population (collection). By gathering T random

samples from the collection and counting duplicates within each sample

pair, the expected size of collection is:

N̂ =
T (T − 1)k2

2D
(2.4)

Although the sample size (k) is fixed for all collections in the above

equations, Thomas [2008a] showed that this is not necessary, and MCR

can be generalised to use non-uniform sample size values for different

collections.

Schumacher-Eschmeyer method (Capture-history). Capture-

recapture is one of the oldest methods used in ecology for estimating

population size. An alternative, introduced by Schumacher and Es-

chmeyer [1943], uses T consecutive random samples with replacement,

and considers the capture history [Shokouhi et al., 2006b]. Here,

N̂ =

∑T
i=1KiMi

2∑T
i=1RiMi

(2.5)

where Ki is the total number of documents in sample i, Ri is the

number of documents in the sample i that were already marked, and

Mi is the number of marked documents gathered so far, prior to the

most recent sample. Capture-history has been shown to produce more
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accurate size estimates compared to MCR [Shokouhi et al., 2006b; Xu

et al., 2007].

Sample-resample. An alternative to the capture-recapture methods

is to use the distribution of terms in the sampled documents, as in the

sample-resample (SRS) method [Si and Callan, 2003a].

Assuming that QBS [Callan and Connell, 2001] produces good ran-

dom samples, the distribution of terms in the samples should be sim-

ilar to that in the original collection. For example, if the document

frequency of a particular term t in a sample of 300 documents is dt,

and the document frequency of the term in the collection is Dt, the

collection size can be estimated by SRS as N̂ = dtDt
300 .

This method involves analyzing the terms in the samples and then

using these terms as queries to the collection. The approach relies on

the assumption that the document frequency of the query terms will

be accurately reported by each search engine. Even when collections do

provide the document frequency, these statistics are not always reliable

[Anagnostopoulos et al., 2005].

Sample-resample and capture-recapture methods assume that docu-

ments downloaded by query-based sampling can be regarded as random

samples. However, Shokouhi et al. [2006b] showed that the assumption

of randomness in QBS is questionable.

Other size estimation methods. Capture-history and other

capture-recapture methods assume that all documents have the same

probability of being captured. Xu et al. [2007] argued that the proba-

bility of capture depends on other parameters such as document length

and PageRank [Brin and Page, 1998]. The authors proposed Heteroge-

neous capture (HC) that uses a logistic model to calculate the probabil-

ity of capture for each document, and can produce better estimations

compared to other capture-recapture methods. A similar idea was also

suggested by Lu [2008].

The work by Bharat and Broder [1998a] is perhaps the earliest study

published on estimating the size of text collections (web in their case)

by sampling. The authors tried to obtain random samples from search
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engines by submitting random queries and selecting random URLs from

the returned results. They used the overlap in samples to estimate the

size of the web, and the rate of overlap between the indexes of web

search engines.

Bar-Yossef and Gurevich [2006] proposed a Pool-based sampler that

uses rejection sampling to generate random samples from search en-

gines. To eliminate the search engine ranking bias, the authors reject

queries that underflow or overflow. That is, ignoring queries that return

too few or too many documents. As in Bharat and Broder [1998a], the

authors leveraged a pool of queries to sample documents from search

engines. However, instead of selecting the sampling queries uniformly

at random (as in Bharat and Broder [1998a]), the probe queries are

selected according to their cardinality. The cardinality of a query is de-

fined as the number of answers that it returns from the search engine.

Since the cardinality values may not be publicly available, the authors

first use uniform sampling and then apply Monte Carlo methods to

simulate sampling based on cardinality.

Bar-Yossef and Gurevich [2006] also presented a Random walk sam-

pler that performs a random walk on a document-query graph. Two

documents are connected in the graph if they both match at least one

common query. Given a document d, the next query q is selected from a

pool of documents that return d (overflowing and underflowing queries

are rejected). The next document is picked randomly from the set of

results returned for q. Both Pool-based and Random walk samplers are

shown to guarantee producing near-uniform samples, while the latter

has been found to be less efficient but more accurate [Thomas and

Hawking, 2007].

Proposed by Thomas and Hawking [2007], Multiple queries sam-

pler runs several queries with a large cutoff and then selects a random

sample from the union of all documents returned for probe queries.

The authors also compared the efficiency and accuracy of several size

estimation methods on a set of personal metasearch testbeds.

Other work for estimating the size of text collections via queries

includes [Bar-Yossef and Gurevich, 2007; Broder et al., 2006; Gulli and

Signorini, 2005; Henzinger et al., 2000; Karnatapu et al., 2004; Lu et al.,

2008; Lu and Li, 2009].
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2.4 Updating collection summaries

The contents of collections may change in different ways. For example,

documents can be added, deleted or updated within a collection. Out-

of-date results can have a negative impact on how the user perceives

the search engine. Therefore, search engines constantly update their

indexes by crawling fresh documents to reduce inconsistencies between

their index and web documents [Cho and Garcia-Molina, 2003].

One of the advantages of federated search compared to centralized

information retrieval is that the problem of fresh data is minimized.

The queries are submitted directly to collections that are assumed to

contain the latest version of documents. However, collection updates

must be reflected in the representation sets, otherwise, collection may

be selected based on their old data. Ipeirotis et al. [2005] showed how

the vocabulary of collection representation sets can become less repre-

sentative over time when it is not maintained through periodic updates.

Shokouhi et al. [2007a] showed that large collections require more fre-

quent updates.

2.5 Wrappers

An important but often ignored research topic in federated search liter-

ature is generating wrappers for collections. Wrappers are essential for

collection representation, as they define the interaction methods with

individual collections. There are at least three major issues in wrapper

generation: (1) collection detection, (2) collection connection and query

mapping, and (3) extracting records from search result pages.

Most existing federated search systems are given a set of collections

to search in a close domain. However, in an open domain such as the

web, collections with search engines may dynamically appear or dis-

appear. Therefore, it is an important task to automatically detect col-

lections with independent search interfaces. Cope et al. [2003] showed

how search engines interfaces can be identified based on their HTML

content. In particular, a decision tree algorithm is trained with a set

of features from HTML markup language and some human judgments,

which can be used to identify new collections with search engines. More
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recently, Barbosa and Freire [2007] utilized a hierarchical identification

method that generates accurate identification results by partitioning

the space of the features and choosing learning classifiers that best fit

in each partition.

Federated search systems need to establish connections with local

collections for passing user queries. Previous research mostly focuses on

full text search engines, which often utilize HTTP (HyperText Transfer

Protocol) for creating connections and receiving queries and sending

results. The search engines of different collections often use text search

boxes with different HTTP request methods such as GET or POST. It

is often not difficult to manually establish search connections with an

unstructured full text search engine (e.g., via http link) or use simple

rule-based methods.

Extracting result records from the answer page returned by a search

engine is relatively difficult due to the diversity in result presentation

styles. Some federated search systems such as FedLemur [Avrahami

et al., 2006] generate result templates and extract search results with

manually compiled rules. RoadRunner [Crescenzi et al., 2001] and EX-

ALG [Arasu and Garcia-Molina, 2003] treat webpages as individual

strings. RoadRunner generates a result template by comparing a cou-

ple of result pages, while EXALG analyzes a set of webpages. Omini

[Buttler et al., 2001] and MDR [Liu et al., 2003] treat webpages as

trees of HTML tags. They assume that result records are located in

data-rich sub-trees, where a separator (i.e., an HTML tag) is used to

segment the records. For example, the MDR approach identifies multi-

ple similar generalized nodes of a tag node and the generalized nodes

are further checked for extracting one or multiple data records. The

extension of the MDR and ViNTs [Zhao et al., 2005] approaches uti-

lize both HTML tag information and visual information to improve the

accuracy of identifying data records. Furthermore, the work in [Zhao

et al., 2007] automatically builds a search result template with differ-

ent fields such as title, snippet and URL from identified search results.

While most existing methods assume that results are presented in a

single section, Zhao et al. [2006] consider multiple sections in search re-

sults (e.g., clustered results). More recently, Liu et al. [2010] proposed
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a new vision-based approach for extracting data records that is not

specific to any web page programming language.

2.6 Evaluating representation sets

In uncooperative environments where collections do not publish their

index statistics, the knowledge of the broker about collections is usu-

ally limited to their sampled documents. Since downloaded samples

are incomplete, it is important to test whether they are sufficiently

representative of their original collections.

Collection representation sets usually consist of two types of infor-

mation: vocabulary and term-frequency statistics. Callan and Connell

[2001] proposed two separate metrics that measure the accuracy of col-

lection representation sets in terms of the vocabulary correspondence

and frequency correlations, as we now describe.

Measuring the vocabulary correspondence (ctf ratio). The

terms available in sampled documents can be considered as a subset

of all terms in the original collection. Therefore, the quality of samples

can be measured according to their coverage of the terms inside the

original collections. Callan and Connell [2001] defined the ctf ratio as

the proportion of the total terms in a collection that are covered by the

terms in its sampled documents. They used this metric for measuring

the quality of collection representation sets. For a given collection c,

and a set of sampled documents Sc, the ctf ratio can be computed as:∑
t∈Sc

ft,c∑
t∈c ft,c

(2.6)

where ft,c represents the frequency of term t in collection c. For exam-

ple, suppose that collection c includes only two documents. Now assume

that the first document only contains two occurrences of “computer”

and six occurrences of “science”; and the second document consists of

two terms: “neural” and “science” each occurring only once. In total,

there are three unique terms in collection c, and the cumulative collec-

tion frequency value is 10. If only the first document is sampled from

the collection, the proportion of the total terms that are present in the



2.6. Evaluating representation sets 27

sample is 9
10 or 90%. Therefore, the impact of downloading a frequent

term on the final ctf is greater than the impact of downloading another

term that is less frequent, although it may be more representative.

Spearman rank correlation coefficient (SRCC). Callan and

Connell [2001] suggested that the downloaded terms can be ranked

according to their document frequency values in both the samples and

the original collection. The correlation of these two rankings can be

computed using a statistical method such as the Spearman rank cor-

relation coefficient [Press et al., 1988]. The stronger the correlation

is, the more similar are the term distributions in the samples and the

original collection. In other words, samples whose terms have a strong

correlation with the original index are considered as representative.

SRCC measures the intersection in vocabulary between collection

and representation. Therefore, when new terms are added, this often

weakens the correlation, and decreases the stability of term rankings.

Baillie et al. [2006c;b] showed that SRCC is not always robust and

reliable because of this drawback.

df1. Monroe et al. [2000] suggested that the proportion of terms with

document frequency of one (df = 1) can be used for measuring the

completeness of samples. They also suggested that the rate of growth

of terms with df = 1 in the documents downloaded by query-based

sampling can be used to determine the termination point of sampling.

That is, downloaded documents are representative enough once the

number of df = 1 terms in two consequent samples becomes less than

a certain threshold.

Kullback-Leibler divergence (KL). Another approach for evalu-

ating the accuracy of collection representation sets is to compare their

language models with that of the original collections [Baillie et al.,

2006c;b; Ipeirotis and Gravano, 2004; Ipeirotis et al., 2005]. Therefore,

a KL-Divergence method [Kullback, 1959] can be used for comparing

the term distribution (language model) of a collection with that of its

sampled documents:
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KL(θ̂Sc |θ̂c) =
∑
t∈c

P (t|θ̂Sc) log
P (t|θ̂Sc)

P (t|θ̂c)
(2.7)

Here, θ̂Sc and θ̂c respectively represent the language models of sampled

documents and the original collection, and P (t|θ̂) is the probability of

visiting the term t, if it is randomly picked from a language model θ̂.

The KL values can range from 0 to infinity, where KL = 0 indicates

that the two language models are identical. Compared to the metrics

discussed previously, KL has been shown to be more stable and pre-

cise [Baillie et al., 2006c;b].

Topical KL. Baillie et al. [2009] proposed a topic-based measure for

evaluating the quality of collection representation sets (sampled doc-

uments). For each collection c, the authors utilized latent Dirichlet

allocation [Blei et al., 2003] techniques to estimate the set of k term

distributions that represent the major themes covered by the collec-

tion. For each generated topic T , the authors compared its term dis-

tribution θ̂T with the language model of collection θ̂c and its sampled

documents θ̂Sc . That is:

p(θ̂T |θ̂c) =
1

|c|
∑
d∈c

p(θ̂T |d) (2.8)

p(θ̂T |θ̂Sc) =
1

|Sc|
∑
d∈Sc

p(θ̂T |d) (2.9)

where, Sc is the set of sampled documents from collection c. In the final

stage, the topical KL divergence between the a collection and its sam-

pled documents is used as a measure of quality for the representation

set, and is computed as follows:

TopicalKL(θ̂c|θ̂Sc) =
∑

T∈K
p(θ̂T |θ̂c) log

p(θ̂T |θ̂c)
p(θ̂T |θ̂Sc)

(2.10)

Here, K denotes the set of topics (term distributions) generated by

LDA for collection c. In summary, Equation 2.10 measures the quality

of sampled documents in terms of covering the major themes (topics)

in the collection.
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Predictive likelihood (PL). Baillie et al. [2006a] argued that the

predictive likelihood [DeGroot, 2004] of user information needs can be

used as a metric for evaluating the quality of collection samples. The

PL value of sampled documents verifies how representative it is with

respect to the information needs of users. In contrast to the previ-

ous methods that measure the completeness of samples compared to

the original index, PL measures the quality of samples for answering

queries. Collection representation sets are compared against a set of

user queries. Representation sets that have high coverage of query-log

terms produce large PL values, and are more likely to satisfy user in-

formation needs by routing queries to suitable collections. For a query

log described as set of n queries Q = {qi,j : 1, ..., n; 1, ...,m}, where qi,j
represents the jth term in the ith query, the predictive likelihood of

the language model of a sample S can be computed as follows:

PL(Q|θ̂S) =
n∏

i=1

m∏
j=1

P (t = qi,j |θ̂S) (2.11)

where P (t = qi,j |θ̂S) is the probability of visiting the term t from the

query log Q in the language model of sample S.

Precision. The evaluation techniques described so far all measure

the representation quality in isolation of the core retrieval task. Alter-

natively, the quality of collection representation sets can be measured

by their impact on collection selection [Caverlee et al., 2006; Ipeirotis

and Gravano, 2008] or final downstream performance [Shokouhi et al.,

2006a; 2007d].

2.7 Summary

Collection representation sets are the main information source used by

the broker for collection selection and result merging. The degree of

comprehensiveness for collection representation sets often depends on

the level of cooperation between collections and the broker.

Early work in collection representation mainly focused on cooper-

ative environments, and utilized manually-generated metadata. The

STARTS [Gravano et al., 1997] protocol and its variants require each
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collection to provide the query language, ranking method, and impor-

tant corpus statistics. This type of solutions work well with full coop-

eration from available collections. However, they are not appropriate

for uncooperative environments.

Query-based sampling methods [Callan and Connell, 2001] have

been proposed to obtain information such as term frequency statis-

tics in uncooperative federated search environments. These methods

send probe queries to get sample documents from individual collections

in order to build approximated collection representation sets. Different

variants of query-based sampling techniques use different types of probe

queries and stopping criteria for generating the representation sets.

The sizes of available collections have been used in many collection

selection algorithms as an important feature for ranking collections.

Different techniques have been proposed to automatically estimate the

collection size in uncooperative environments. The majority of these

methods analyze a small number of sampled documents from collections

to estimate their size.

It is important to keep collection representations up to date in or-

der to make accurate selection decisions. Therefore, updating policies

should obtain reasonably accurate collection representation given lim-

ited communication and computing resources. We provided an overview

of prior research on updating policies for collection representation sets.

An important but often ignored issue in federated search is building

wrappers to automatically send queries and extract result records from

individual collections. It is often not difficult to identify the method of

sending queries for searching full text search engines. However, the task

of extracting result records is more complicated, and several methods

have been proposed to utilize features such as HTML tags and visual

contents to achieve this goal.

Several metrics have been proposed to evaluate the quality of collec-

tion representations. The ctf ratio [Callan and Connell, 2001] evaluates

vocabulary coverage by sampled documents. The SRCC metric [Callan

and Connell, 2001] measures the consistency of term rankings with re-

spect to document frequency in sampled documents and the original

collection. The KL divergence metric [Baillie et al., 2009; Ipeirotis and

Gravano, 2004; Ipeirotis et al., 2005] treats the distributions of terms
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(or topics) in the sampled documents and the original collection as two

probabilistic language models, and considers the the distance between

the language models as a sample quality measure. The PL technique

[Baillie et al., 2006b] takes a further step by measuring the quality of

sampled documents for answering user queries. Collection representa-

tion sets can be also evaluated according to their impact on collection

selection and final performance [Caverlee et al., 2006; Ipeirotis and

Gravano, 2008; Shokouhi et al., 2006a; 2007d].

In the next chapter, we discuss the previous work on collection

selection.



3

Collection selection

The first step after receiving a query in federated search is to select

suitable collections. Once a query is entered, the broker ranks collec-

tions and decides which collections to select and search (Figure 3.1).

Due to resource constraints such as bandwidth limits, it is usually not

feasible to search all collections. Therefore, the broker often selects

only a subset of available collections that are likely to return relevant

documents.

This chapter provides an overview of previous work in the area of

collection selection.

3.1 Lexicon-based collection selection

Early collection selection strategies treat collections as a big bag of

words and rank them according to their lexicon similarity with the

query [Baumgarten, 1997; 1999; Callan et al., 1995; de Kretser et al.,

1998; D’Souza and Thom, 1999; D’Souza et al., 2004a;b; Gravano, 1997;

Gravano et al., 1997; 1999; Yuwono and Lee, 1997; Xu and Callan, 1998;

Zobel, 1997]. In these techniques, the broker calculates the similarity

of the query with the representation sets by using the detailed lexicon

32
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Fig. 3.1 The collection selection process. The broker receives the user query and selects the

subset of available collections that it considers most likely to return relevant documents.

statistics of collections. In uncooperative environments where collec-

tions do not share their lexicon information, these statistics can be

approximated based on their sampled documents (See Chapter 2 for

an overview of sampling techniques).

GlOSS. The initial version of GlOSS [Gravano et al., 1994a]—also

known as bGlOSS—only supports Boolean queries. In bGlOSS, collec-

tions are ranked based on their estimated number of documents that

satisfy the query. The bGlOSS method was designed for cooperative en-

vironments and thus, the collection size values and term frequency in-

formation were assumed to be available for the broker. Overall, bGlOSS

estimates the number of documents containing all the m query terms

as: ∏m
j=1 ftj ,c

|c|m−1
(3.1)

Collections are ranked according to their estimated number of answers
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for the query. In the vector-space version of GlOSS (vGlOSS) [Gravano

et al., 1999], collections are sorted according to their goodness values,

defined as:

Goodness(q, l, c) =
∑

d∈Rank(q,l,c)

sim(q, d) (3.2)

where sim(q, d) is the Cosine similarity [Salton and McGill, 1986;

Salton et al., 1983] of the vectors for document d and query q. In

other words, the goodness value of a collection for a query is calculated

by summing the similarity values of the documents in the collection.

To avoid possible noise produced by low-similarity documents, vGlOSS

uses a similarity threshold l.

CORI. The CORI collection selection algorithm [Callan, 2000;

Callan et al., 1995] calculates belief scores of individual collections by

utilizing a Bayesian inference network model with an adapted Okapi

term frequency normalization formula [Robertson and Walker, 1994].

CORI is related to the INQUERY ad-hoc retrieval algorithm [Turtle,

1991; Turtle and Croft, 1990]. In CORI, the belief of the ith collection

associated with the word t, is calculated as:

T =
dft,i

dft,i + 50 + 150× cwi/avg cw
(3.3)

I =
log(Nc+0.5

cft
)

log(Nc + 1.0)
(3.4)

P (t|ci) = b+ (1− b)× T × I (3.5)

where dft,i is the number of documents in the ith collection that contain

t; cft is the number of collections that contain t; Nc is the total number

of available collections; cwi is the total number of words in the ith

collection, and avg cw is the average cw of all collections. Finally, b is

the default belief, which is usually set to 0.4. The belief P (Q|ci) is used

by the CORI algorithm to rank collections. The most common way to
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calculate the belief P (Q|ci) is to use the average value of the beliefs of

all query terms, while a set of more complex query operators are also

available for handling structured queries [Callan, 2000].

CVV. Cue-validity variance (CVV) was proposed by Yuwono and

Lee [1997] for collection selection as a part of the WISE index

server [Yuwono and Lee, 1996]. The CVV broker only stores the docu-

ment frequency information of collections, and defines the goodness of

a given collection c for an m-term query q as below:

Goodness(c, q) =

m∑
j=1

CVVj · dfj,c (3.6)

where dfj,c represents the document frequency of the jth query term

in collection c and CVVj is the variance of cue-validity (CVj) [Gold-

berg, 1995] of that term. CVc,j shows the degree that the jth term

in the query can distinguish collection c from other collections and is

computed as:

CVci,j =

dfj,ci
|ci|

dfj,ci
|ci| +

∑Nc
k 6=i dfj,ck∑Nc
k 6=i |ck|

(3.7)

Here, |ck| is the number of documents in collection ck and Nc is the

total number of collections. The variance of cue-validity CVVj can be

calculated as:

CV Vj =

∑Nc
i=1(CVci,j − CVj)

2

Nc
(3.8)

where CVj is the average CVci,j over all collections and is defined as

below:

CVj =

∑Nc
i=1CVci,j
Nc

(3.9)

Other lexicon-based methods. Several other lexicon-base col-

lection selection strategies have been proposed; Zobel [1997] tested
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four lexicon-based methods for collection selection. Overall, his Inner-

product ranking function was found to produce better results than the

other functions such as the Cosine formula [Baeza-Yates, 1992; Salton

and McGill, 1986]. CSams [Yu et al., 1999; 2002; Wu et al., 2001] uses

the global frequency, and maximum normalized weights of query terms

to compute the ranking scores of collections.

Si et al. [2002] proposed a collection selection method that builds

language models from the representation sets of available collections

and ranks collections by calculating the Kullback-Leibler divergence

between the query model and the collection models.

D’Souza and Thom [1999] proposed a n-term indexing method, in

which a subset of terms from each document is indexed by the broker.

For each document, a subset of terms should be provided by collections

to the broker. Thus, a high level of cooperation is needed. A comparison

between the lexicon-based methods of Zobel [1997], CORI [Callan et al.,

1995], and n-term indexing strategies has been presented by D’Souza

et al. [2004a], showing that the performance of collection selection

methods varies on different testbeds, and reporting that no approach

constantly produces the best results.

Baumgarten [1997; 1999] proposed a probabilistic model [Robert-

son, 1976; 1997] for ranking documents in federated search environ-

ments. Sogrine et al. [2005] combined a group of collection selection

methods such as CORI and CVV with a latent semantic indexing (LSI)

strategy [Deerwester et al., 1990]. In their approach, instead of the term

frequency information of query terms, elements of an LSI matrix are

used in collection selection equations.

Lexicon-based collection selection techniques are analogous to cen-

tralized IR models, but documents are now collections. In these ap-

proaches, the document boundaries within collections are removed,

which may potentially affect the overall performance of such models [Si

and Callan, 2003a].

3.2 Document-surrogate methods

Document-surrogate methods are typically designed for uncooperative

environments where the complete lexicon information of collections is
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not available. However, these techniques could be also applied in co-

operative environments. Document-surrogate methods do not rank col-

lections solely based on the computed similarities of queries and rep-

resentation sets, but they also use the ranking of sampled documents

for collection selection. This is a step away from treating collections as

large single documents or vocabulary distributions (as in lexicon-based

methods), and somewhat retains document boundaries.1

ReDDE. The relevant document distribution estimation (ReDDE)

collection selection algorithm [Si and Callan, 2003a] was designed to

select a small number of collections with the largest number of rele-

vant documents. To achieve this goal, ReDDE explicitly estimates the

distribution of relevant documents across all the collections and ranks

collections accordingly.

In particular, the number of documents relevant to a query q in a

collection c is estimated as follows:

R(c, q) =
∑
d∈c

P (R|d)P (d|c)|c| (3.10)

where |c| denotes the number of documents in collection c, and the

probability P (d|c) is the generation probability of a particular docu-

ment d in this collection. In uncooperative federated search environ-

ments, ReDDE can utilize different methods described in Chapter 2 to

obtain the size estimates. P (R|d) is the estimated probability of rele-

vance for document d. In uncooperative federated search environments,

it is not practical to access all individual documents in available collec-

tions. Therefore, ReDDE regards sampled documents as representative,

in which case Equation 3.10 can be approximated as:

R(c, q) ≈
∑
d∈Sc

P (R|d)
|c|
|Sc|

(3.11)

1Unless specified otherwise, we assume that collections and their representation sets only
contain text documents. In vertical search environments, it is common to have collections

with different media types, and some of the described techniques may not be applicable

without modification.
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where Sc is the set of sampled documents from collection c. The idea

behind this equation is that when one sampled document from a collec-

tion is relevant to a query, it is expected that there are about |c|/|Sc|
similar documents in the original collections that are also relevant.

P (R|d) represents the probability of relevance of an arbitrary sampled

document with respect to q. Calculating the probability of relevance

given a query-document pair is a fundamental problem in information

retrieval and despite various studies [Ponte and Croft, 1998; Lafferty

and Zhai, 2001], it is still an open problem. In ReDDE, the probability

of relevance of a document is approximated according to its position in

the ranked list of all sampled documents. For this purpose, the broker

in ReDDE creates an index of all sampled documents from all collec-

tions (CSI). For each query, the broker ranks all sampled documents,

and assumes that this ranking approximates the centralized ranking of

all documents indexed by all collections (CCI).

ReDDE considers a constant positive probability of relevance (α)

for the top-ranked documents in CCI. Formally, this can be represented

as below:

p(R|d) =

{
α if rCCI(d) < β

∑
i |ci|

0 Otherwise
(3.12)

Here, |ci| denotes the number of documents in collection ci, and β is

a percentage threshold, which separates relevant and irrelevant docu-

ments. While the optimal value of the threshold may vary from col-

lection to collection, the prior research [Si and Callan, 2003a] set it to

0.003 and obtained robust performance on several datasets. rCCI(d)

represents the position of document d in the centralized ranking of all

documents from all collections. In federated search environments, the

knowledge of the broker about the documents indexed by collections is

often very limited and hence, obtaining the CCI ranking may not be

practical. Therefore, the broker approximates the CCI ranking by run-

ning the query on a centralized index of all sampled documents (CSI),

as follows:
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rCCI(d) =
∑

dj :rCSI(dj)<rCSI(d)

|c|/|Sc| (3.13)

where, c represents the collection from which d is sampled, and |Sc| is

the number of sampled documents from that collection. Using Equa-

tions 3.12 and 3.13, the number of relevant documents in a collection

(R(c, q)) can be estimated. The ReDDE algorithm utilizes the esti-

mated distribution of relevant documents to rank all collections, and

to select a subset containing the largest number of relevant documents.

Goodness(c, q) =
R(c, q)∑
iR(ci, q)

(3.14)

ReDDE makes collection selection decisions by analyzing the top-

ranked sampled documents and estimating the distribution of relevant

documents in collections. Different variants of the ReDDE algorithms

have emerged, which weight top-ranked documents and estimate the

probability of relevance in different ways. We cover four of these vari-

ants (UUM [Si and Callan, 2004b], RUM [Si and Callan, 2005b], CRCS

[Shokouhi, 2007a] and SUSHI [Thomas and Shokouhi, 2009]) in more

details later in this section. Furthermore, similar algorithms have been

developed in the TREC Blog Track,2 where the task to is select a small

number of most relevant blogs for a user query. For instance, Elsas et al.

[2008], and Seo and Croft [2008] proposed blog selection algorithms in-

spired by the same principle to select blogs that contain the largest

number of relevant postings.

CRCS. As in ReDDE [Si and Callan, 2003a], the broker in the

centralized-rank collection selection method (CRCS) [Shokouhi, 2007a]

runs the query on a centralized index of all sampled documents (CSI),

and ranks collections accordingly. However, in contrast to ReDDE,

2The Text REtrieval Conference (TREC) is an international collaboration that pro-
vides large datasets to participants for large-scale evaluation of information re-

trieval systems. More information about the TREC datasets can be found at:

http://trec.nist.gov/data.html.
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CRCS considers different importance for sampled documents according

to their ranks. In CRCS, the impact of a sampled document d on the

weight of its original collection c is computed according to the position

of d in the CSI ranking. In the simplest form (CRCS-LIN), this can be

computed linearly as:

R(d) =

{
γ − rCSI(d) if rCSI(d) < γ

0 otherwise
(3.15)

where rCSI(d) represents the impact of document d at the jth position of

the results returned by the centralized index of all sampled documents.

Parameter γ specifies the number of top-ranked documents in CSI that

are considered as relevant, and was set to 50 by Shokouhi [2007a].

The impact of documents decreases linearly according to their ranks.

Shokouhi [2007a] also proposed CRCS-EXP, a variant in which the

importance of documents drops exponentially as follows:

R(d) = α exp(−β × rCSI(d)) (3.16)

Parameters α and β were suggested to be set to 1.2 and 0.28 re-

spectively [Thomas and Shokouhi, 2009]. The remaining is similar to

ReDDE; for a given query q, CRCS calculates the goodness (weight)

of each collection as:

Goodness(c, q) =
|ci|

|cmax| × |Sc|
×
∑
d∈Sc

rCSI(d) (3.17)

where, |c| is the—estimated—size of collection c. Shokouhi [2007a] nor-

malized the collection sizes by dividing the size of each collection by

the size of the largest collection involved (|cmax|). The number of doc-

uments sampled from collection c is represented by |Sc|. Overall, the

final score of each collection is calculated by summing up the impact

values for its sampled documents.

The exponential version of CRCS (CRCS-EXP) has been reported

to produce slightly better results compared to the linear form (CRCS-

LIN) [Shokouhi, 2007a; Thomas, 2008b].
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SUSHI. Most of the collection selection techniques described so far

assume fixed cutoff values. That is, the number of collections that are

selected for all queries is the same. Thomas and Shokouhi [2009] relaxed

this assumption in SUSHI. The authors fitted several curves to the score

distribution of sampled documents in order to verify the number of

collections that should be selected for a query. The authors showed that

SUSHI can achieve comparable performance to ReDDE and CRCS,

while selecting fewer collections.

UUM, RUM. The ReDDE algorithm follows a high-recall goal to

select a small number of collections with the largest number of relevant

documents. However, the high-recall goal may not be preferred in all

federated search applications. For example, for a federated document

retrieval application, the main goal might be high precision and max-

imizing the number of relevant documents in the top part of the final

merged ranked lists. The unified utility maximization framework (i.e.,

UUM) was proposed by Si and Callan [2004b] to adjust the goal of

collection selection to maximize the utility of different types of appli-

cations (e.g., high recall or high precision).

Compared to ReDDE, the unified utility maximization framework

provides a more formal method for estimating the probabilities of rele-

vance of documents in distributed collections with the cost of requiring

training information. UUM first builds a logistic transformation model

using a small number of training queries that maps the centralized doc-

ument scores from CSI to the corresponding probabilities of relevance.

In the second stage, UUM estimates the probabilities of relevance of

all (mostly unseen) documents in collections using the sampled docu-

ment scores and deploying the trained mapping function. Finally, based

on these probabilities, collections are ranked by solving different util-

ity maximization problems according to the high-precision goal or the

high-recall goal depending on the application.

Similar to all collection selection techniques described so far, UUM

makes a strong assumption that all the collections are using effective re-

trieval models. However, collections may be associated with ineffective

retrieval models in many real world applications (e.g., [Avrahami et al.,

2006]). Hence, ignoring the search engine effectiveness factor can seri-
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ously degrade the performance of collection selection in practice. The

returned utility maximization (i.e, RUM) method was proposed by Si

and Callan [2005b] to address this issue. The RUM method measures

the effectiveness of collection retrieval models by first sending a small

number of sample queries and retrieving their top-ranked documents.

RUM learns rank mapping models by investigating the consistency be-

tween the ranked lists of individual collections, and the corresponding

lists generated by an effective centralized retrieval algorithm on the

same set of documents. In the collection selection stage, collections are

ranked according to the number of relevant documents that they are

expected to return.

DTF. The decision-theoretic framework (DTF) [Fuhr, 1996; 1999a;b]

aims to minimize the typical costs of collection selection such as time

and cost, while maximizing the number of relevant documents retrieved.

As in UUM, the search effectiveness of collections can be learned by

using a set of training queries in advance.

DTF was initially suggested as a promising method for selecting

suitable collections. However the method had not been tested in fed-

erated search environments until Nottelmann and Fuhr [2003] showed

that the effectiveness of DTF can be competitive with that of CORI

for long queries. However, for short queries, DTF is usually worse than

CORI. DTF and CORI were later combined in a single framework [Not-

telmann and Fuhr, 2004a]. The hybrid model still produced poorer re-

sults than CORI for shorter queries, but competitive results for longer

queries.

DTF requires a large number of training queries, but has one of the

most solid theoretical models among available collection selection tech-

niques. It combines costs (monetary, network) along with relevance into

a decision-theoretic framework, and has been used in a few real-world

federated retrieval applications such as the MIND project [Berretti

et al., 2003; Nottelmann and Fuhr, 2004b;c].

The document-surrogate methods discussed in this section assume

that sampled documents from available collections are comparable

(e.g., through document retrieval scores). This assumption may be

problematic when collections contain information in different media
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(e.g., image or video). This was a key motivation for introducing more

sophisticated supervised techniques for collection selection that we will

cover in the next section.

3.3 Classification (or clustering)-based collection selection

The query clustering techniques often identify a set (or a cluster) of

most similar training queries with respect to a testing query, and model

the distribution of relevant documents by analyzing the information

learned from the training queries. Voorhees et al. [1995] proposed two

techniques for learning the number of documents that should be re-

trieved from each collection for a query. In their first approach for

modeling relevant document distribution (MRDD), the authors learn

the topical relevance of collections by sending them a number of train-

ing queries and analyzing the number of relevant documents returned

by each collection. In the testing phase, each query is compared to all

the queries in the training set. The set of k most similar training queries

(according to the vector space model [Salton and McGill, 1986]) are ex-

tracted and then used to predict the performance of each collection for

the test query.

In their second approach known as the query clustering (QC)

[Voorhees et al., 1995], training queries are clustered based on the num-

ber of common documents they return from collections. A centroid vec-

tor is generated for each cluster and the testing queries are compared

against all available centroid vectors. The final weight of each collection

is computed according to its performance on the past training queries

for the top-ranked clusters.

Similarly, Cetinta et al. [2009] learn from the performance of past

training queries to rank collections for unvisited queries. Each query is

compared against the set of all past queries. Collections are ranked ac-

cording to the weighted average of their performance for the most sim-

ilar past queries. The similarity value for each query pair is computed

with respect to a centralized index of sampled documents. Queries that

return similar ranked lists are regarded as similar. In addition, the per-

formance of collections for past queries is approximated according to

the positions of their documents in a centralized ranking of sampled
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documents. Hence, the suggested approach does not rely on relevance

judgements for training queries.

In a series of papers, Ipeirotis and Gravano [2002; 2004; 2008] pro-

posed a classification-aware technique for collection selection. The au-

thors assign collections to the branches of a hierarchical classification

tree according to the terms in their sampled documents. Each branch

represents a topical category and may be related to several collections.

The term statistics of collection representation sets are propagated to

generate the category summaries. For collection selection, the broker

compares the query against the category summaries, and sends the

query to the collections of the categories with the highest scores.

Collection selection can be regarded as a classification (or cluster-

ing) problem, in which the goal is to classify (cluster) collections that

should be selected for a query. Several techniques have been proposed

based on this analogy recently [Arguello et al., 2009b; Diaz and Ar-

guello, 2009]. Arguello et al. [2009b] proposed a classification-based

approach for vertical selection trained based on three types of features:

(1) query string features, (2) corpus features, and (3) query-log features.

They showed that their classification-based collection selection can out-

perform standard federated search baselines on an aggregated search

testbed with 18 verticals. A similar approach was taken for collection

selection over three simulated federated search testbeds [Arguello et al.,

2009a]. Diaz and Arguello [2009] showed how vertical selection can be

tuned in the presence of user feedback. The same authors explored do-

main adaptation techniques for improving classification-based vertical

selection in the presence of unlabeled data in a more recent work [Diaz

and Arguello, 2010].

While most existing collection selection algorithms (e.g., CORI,

ReDDE or other classification-based methods) focus on the evidence

of individual collections to determine the relevance of available collec-

tions, the work by Hong et al. [2010] considers a joint probabilistic

classification model that estimates the probabilities of relevance in a

joint manner by considering the relationship among collections.
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3.4 Overlap-aware collection selection

Management of duplication across collections can be done at either

or both of the collection selection and result merging stages. At the

collection selection stage, an overlap-aware algorithm can select a set

of collections that contain a large number of unique relevant documents.

For such an approach to be effective, the rate of overlap between the

underlying pairs of collections must be accurately estimated in advance;

small estimation errors may lead to the loss of many relevant documents

located in the ignored collections.

Hernandez and Kambhampati [2005] introduced COSCO for man-

agement of duplicates at selection time. The system estimates the

overlap between different bibliographic collections and avoids select-

ing pairs of servers that appear to have high overlap for a query. They

use CORI [Callan et al., 1995] as a benchmark and show that COSCO

finds more unique relevant documents for a given selected number of

collections.

Shokouhi and Zobel [2007] estimated the rate of overlap between

collections based on the intersection of their sampled documents. They

showed that the estimated values can be used to prevent ReDDE from

selecting collections with high overlap at the same time (F-ReDDE).

They also proposed Relax, an overlap-aware method that selects col-

lections that are expected to maximize the number of unique relevant

documents in the final results.

3.5 Other collection selection approaches.

Rasolofo et al. [2001] ranked collections according to the quality of

the top-ranked documents they return. The approach suggested by the

authors does not require collection representation sets. Instead, the

query is sent to all collections and the top-ranked documents returned

by collections are indexed by the broker. In the final step, the broker

computes the similarity of these documents to the query and ranks

collections accordingly.

Abbaci et al. [2002] proposed a collection selection method that can

be described in two steps. First, the query is passed to all collections.
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Then, using the approach suggested by Lawrence and Giles [1998], the

snippets of the top n answers returned by each collection are down-

loaded. In the second step, the broker measures the similarity of the

query with the top n downloaded documents. Collections whose corre-

sponding downloaded documents have the highest similarities with the

query are selected.

Similar to Si and Callan [2005b], Craswell et al. [2000] considered

the search effectiveness of collections for collection selection. In their ap-

proach, the broker sends a number of training multi-term probe queries

to collections. The top results from each collection are downloaded and

are gathered in a single index. The broker then applies an effective re-

trieval model to rank the downloaded documents for the initial training

queries. The search effectiveness of collections are computed according

to their contribution to the top n (they suggested n = 20) results when

the query is compared against the downloaded documents. Experiments

showed that adding the effectiveness factor to CORI can significantly

improve its final search precision. Estimating the search effectiveness of

online search engines has been also considered by Rasolofo et al. [2003].

They have used the approach suggested by Craswell et al. [2000] to ap-

proximate the effectiveness of a set of news search engines for their

metasearch experiments.

Larson [2002; 2003] introduced a logistic regression approach for

collection selection. His proposed method has been reported to be as

effective as CORI.

Xu and Croft [1999] suggested a collection selection technique based

on document clustering and language modeling. They used the k-means

clustering algorithm [Jain and Dubes, 1988] for clustering documents

based on their topics, and utilized the KL-Divergence equation [Laf-

ferty and Zhai, 2001] for comparing the queries with representation sets

and ranking collections. They showed that when collections are clus-

tered and generated based on their topicality, federated search systems

can outperform centralized indexes in terms of search effectiveness.

However, Larkey et al. [2000] showed that in heterogeneous environ-

ments, where collections are not clustered based on their topicality, the

performance of the suggested collection selection algorithm decreases
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and becomes worse than CORI. Similar observations have been re-

ported by Shen and Lee [2001]. The major difference between their

work and the approach reported by Xu and Croft [1999] is that Shen

and Lee [2001] used a form of TF-IDF for computing the text similar-

ities [Salton and McGill, 1986], while Xu and Croft [1999] utilized the

KL-Divergence instead. In addition, Xu and Croft [1999] divided the

global information into clustered collections, while Shen and Lee [2001]

clustered the content of each collection.

A two-stage language modeling approach is proposed by Yang and

Zhang [2005; 2006] for collection selection. First, collections are clus-

tered in a hierarchical structure. The query is then compared against

available clusters. Once the suitable clusters for a query are found, the

most relevant collections in those clusters are selected by a language

modeling technique.

King et al. [2006] proposed an ontology-based method for collection

selection. In their approach, queries are initially mapped to an ontology

tree. The queries are then expanded by the associated terms in the

ontology-based classification tree. The expanded queries are found to

be more effective than the original queries for collection selection.

In a series of papers [Meng et al., 2001; Yu et al., 1999; 2002; Wu

et al., 2001] a collection selection method has been proposed that ranks

collections according to the estimated global similarity of their most

similar documents.

Hawking and Thistlewaite [1999] suggested using lightweight probe

queries to rank collections. The broker sends a number of n-term probe

queries to each collection (n = 2 was suggested by the authors). Collec-

tions return small packets of term frequency information to the broker.

The broker then ranks collections according to the term frequency in-

formation provided in packets. Probe queries are picked from the query

terms according to their document frequency factors in a reference col-

lection. Once the promising collections are recognized—by comparing

the answers returned for the probe queries—the original query is passed

to the top-ranked collections.

Wu and Crestani [2002; 2003] proposed a multi-objective collection

selection strategy. Similar to the approach suggested by Fuhr [1999a],

they used a utility function that can be optimized according to dif-
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ferent factors such as document relevance, query time, query cost and

duplication among collections. However, Wu and Crestani [2002; 2003]

have not provided evaluation results for their method in terms of the

final search effectiveness.

Finally, Thomas and Hawking [2009] provided a comparative em-

pirical study of collection selection techniques for personal metasearch.

3.6 Evaluating collection selection

Metrics for evaluating collection selection methods are usually recall-

based. That is, collection selection techniques are compared according

to the number of relevant documents available in selected collections

[D’Souza et al., 2004b;a; Gravano et al., 1994b; Si and Callan, 2003a].

Binary precision-recall. Gravano et al. [1994b] assumed that any

collection with at least one matching document for a query q is a right

collection for that query. They defined Right(q) as the set of all collec-

tions that contain at least one matching answer for the query q. Assum-

ing that the number of matching documents in the k selected collections

is represented by δk, the precision and recall values for collection selec-

tion can be computed as in Equations 3.18 and 3.19 [Gravano et al.,

1994b; Gravano, 1997]:

Pk = Precision =
δk ∩ Right(q)

δk
if δk > 0 (3.18)

Rk = Recall =
δk ∩ Right(q)

Right(q)
if Right(q) > 0 (3.19)

Precision (Pk) is the proportion of selected collections that contain at

least one matching document, and recall (Rk) is the fraction of right

collections that are selected. These binary metrics may be suitable for

evaluating collection selection techniques in relational databases. How-

ever, for unstructured text retrieval, where Boolean matching is a poor

indicator of relevance, more sophisticated metrics are required. There-

fore, a modified version of Equation 3.19 was suggested [Gravano and

Garćıa-Molina, 1995; Gravano et al., 1999]. In this version, the optimal

baseline Right(q) consists of collections whose approximated goodness



3.6. Evaluating collection selection 49

values are higher than a pre-defined threshold. Further information

about how goodness values are approximated, can be found in Sec-

tion 3.1.

The recall metric for collection selection was later formalized in a

more general form [French and Powell, 2000; French et al., 2001; Powell

and French, 2003]:

Recall = Rk =

∑k
i=1 Ωi∑k
i=1Oi

(3.20)

where
∑k

i=1 Ωi and
∑k

i=1Oi are respectively the total number of rele-

vant documents available in the top k collections selected by a collection

selection method, and an optimal baseline. We describe current base-

lines for collection selection later in this section. Sogrine et al. [2005]

combined the precision Pk and recall Rk values in a single metric called

maxFk as:

maxFk = max
k

2
1
Rk

+ 1
Pk

(3.21)

The authors compared collection selection methods according to their

maxFk values for all possible values of k. They also compared the dis-

counted cumulative gain [Järvelin and Kekäläinen, 2000] of collection

selection rankings with an optimal baseline.

French and Powell [2000] introduced R̂k, a modified version of

Rk [Gravano et al., 1994a], in which only collections with non-zero

weights are considered. The modified recall metric is defined as:

R̂k =

∑k
i=1 Ωi∑k∗

i=1Oi

(3.22)

where k∗ is the number of collections with non-zero weights, and k is

the number of collections that are selected. In a similar methodology,

Zobel [1997] suggested the use of the number of relevant documents in

selected collections for comparing collection selection methods. Thomas

and Shokouhi [2009] showed that R̂k does not always correlate with

other metrics such as precision.
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Mean square error (MSE). Callan et al. [1995] measured the mean

square error (MSE) of collection selection methods against an optimal

baseline. For a given query q, the effectiveness of a collection selection

ranking Ω can be computed as follows:

1

Nc
.
∑
i∈C

(Oi − Ωi)
2 (3.23)

Here, Nc shows the total number of collections; while Ωi and Oi rep-

resent the positions of the ith collection respectively in the rankings

of a collection selection method and an optimal baseline. In the opti-

mal ranking—as will be discussed later in Section 3.6.1—collections are

ranked according to the number of relevant documents they contain.

Rankings with low MSE values are considered to be effective.

Spearman rank correlation coefficient (SRCC). The applica-

tion of SRCC for measuring the quality of collection samples was pre-

viously discussed in Section 2.6. A simplified version of the Spearman

rank correlation coefficient has been suggested for comparing the rank-

ings produced by collection selection methods with that of an optimal

baseline [French and Powell, 2000; French et al., 1999; Powell, 2001;

Powell and French, 2003]:

SRCC = 1−
6
∑Nc

i=1(Oi − Ωi)
2

Nc(Nc
2 − 1)

(3.24)

Here, Nc is the total number of collections, while Ωi and Oi are respec-

tively the positions of the ith collection in the rankings of a collection

selection technique, and a baseline method.

3.6.1 Collection selection baselines

Collection selection has a wide variety of baselines. French and Powell

[2000] suggested a random collection selection baseline for analyzing

the worst-case behavior of selection methods. The random selection

baseline has been also used by Craswell et al. [2000] as a worst-case

baseline for collection selection. Count-based ranking (CBR) [French
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and Powell, 2000] is a Boolean baseline that ranks collections accord-

ing to their numbers of matching answers for queries. Since containing

the query terms is not usually enough for a document to be relevant,

CBR does not necessarily rank collections according to their number

of relevant documents. Gravano and Garćıa-Molina [1995] defined an

ideal ranking baseline Ideal(l) for collection selection. In Ideal(l), first

the similarity values of a query q with documents in all collections

are computed. Collections are then ranked according to the number of

documents with similarity values greater than l, where l is a predefined

threshold. Ideal(l) has been also used as a baseline for collection selec-

tion [Gravano et al., 1999; French and Powell, 2000; French et al., 1998;

Yuwono and Lee, 1997].

Relevance-based ranking (RBR) is the most common baseline for

evaluating collection selection methods [Callan, 2000; D’Souza, 2005;

D’Souza et al., 2004a;b; Gravano et al., 1999; French and Powell, 2000;

French et al., 1998; Powell, 2001; Powell and French, 2003; Powell et al.,

2000; Si and Callan, 2003a; 2004b;a]. In RBR, collections are ranked

according to the number of relevant documents that they contain for

queries.

Zobel [1997] introduced a baseline that sorts collections according

to their number of highly ranked documents. For a given query, he

considered highly ranked documents as the top answers returned by a

centralized monolithic index of all collections.

Another common baseline for collection selection methods is the

ranking of collections according to the number of documents they con-

tain [D’Souza, 2005; D’Souza et al., 2004a;b; French et al., 1999; Powell,

2001; Powell and French, 2003; Zobel, 1997]. Compared to other collec-

tions, larger collections are more likely to contain relevant documents

due to their greater size. This is known as the size-based ranking (SBR).

The SBR baseline is query independent and does not take specific needs

of each query is into consideration.

3.7 Summary

The goal of collection selection techniques is to select a subset of collec-

tions that are more likely to return relevant documents. Early collection
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selection methods rank collections by calculating the lexical similar-

ity of a query with collection representation sets. Most lexicon-based

methods such as GlOSS [Gravano et al., 1994a] and CORI [Callan et al.,

1995] treat collection representation sets as bags of words. These meth-

ods ignore the document boundaries, which limits their performance

particularly in uncooperative environments. Document-surrogate col-

lection selection methods such as ReDDE [Si and Callan, 2003a] step

away from treating each collection as a single big document. Most of

these approaches create an index of all sampled documents from differ-

ent collections. They rank collections according to the ranking of their

sampled documents for the query. More recently, classification-based

collection selection methods have been proposed to directly estimate

the probabilities of relevance of collections for a user query based on

supervised learning.

Several metrics have been proposed for evaluating the performance

of collection selection methods. Most metrics are recall-oriented. That

is, they compare the performance of any collection selection algorithm

with that of an oracle baseline that ranks collections according to their

number of relevant documents.

We provide an overview of result merging techniques in the next

chapter.



4

Result merging

The last step in a typical federated search session is result merging (Fig-

ure 4.1). In result merging, the broker receives the top-ranked answers

of selected collections and orders them in a single list for presentation

to the user.

This chapter describes the previous work on result merging and

briefly covers some of the related areas such as data fusion and

metasearch merging.

4.1 Federated search merging

In a federated search environment, collections may use different re-

trieval models and have different ranking features. Thus, the document

scores or ranks returned by multiple collections are not directly com-

parable and are not reliable for merging. The goal of result merging

algorithms is to calculate a global score for each document that is com-

parable to the scores of documents returned by other collections.

53
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 Broker

Collection results

Merged results

User

Collections

Fig. 4.1 The result merging process; selected collections return their top-ranked answers to

the broker. The broker then merges those documents and returns them to the user.

4.2 Terminology

Federated search merging, metasearch merging (collection fusion), and

data fusion are similar but not identical concepts.

In federated search merging, the top-ranked results returned for the

query by different collections are blended into a single list. Most feder-

ated search merging techniques assume that the rate of overlap among

collections is either none or negligible.

In data fusion, the query is sent to a single collection but is ranked

by multiple retrieval models. The rankings generated by different re-

trieval models are then merged to produce the final result list [Aslam

and Montague, 2001; Aslam et al., 2003; Croft, 2000; Fox and Shaw,

1993; Lee, 1997; Lillis et al., 2006; Ng, 1998; Oztekin et al., 2002; Wu

and McClean, 2006; Vogt and Cottrell, 1999; Vogt, 1999].

Metasearch and federated search have been often used interchange-

ably. However, we only use metasearch when referring to metasearch

engines described in Section 1.2.3.

This chapter summarizes the previous work on federated search
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merging. We also provide a brief overview of data fusion and metasearch

techniques.

4.3 Federated search merging

The main task in result merging is to compute comparable scores for

documents returned by different collections. When available, the doc-

ument scores reported by collections can be used by the broker to

compute the merging scores. In environments where document scores

are not reported by collections, merging methods assign pseudoscores

to the returned answers. For example, when 1,000 documents are re-

turned from a collection, the scores of the first-ranked document is set

to 1, the next is set to 0.999, and so on [Rasolofo et al., 2003; Si and

Callan, 2003b].

CORI merging. The CORI result merging formula [Callan, 2000;

Callan et al., 1995] is a linear combination of the collection selection

scores and the document scores returned by collections. CORI uses

a simple heuristic formula to normalize collection-specific document

scores. First, associated with the CORI collection selection algorithm,

the collection scores are normalized as:

C ′ =
C − Cmin

Cmax − Cmin
(4.1)

where, C is the collection selection score of collection c, computed by

the CORI collection selection algorithm [Callan et al., 1995; Callan,

2000] (more detailed information of CORI collection selection can be

found in Section 3.1). C ′ denotes the normalized score of C ranging

between [0, 1]. Cmin and Cmax are calculated by setting the T compo-

nent in Equation 3.5 to 0 and 1 respectively. The collection-specific

document scores are normalized in a similar manner.

For a document returned with score D from a collection with nor-

malized collection selection score of C ′, CORI computes the final merg-

ing score as:
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D′ =
D + 0.4×D × C ′

1.4
(4.2)

CORI merging formula uses heuristic weighting schemes such as

weight 1 for normalized document score and weight 0.4 for normal-

ized collection selection score in Equation 4.2. The heuristic weighting

scheme strongly limits the performance of CORI merging as it may not

adapt to different types of queries and collections.

SSL. Si and Callan [2002; 2003b] proposed a semi-supervised learning

(SSL) method for result merging. SSL trains a regression model for

each collection that maps document scores into their global (merging)

scores. For this purpose, SSL creates a central index of all sampled

documents downloaded from collections (CSI). For a given query, some

of the documents that are returned from the collections may already be

available in the central sample index. SSL runs the query against CSI

and compares the centralized scores of such overlap sampled documents

with the scores (or pseudoscores) reported by collections to compute

the merging scores.

When collections use an identical retrieval model, SSL can use all

overlap documents to train a single model that converts the collection-

specific scores into global scores. In such a scenario for the jth over-

lap document di,j returned from a selected collection ci, SSL uses two

scores: the score reported by the original collection (Di,j) and the score

computed using CSI (Ei,j).
D1,1 C1D1,1

D1,2 C1D1,2

. . . . . . . . .

Dn,m CnDn,m

× [a b] =


E1,1

E1,2

. . .

En,m

 (4.3)

Using the Di,j and Ei,j values of the overlap documents, SSL trains a

single regression model as:

D′i,j = a× Ei,j + b× Ei,j × Ci (4.4)

where Ci is the selection score of collection ci that has returned docu-

ment di,j . The combining parameters a and b can be estimated using
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a sufficient number of overlap documents. Si and Callan [2003b] sug-

gested that at least three overlap documents are required for training

the SSL models.

When the retrieval models used in collections are not identical, SSL

cannot train a single model that converts the outputs of all collections

into global scores. The scores returned by collections may have differ-

ent ranges. For example, KL-Divergence language modeling [Lafferty

and Zhai, 2001] produces negative weights (likelihood values), while

INQUERY [Callan et al., 1992; Allan et al., 2000] produces positive

weights between zero and one (probabilities of relevance). Therefore,

for each collection a separate model is trained that maps the scores

returned from different collections to global values. That is,

D′i,j = ai × Ei,j + bi (4.5)

For a given document di,j from collection ci, D
′
i,j is the estimated

global score and Ei,j is the score of di,j reported by collection ci. The

values for ai and bi can be obtained by training a regression matrix for

each collection as follows:
D1,1 1

D1,2 1

. . . 1

Dn,m 1

× [ai bi] =


E1,1

E1,2

. . .

En,m

 (4.6)

Since a separate model is trained for each collection according to

its returned answers, the likelihood of visiting an overlap document in

the downloaded samples (training data) is lower than under the SSL

single-model. Therefore, the broker may need to receive longer result

lists from collections or download some documents on the fly [Si and

Callan, 2003b].

SAFE. SAFE (sample-agglomerate fitting estimate) [Shokouhi and

Zobel, 2009] is designed to work with minimum cooperation between

the broker and collections. SAFE uses the scores of all documents in

agglomeration of all the collection samples, and generates a statistical

fit to estimate scores. SAFE does not rely on the presence of overlap
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documents and is based on the following principle: For a given query,

the results of the sampled documents is a subranking of the original

collection, so curve fitting to the subranking can be used to estimate

the original scores.

Similar to SSL, SAFE also utilizes a centralized index of sampled

documents from all collections to calculate the merging scores. SAFE

merging can be summarized in two steps: First, the broker ranks the

documents available in the centralized sample index (CSI) for the query.

Second, for each collection, the sampled documents that received non-

zero scores in the first step are used to estimate the merging scores.

SAFE employs collection size estimations (see Section 2.3) to adjust

the scores of sampled documents. Each sampled document is assumed

to be representative for |c|/|Sc| documents in the collection, where |Sc|
and |c| respectively denote the number of documents in the sample, and

collection. That is, the sampled documents are assumed to be uniformly

selected from the collection. Although previous studies suggested that

the documents downloaded by query-based sampling are not uniformly

sampled [Bar-Yossef and Gurevich, 2006; Bharat and Broder, 1998b;

Garcia et al., 2004; Shokouhi et al., 2006b; Thomas and Hawking, 2007],

Shokouhi and Zobel [2009] empirically suggested that the performance

of SAFE is not significantly affected by that assumption.

In the final step, SAFE uses the regression techniques [Gross, 2003]

to fit a curve to the adjusted scores, and to predict the scores of the

top-ranked—unseen—documents returned by each collection. Since the

estimated scores for all documents are computed with reference to the

same corpus (CSI), they are comparable across different collections.

In contrast to SSL, SAFE does not rely on overlap documents be-

tween CSI and the results returned by collection. Therefore, it is suit-

able for environments in which downloading documents on the fly is

restricted.

4.4 Multilingual result merging

Most existing federated search research methods focus on the envi-

ronments where all documents in collections are in the same language.

However, in some federated search applications collections may contain
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documents in different languages (e.g. patent databases). Therefore, it

is important to extend monolingual result merging techniques for mul-

tilingual environments.

The majority of previous work on merging multilingual ranked lists

have been conducted in the Cross-Language Evaluation Form (CLEF).1

The problem of merging multilingual ranked lists is similar to feder-

ated search result merging. Simple score normalization methods are

not effective, and some methods download all retrieved documents and

translate the documents into a single language for ranking.

Si et al. proposed an approach similar to SSL for merging multilin-

gual result lists [Si and Callan, 2005a; Si et al., 2008]. Their method

downloads a subset of top-ranked documents from each ranked list

and utilizes a multilingual centralized retrieval algorithm for calculat-

ing comparable scores for the small set of downloaded documents. The

multilingual centralized retrieval method in their approach performs

both query translation and document translation for computing com-

parable merging scores. The query translation method converts queries

into different languages and applies monolingual retrieval methods to

documents in individual languages. The document translation method

is complementary to query translation method and translates all the

documents into a single language (e.g., English). The final compara-

ble document scores are obtained by combining scores from the query

translation and the document translation methods.

The standard SSL method uses a linear regression model to map

scores from individual collections to global scores. The multilingual

result merging approach [Si and Callan, 2005a; Si et al., 2008] was

tested with both logistic regression and linear regression models, and

the logistic model was found to produce more robust results.

4.5 Merge-time duplicate management for federated search

Management of within-collection redundancy has been a subject of ac-

tive research, with a range of techniques having been proposed [Bern-

stein and Zobel, 2004; Brin et al., 1995; Broder et al., 1997; Fetterly

1 http://www.clef-campaign.org/, accessed 17 Aug 2010.
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et al., 2003; Manber, 1994]. However, management of redundancy be-

tween collections as in the case of federated search is subject to ad-

ditional constraints. In particular, since collections are not centrally

managed, it may not be practical to use a pre-processing approach to

redundancy management; rather, it must occur at query time based

on additional document information transmitted to the broker. Thus,

management of near-duplicate documents is highly sensitive to both

time (because it must be done on the fly) and bandwidth.

ProFusion [Gauch et al., 1996b], MetaCrawler [Selberg and Etzioni,

1997b], and Grouper [Zamir and Etzioni, 1999] attempt to eliminate

duplicate documents from the final results, by aggregating results that

point to the same location according to their URLs. However, the elim-

ination of near-duplicate documents has not been addressed by these

techniques.

Bernstein et al. [2006] proposed using the grainy hash vector (GHV)

for detecting duplicate and near-duplicate documents during merging.

GHV is a derivation of the minimal-chunk sampling techniques [Fet-

terly et al., 2003], that operate by parsing documents into strings of

contiguous text, known as chunks, and comparing the number of iden-

tical chunks shared by a pair of documents.

Shokouhi et al. [2007b] tested GHV on three federated search

testbeds with overlapped collections, and showed that GHV can be

effectively used for detecting and removing duplicate documents from

the merged results. In uncooperative environments where GHV vectors

may not be provided, other duplicate management techniques may be

used instead (See Section 3.4).

4.6 Other papers on result merging

In the STARTS protocol [Gravano et al., 1997], collections return

the term frequency, document frequency, term weight, and document

weight information of each returned answer to the broker. Kirsch [2003]

suggested that each collection return the term frequencies, document

frequencies, and the total number of indexed documents to the broker.

In such methods, documents are merged according to their calculated

similarities based on the statistics received by the broker.
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As in CORI result merging, Rasolofo et al. [2001] calculated the final

score of a document by multiplying the document weight and collection

score parameters. In their approach, document scores are reported by

collections, and collection scores are calculated according to the number

of documents that are returned by each collection for queries. This is

based on the assumption that collections returning a greater number

of results for a query are more likely to contain relevant documents.

The same approach has been used by Abbaci et al. [2002] for merging.

CVV merging [Yuwono and Lee, 1997], calculates the merging scores

according to the goodness values of collections, and the positions of

documents in collection ranked lists. The authors assume that the dif-

ference in relevance scores between two consecutive documents in the

ranked list returned by a collection is inversely proportional to the

normalized goodness value of that collection.

Craswell et al. [1999] partially downloaded the top returned docu-

ments (say the first 4 KB of each document) and used a reference index

of term statistics for reranking and merging the downloaded documents.

They showed that the effectiveness of their approach is comparable to

that of a merging scenario where documents are downloaded completely

and the actual term statistics are used.

Xu and Croft [1999] utilized a version of INQUERY [Allan et al.,

2000; Callan et al., 1992] that uses the global inverse document fre-

quency values to calculate the final score of documents for merging.

The basic requirement for this approach, is that collections provide the

broker with the document frequency information of their terms.

Wang and DeWitt [2004] used the PageRank [Brin and Page, 1998]

of returned documents for merging. In their approach, the final PageR-

ank of a page d returned by a selected collection c is computed according

to the estimated ServerRank of c and the computed LocalRank of d in-

side c. For calculating the rank values for d and c, the link information

of all pages in collections is required.

Shou and Sanderson [2002] proposed two result merging methods

without downloading the full-text information of returned documents.

The first method re-ranks merged results by using a centralized search

engine on text fragments (e.g., titles and snippets) returned from in-
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dividual collections. The second method examines how similar a re-

turned document is to other returned documents. In particular, re-

turned text fragments have been used for calculating similarity scores

and returned documents are finally fused into a single ranking by the

similarity scores.

Voorhees et al. [1995] suggested two collection fusion methods based

on previous training data, where their goal was to determine the num-

ber of documents that have to be fetched from selected collections. In

their first approach, the number of relevant documents returned by

each collection for the training queries is investigated; The similarities

of testing queries with the previous queries are measured, and the k

most similar training queries are selected to compute the average prob-

abilities of relevance for different collections. The number of documents

fetched from each collection for merging varies according to their prob-

abilities of relevance.

In their second approach, Voorhees et al. [1995] clustered the train-

ing queries based on the number of common documents they return

from collections. A centroid vector is calculated for each cluster and

the testing queries are compared with all available centroid vectors.

For a given query, the weights of collections are computed according to

their performance for previous training queries in the same cluster. The

number of documents that are fetched from collections is proportional

to their weights.

In aggregated search environments with different data types, result

merging is relatively more challenging and less explored. The merg-

ing score computed for a document of a given type (say video), not

only should be comparable to the scores of other documents with the

same type, but also to the scores of documents with other types (e.g.

image). Click-through rate has been suggested and used as a suitable

measure for this task [Diaz, 2009; König et al., 2009]. However, due

to various sources of presentation bias the focus has been mostly de-

voted on blending vertical results at fixed positions. In a recent study,

Shushmita et al. [2010] have investigated the impact of presenting the

vertical results at different positions on the page.
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4.6.1 Data fusion and metasearch merging

In data fusion, documents in a single collection are ranked accord-

ing to different ranking functions or features. Therefore, metasearch

engines can be regarded as data fusion systems where the collection

being ranked contains the entire web.2

Several algorithms have been used commonly in both areas. The

simplest merging algorithm is the round-robin strategy [Savoy et al.,

1996]. In round-robin, it is assumed that collections have similar search

effectiveness with similar numbers of relevant documents. The results

returned by multiple collections (or retrieval models) are merged ac-

cording to their ranks. That is, the top-ranked documents of all collec-

tions are merged first, followed by the second-ranked documents and

so forth.

When a document is returned by more than one collection, several

combination methods, including CombMNZ, CombSum, CombMax,

and CombMin, have been proposed for calculating the final scores [Fox

and Shaw, 1993; 1994]. In CombMax, the maximum score reported

for a duplicate document is used as its final score for merging. Comb-

Min uses the minimum score of a duplicate document for merging.

CombSum adds all the reported scores for a duplicate document, while

CombMNZ adds all the reported scores and then multiplies the total

sum by the number of collections that have returned that document.

In most of these methods, therefore, documents that are returned by

multiple collections are ranked higher than the other documents. These

methods have been used widely in both data fusion and collection fu-

sion (metasearch merging) experiments and thus we do not classify

them specifically under any of these categories.

Data fusion. In data fusion methods, documents in a single collec-

tion are ranked with different search systems. The goal in data fusion

is to generate a single accurate ranking list from the ranking lists of

different retrieval models. There are no collection representation sets

and no collection selection.

2Note that this is a strong assumption given that the documents indexed by one engine
might be missed by another.
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Data fusion methods are based on a voting principle, where, for

a given query, a document returned by many search systems should

be ranked higher than the other documents. In addition, data fusion

strategies should take the rank of documents into account. A document

that has been returned on top of three ranking lists is intuitively more

likely to be relevant than a document that has appeared at low positions

in four ranking lists.

Aslam and Montague [2001] divided data fusion methods into four

categories according to their training and scoring functions (train-

ing versus no training, and relevance scores versus ranks only). They

showed that, when training data is available, the effectiveness of data

fusion methods using only ranks can be comparable to those that use

document scores reported by the individual systems.

A comparison between score-based and rank-based methods is pro-

vided by Renda and Straccia [2002; 2003] suggesting that rank-based

methods are generally less effective. Lillis et al. [2006] divided each

ranking into segments with different scores. The final score of a docu-

ment is calculated according to its rank and segment number. Shokouhi

[2007b] and Lillis et al. [2008] suggested different ranked list segmen-

tation strategies for more effective fusion.

Metasearch merging. In metasearch merging, the results returned

by multiple search engines—with overlapping indexes—are combined

in a single ranked list.

The D-WISE system [Yuwono and Lee, 1996] uses the ranks of re-

trieved documents for merging. The Inquirus system [Glover et al.,

1999; Lawrence and Giles, 1998] computes the merging scores after the

full contents of the retrieved results are fetched. A similar approach

has been suggested by Yu et al. [1999].

Rasolofo et al. [2003] described a metasearch merging method for

combining the results returned from multiple news search engines. They

suggested that the title, date, and summary of the results returned by

search engines can be used effectively for merging. Snippet information

is also used by the Mearf metasearch engine [Oztekin et al., 2002], Lu

et al. [2005] and Tsikrika and Lalmas [2001] for merging the results

returned by different sources.
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Glover and Lawrence [2001] proposed a method for calculating the

confidence values of relevance predictions for the returned snippets.

When the returned snippets are found to be not sufficiently informa-

tive, additional information such as link statistics or the contents of

documents are used for merging. Savoy et al. [1996] and Calvé and

Savoy [2000] applied logistic regression [Hosmer and Lemeshow, 1989]

to convert the ranks of documents returned by search engines into

probabilities of relevance. Documents are then merged according to

their estimated probabilities of relevance.

In shadow document methods for result merging [Wu and Crestani,

2004], the document scores returned by multiple search engines are

normalized by a regression function that compares the scores of over-

lapped documents between the returned ranked lists. In the Savvy-

Search metasearch engine [Dreilinger and Howe, 1997], document scores

returned by each search engine are normalized into a value between zero

and one. The normalized scores of overlapped documents are summed

for computing the final score.

In metasearch merging, voting plays an important role for calculat-

ing the final rank of a document. Documents that are returned by many

search engines are likely to rank highly in the final merged list. In the

absence of overlap between the results, most metasearch merging tech-

niques become ineffective. For example, methods such as CombMNZ

and CombSum [Fox and Shaw, 1993; 1994; Lee, 1997] that are used in

metasearch engines such as SavvySearch [Dreilinger and Howe, 1997]

degrade to a simple round-robin approach [Savoy et al., 1996].

4.7 Evaluating result merging

Result merging techniques are usually compared according to the num-

ber of relevant documents in the final merged results [Callan, 2000;

Callan et al., 1995; Chakravarthy and Haase, 1995; Craswell et al.,

1999; Rasolofo et al., 2001; 2003; Si and Callan, 2003b].

Counting correct matches. Chakravarthy and Haase [1995] used

the total number of queries that return at least one relevant answer in

the top n results for comparing result merging methods.
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Precision. Precision is the most commonly used metric for evaluat-

ing the effectiveness of federated search merging. It has been used in dif-

ferent forms such as mean average precision [Craswell et al., 1999; Ra-

solofo et al., 2001; 2003], and precision at different cutoff ranks (P@n)

[Callan, 2000; Callan et al., 1995; Rasolofo et al., 2003; Si and Callan,

2003b].

The application of precision for evaluating federated search systems

is not only limited to the result merging stage. Collection selection

and representation methods can be also evaluated according to their

impact on precision. The precision-oriented methods discussed in this

section have been also used for evaluating the performance of collection

selection and collection representation methods [Callan, 2000; Craswell

et al., 2000; Nottelmann and Fuhr, 2003; 2004a; Hawking and Thomas,

2005; Rasolofo et al., 2001; Ogilvie and Callan, 2001; Si and Callan,

2003a; 2004b;a; 2005b; Xu and Callan, 1998; Xu and Croft, 1999].

Result merging (search effectiveness) baselines. Federated

search techniques, particularly in uncooperative environments, cannot

access the complete term statistics of collections. Therefore, an effec-

tive centralized search engine that has indexed all available documents

in collections (using complete term statistics) is often used as an oracle

baseline for federated search systems [Craswell, 2000; Craswell et al.,

2000; Lu and Callan, 2002; 2003b; Ogilvie and Callan, 2001; Towell

et al., 1995; Voorhees and Tong, 1997; Voorhees et al., 1995; Xu and

Callan, 1998; Xu and Croft, 1999]. Hawking and Thistlewaite [1999]

referred to the rankings of documents returned by the oracle index as

correct merging. They also defined perfect merging as an unrealistic

ranked list that contains all relevant documents before all irrelevant

documents.

In the majority of published related work, the effectiveness of the

oracle centralized baseline has been reported to be higher than that

of federated search alternatives. However, there are some exceptional

cases in which federated search systems have been reported to out-

perform centralized baselines. For example, Xu and Croft [1999] sug-

gested that, if documents are partitioned into homogeneous collections

by clustering and individual collections use the same retrieval mod-
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els with identical lexicon statistics, then federated search methods can

produce better precision values compared to the centralized baselines.

Similarly, Craswell et al. [2000] suggested that merging the results from

a few collections that contain the highest number of relevant documents

for a query, can be more effective than running the query on the oracle

centralized index. However, finding collections with the highest number

of relevant documents is still an open question.

4.8 Summary

The goal of result merging in federated search is to combine the ranking

lists from multiple collections into a single list. This is a challenging

task due to differences in retrieval models and lexicon statistics of indi-

vidual collections that make the document scores reported by different

collections less comparable. Result merging algorithms try to map the

scores/pseudoscores from collections into comparable scores for merg-

ing.

Result merging algorithms can rely on the document scores and

other important information reported by collections to merge the re-

sults. For example, the CORI algorithm [Callan, 2000; Callan et al.,

1995] calculates the normalized document scores with the cooperation

of individual collections. SSL [Si and Callan, 2002; 2003b] utilizes re-

gression techniques to build models that transform scores from indi-

vidual collections to comparable scores. The SAFE merging method

[Shokouhi and Zobel, 2009] goes a step further by relaxing the require-

ments of overlapped documents in the SSL algorithm.

Result merging in federated search is closely related to the areas of

data fusion and metasearch merging. The majority of data fusion and

metasearch merging techniques favor documents that are returned by

multiple retrieval models or collections.

Federated search merging methods have been often evaluated by

precision-oriented techniques. Furthermore, the centralized retrieval re-

sults of all available documents in collections have been commonly con-

sidered as an oracle baseline for merging algorithms.

In the next chapter, we describe the commonly used federated search

testbeds.
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Federated search testbeds

The relative effectiveness of federated search methods tends to vary be-

tween different testbeds [D’Souza et al., 2004b; Si and Callan, 2003a].

Therefore, it is important to describe detailed information of experi-

mental testbeds for reliable analysis of current federated search tech-

niques. This section is devoted to the discussion of testbeds that have

been proposed for federated search experiments.

In typical federated search testbeds, collections are disjoint and do

not overlap. The descriptions of a few commonly used testbeds are

provided below:

SYM236 & UDC236. SYM236 [French et al., 1998; 1999; Powell,

2001; Powell and French, 2003] includes 236 collections of varying sizes,

and is generated from documents on TREC disks 1–4 [Harman, 1994;

1995]. UDC236 [French et al., 1999; Powell and French, 2003], also

contains 236 collections, and is generated from the same set of docu-

ments (i.e., TREC disks 1–4). The difference is only in the method-

ology used for assigning documents to collections. In UDC236, each

collection contains almost the same number of documents; in SYM236,

documents are distributed between collections according to their pub-
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lication date, generating collections with different sizes.1 SYM236 and

UDC236 are both created from 691,058 documents—an average of 2,928

documents per collection—which is significantly smaller than many fed-

erated search testbeds developed more recently. Therefore, they are no

longer suitable for simulating large-scale federated search environments

with today’s standards. More details about the attributes of SYM236

and UDC236 can be found elsewhere [D’Souza, 2005; Powell, 2001;

Powell and French, 2003].

trec123-100col-bysource (uniform). Documents on TREC

disks 1, 2, and 3 [Harman, 1994] are assigned to 100 collections

by publication source and date [Callan, 2000; Powell and French,

2003; Si and Callan, 2003a;b]. The TREC topics 51–150 and their

corresponding relevance judgements are available for this testbed. The

<title> fields of TREC queries have been more commonly used for

federated search experiments on this testbed, although description

and narrative fields are also available.

trec4-kmeans. A k-means clustering algorithm [Jain and Dubes,

1988] has been applied on the TREC4 data [Harman, 1995] to par-

tition the documents into 100 homogeneous collections [Xu and Croft,

1999].2 The TREC topics 201–250 and their corresponding relevance

judgements are available for the testbed. These queries do not contain

the <title> fields, and the <description> fields have been mainly

used instead.

trec123-AP-WSJ-60col (relevant). This and the next two

testbeds have been generated from the trec123-100col-bysource (uni-

form) collections. Documents in the 24 Associated Press and 16 Wall

Street Journal collections in the uniform testbed are collapsed into

two separate large collections. The other collections in the uniform

testbed are as before. The two largest collections in the testbed have

1SYM236 and UDC236 testbeds can be downloaded from: http://www.cs.virginia.edu/

~cyberia/testbed.html, accessed 17 Aug 2010.
2The definitions of uniform and trec4 testbeds are available at: http://boston.lti.cs.

cmu.edu/callan/Data/, accessed 17 Aug 2010.
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a higher density of relevant documents for the corresponding TREC

queries compared to the other collections.

trec123-2ldb-60col (representative). Collections in the uniform

testbed are sorted by their names. Every fifth collection starting with

the first collection is merged into a large collection. Every fifth collec-

tion starting from the second collection is merged into another large col-

lection. The other 60 collections in the uniform testbed are unchanged.

trec123-FR-DOE-81col (nonrelevant). Documents in the 13

Federal Register and 6 Department of Energy collections from the uni-

form testbed are merged into two separate large collections. The re-

maining collections remain unchanged. The two largest collections in

the testbed have lower density of relevant documents for the TREC

topics compared to the other collections.

The effectiveness of federated search methods may vary when the

distribution of collection sizes is skewed or when the density of relevant

documents varies across different collections [Si and Callan, 2003a].

The latter three testbeds can be used to evaluate the effectiveness of

federated search methods for such scenarios. More details about the

trec4-kmeans, uniform, and the last three testbeds can be found in

previous publications [Powell, 2001; Powell and French, 2003; Si, 2006;

Si and Callan, 2003b;a; Xu and Croft, 1999].

Among the disjoint data collections described so far, the uniform

testbed (and its derivatives: relevant, nonrelevant, representative), and

the trec4-kmeans testbed are the most commonly used [Callan, 2000;

Lu and Callan, 2002; Ogilvie and Callan, 2001; Powell and French,

2003; Si and Callan, 2003b;a; 2004b; 2005b; Si et al., 2002; Shokouhi,

2007a; Shokouhi and Zobel, 2009; Shokouhi et al., 2006a; 2009; Thomas

and Shokouhi, 2009].

GOV2 testbeds. In recent years, larger datasets have become pub-

licly available to account for the growth in the size of real-life collec-

tions. The GOV2 dataset [Clarke et al., 2005] is a crawl of about 25

million “.gov” webpages. Several federated search testbeds have been
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produced based on the GOV2 data. Shokouhi [2007a] split the docu-

ments from the largest 100 crawled hosts—in terms of the number of

crawled documents— into one hundred separate collections. Similarly,

Arguello et al. [2009a] generated their gov2.1000 testbed based on the

largest 1000 hosts in GOV2. Arguello et al. [2009a] created gov2.250

and gov2.30 by sampling documents from the hosts in GOV2 and clus-

tering the hosts accordingly in respectively 250 and 30 collections.

Overall, the GOV2 testbeds are many times larger than the pre-

viously discussed alternatives, and are more realistic for simulating

large-scale federated search experiments.

Other testbeds. Several other federated search testbeds with dis-

joint collections have been generated based on the TREC newswire

documents [Callan et al., 1995; D’Souza et al., 2004a; Hawking and

Thistlewaite, 1999; Moffat and Zobel, 1994; Xu and Callan, 1998; Xu

and Croft, 1999; Zobel, 1997]. In most of these datasets, the parti-

tioned collections are either similar in size or the document publication

source/date.

The first federated search testbed generated from the crawled

web documents was proposed by French et al. [1999]. They divided

the TREC6 VLC dataset [Hawking and Thistlewaite, 1997] into 921

collections according to the document domain addresses. Similarly,

Craswell et al. [2000] divided the TREC WT2G dataset [Hawking et al.,

2000] into 956 collections according to the domain addresses of docu-

ments. Rasolofo et al. [2001] proposed two testbeds created from the

TREC8 and TREC9 (WT10G) [Bailey et al., 2003] datasets, respec-

tively containing four and nine collections. In a similar study [Abbaci

et al., 2002], documents available in the WT10G dataset were divided

into eight collections for evaluating collection selection experiments.

Hawking and Thomas [2005] created a hybrid testbed based on doc-

uments available in the TREC GOV dataset [Craswell and Hawking,

2002]. Using a document classifier, the authors managed to find the

Homepages of 6,294 servers in the TREC GOV dataset, from which

1,971 (31%) had a search interface. The authors allocated the docu-

ments from each of these servers into separate collections. They gath-
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ered all non-searchable servers into a large crawled collection. There-

fore, in total, their hybrid testbed is comprised of 1,972 collections.

Thomas and Hawking [2009] created an artificial testbed for per-

sonal metasearch. Their testbed included collections generated from a

public mailing list, a personal mailbox and calendar, plus text collec-

tions generated from the TREC data. More details about their testbed

can be found elsewhere [Thomas, 2008b].

In standard federated search testbeds, there is often no overlap

among collections [Powell and French, 2003; Si and Callan, 2003b].

However, in practice, a significant proportion of documents may overlap

between collections. Shokouhi et al. [Shokouhi et al., 2007c; Shokouhi

and Zobel, 2007] created five new testbeds with overlapping collections

based on documents available in the TREC GOV dataset.

5.1 Summary

It is important to investigate the effectiveness of different federated

search methods on a variety of testbeds. Most existing testbeds contain

disjoint collections, while some recent testbeds share overlapped docu-

ments among their collections. A common strategy to create federated

search testbeds is to partition different TREC corpora into many col-

lections. This approach has several advantages; many queries and corre-

sponding relevant judgements have been provided for these testbeds; it

is possible to create testbeds with many collections of various sizes, the

experimental results are reproducible by other researchers. The main

disadvantage of such testbeds is that they may not represent real-life

federated search environments.

Realistic testbeds such as those used in the FedLemur project [Avra-

hami et al., 2006] are more suitable for investigating the performance

of federated techniques in practice. However, access to such testbeds is

often restricted to a small number of groups or organizations.

The next chapter concludes the paper and suggests directions for

future research.
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Conclusion and Future Research Challenges

Web search has significantly evolved in recent years. For many years,

web search engines such as Google, Yahoo! were only providing search

service over text documents. Aggregated search was one of the first

steps to go beyond text search, and was the beginning of a new era for

information seeking and retrieval. These days, web search engines sup-

port aggregated search over a number of verticals, and blend different

types of documents (e.g. images, videos) in their search results. More-

over, web search engines have started to crawl and search the hidden

web [Madhavan et al., 2008].

Federated search (a.k.a federated information retrieval), has played

a key role in providing the technology for aggregated search and crawl-

ing the hidden web.

The application of federated search is not limited to the web search

engines. There are many scenarios in which information is distributed

across different sources/servers. Peer-to-peer networks and personalized

search are two examples in which federated search has been success-

fully used for searching multiple independent collections (e.g.,[Lu, 2007;

Thomas, 2008b]).

In this work, we provided a review of previous research on federated
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search. This chapter summarizes the materials we covered, and points

out a few directions for future research.

6.1 The state-of-the-art in federated search

Research on federated search can be dated back to the 1980s [Mazur,

1984]. Since then, substantial progress has been made in different sub-

problems of federates search.

Collection representation. The representation set of each collec-

tion, may contain information regarding its size, contents, query lan-

guage as well as other key features that can be used by the broker

during collection selection and result merging.

Early research demanded human-generated metadata for collection

representation sets. More robust approaches rely on statistical meta-

data. In cooperative environments, collections are required to provide

their vocabularies and corpus statistics upon request. In the absence

of cooperation between collections and the broker, query-based sam-

pling [Callan and Connell, 2001] is used to generate collection rep-

resentation sets. In query-based sampling, several probe queries are

submitted to the collection and the returned results are collected to

generate the collection representation set.

Different variants of query-based sampling methods have been pro-

posed to acquire accurate collection content representation efficiently.

Adaptive sampling techniques [Baillie et al., 2006a; Caverlee et al.,

2006; Shokouhi et al., 2006a] choose sample size for each collection

with respect to vocabulary growth in sampled documents, or the pre-

dicted ratio of collection documents that are sampled. In focused prob-

ing [Ipeirotis and Gravano, 2002], the sampling queries are selected from

the categories of a hierarchical classification tree, and collections can be

classified according to the number of results they return for each cate-

gory. The shrinkage technique [Ipeirotis and Gravano, 2004] improves

the comprehensiveness of collection representation by assuming that

topically related collections share many terms. Since out-of-date repre-

sentation sets may no longer be representative of their corresponding

collections, Ipeirotis et al. [2005] and Shokouhi et al. [2007a] proposed
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several techniques for modeling content changes and updating collec-

tion representation sets in federated search environments.

The collection size statistics have been used in many collection selec-

tion algorithms as important parameters (e.g. ReDDE [Si and Callan,

2003a]). In the sample-resample method [Si and Callan, 2003a], the col-

lection size is estimated by comparing the term frequencies of the sam-

pled documents with the entire collection. Capture-recapture methods

such as CH and MCR [Shokouhi et al., 2006b] estimate the size of col-

lections by sampling. Alternatives such as random-walk sampling [Bar-

Yossef and Gurevich, 2006], and multiple-queries sampling [Thomas

and Hawking, 2007] can provide better estimations at the cost of run-

ning more sampling queries.

Collection selection. For each query, the broker often selects a sub-

set of collections that are more likely to return relevant documents.

Selecting more collections not only causes extra efficiency costs, but

also may not even improve the performance [Thomas and Shokouhi,

2009]. Early collection selection methods treated each collection as a

big document or a lexicon distribution, and used different variations

of traditional document ranking algorithms to rank them with respect

to the query (e.g.,[Callan et al., 1995; Yuwono and Lee, 1997]). How-

ever, recent research has demonstrated that ignoring the document

boundaries in the big document approach may lead to low effectiveness,

particularly in environments that have skewed distribution of collec-

tion size [Si and Callan, 2003a]. Motivated by this observation, a new

family of document-surrogate collection selection methods have been

proposed that explicitly estimate the goodness/usefulness of individ-

ual documents in collections [Si and Callan, 2003a; Shokouhi, 2007a].

These methods have been shown to obtain more robust results on a

wide range of testbeds.

The utility-based collection selection techniques are another group

of selection methods that can be used in the presence of training data

[Si and Callan, 2004b; 2005b]. Such techniques can model the collection

search effectiveness, and can be optimized for high precision or recall.
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Result merging. Once the selected collections return their top-

ranked results, the broker compares them and ranks them in a sin-

gle list for presentation to the user. Result merging is a difficult task;

different collections may use different retrieval algorithms and have

different lexicon statistics. Therefore, the document scores reported

by different collections are often not directly comparable. Early result

merging methods [Callan, 2000] either used simple heuristics to rank

returned documents, or downloaded all returned documents for calcu-

lating comparable scores [Craswell et al., 1999]. Recent methods tried

to approximate comparable document scores in more accurate and ef-

ficient way. For example, SSL [Si and Callan, 2003b] uses the overlap

between the top-ranked results returned by collections and their sam-

ple documents to compute comparable scores for merging. The SAFE

algorithm [Shokouhi and Zobel, 2009] assumes that the ranking of sam-

pled documents is a sub-ranking of the original collection. Therefore,

SAFE applies curve fitting to the subranking to estimate the merging

scores, and does not rely on the overlapped documents between sample

documents and collection results.

Federated search testbeds. Construction of valuable testbeds is

one of the most important contributions of previous research on fed-

erated search. These testbeds serve the purpose for evaluating the rel-

ative effectiveness of different federated search algorithms. The trend

is to construct testbeds with more collections, larger amount of data

and more heterogeneous collection statistics, that better simulate large-

scale real world federated search environments.

Most of the current testbeds have been constructed by splitting

TREC newswire or TREC web collections based on different crite-

ria. Many early testbeds are constructed with uniform or moderately

skewed collection statistics (e.g., similar number of documents or sim-

ilar amount of relevant documents in each collection), while recent

testbeds are more diverse.
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6.2 Future Research Challenges

Despite recent advancements in all aspects of federated search, there

are many opportunities for further improvements.

Beyond bag of words. The majority of previous work on federated

search use only basic bag of words features. Utilizing the power of

clicks, anchor-text and link-graph features is a promising next step for

federated search.

Hawking and Thomas [2005] showed that the anchor-text can be a

useful feature for ranking distributed collections. Arguello et al. [2009a]

used clicks as a features in their classification-based collection selection

method.

Yu et al. [2001] combined text similarity and linkage information for

collection selection. Wang and DeWitt [2004] described how PageRank

can be computed over distributed collections.

Query expansion for federated search. Query expansion tech-

niques have been widely used to improve the retrieval effectiveness of

ad-hoc information retrieval with centralized search engines [Diaz and

Metzler, 2006; Metzler and Croft, 2007; Xu and Croft, 1996]. In the

context of federated search however, query expansion techniques have

made little success [Ogilvie and Callan, 2001; Shokouhi et al., 2009].

Global query expansion techniques send the same expanded query to all

collections. Alternatively, the expansion terms can be generated specif-

ically to a collection (or a cluster of collections). Collection-specific ex-

pansion terms can be less vulnerable to topic drift, but are generated

based on smaller feedback collections that may affect their quality.

Classifying the queries for local/global expansion, or expand/not-

expand are potential directions for future work.

Classification-based collection selection. The problem of select-

ing suitable collections for a query can be regarded as a classification

task. Given the query, the output of the classifier indicates the selection

decisions for individual collections.

Classification-based collection/vertical selection techniques are the
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latest generation of collection selection methods. The best paper awards

at WSDM091 and SIGIR092 conferences were given to papers on

classification-based vertical selection [Arguello et al., 2009b; Diaz,

2009]. Arguello et al. [2009a] have recently proposed and tested the

first classification-based collection selection framework on three typical

federated search testbeds generated from the TREC GOV2 documents.

The authors showed that the classification-based selection techniques

can outperform the state-of-the-art methods such as ReDDE [Si and

Callan, 2003a].

Classification-based federated search is still a new area of research

and can be extended and explored in many ways. For example, it may

be worthwhile to investigate the application of such frameworks for re-

sult merging. In addition, it would be interesting to combine the earlier

work of Ipeirotis and Gravano [2008] on topically classifying collections

with existing classification-based collection selection techniques in a

hybrid framework.

Optimized merging. The common goal between existing federated

search merging techniques is to compute comparable scores for the doc-

uments returned for selected collections. Early techniques [Callan, 2000]

were using the normalized document and collection scores to compute

the final score of a document. More recent techniques such as SSL [Si

and Callan, 2003b] and SAFE [Shokouhi and Zobel, 2009] use linear

regression and curve fitting over the score distribution of sampled doc-

uments to compute the merging scores. The common neglected fact is

that accurate comparable scores do not necessarily optimize precision

or any other metric that is used for evaluating the final retrieval. Devel-

oping merging techniques that can be optimized for different evaluation

metrics can be considered as a direction for future investigation.

Merging becomes more challenging in scenarios such as aggregated

search in which different types of results are blended into a single list.

Although vertical selection has been recently discussed in the literature

[Arguello et al., 2009b; Diaz, 2009; Diaz and Arguello, 2009], studies

1 http://wsdm2009.org, accessed 17 Aug 2010.
2 http://sigir2009.org, accessed 17 Aug 2010.
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such as [Shushmita et al., 2010] on merging results from different ver-

ticals are fairly rare.

Evaluating federated search. Different stages of federated search

such as collection selection and collection representation are generally

evaluated by different metrics. Collection representation techniques are

often evaluated according to the comprehensiveness of their represen-

tations sets, and collection selection and result merging methods can

be evaluated based on the quality of their final merged results. How-

ever, the effectiveness of each stage also depends on the performance

of previous stages. For example, it is not possible to compare the ef-

fectiveness of different merging methods, when the selected collections

do not contain relevant documents. Therefore, modeling the relation-

ship between different stages of federated search for evaluation is an

important direction for future research.

Very large scale federated search. Most existing federated search

systems deal with a relative small number of collections that ranges

from a few dozen to a few thousand. However, in 2007 it was estimated

that there were about 25 millions of text data collections on the web

[Madhavan et al., 2007]. To design federated search systems in such

environments, it is important to design extremely scalable solutions for

collection selection and result merging. Furthermore, it is also impor-

tant to build fully automatic collection detection and result extraction

solutions that can deal with dynamic environments, where independent

collections are often subject to change.

Federated search in other contexts. Federated search techniques

have been successfully utilized in different areas.

Lu and Callan [2005; 2006] applied federated search collection rep-

resentation and collection selection techniques in peer-to-peer full text

search applications.

Thomas and Hawking [2008; 2009] pioneered the application of fed-

erated search techniques in personal metasearch. Carman and Crestani

[2008] proposed some preliminary ideas for personalized federated
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search. For example, a personalized QBS approach can sample more

documents from the specific areas that a user is interested in. In a sim-

ilar project,3 individual users may have personal bias for information

from different collections. This type of information can be useful for

both collection selection and result merging.

Elsas et al. [2008] and Seo and Croft [2008] used federated search

collection selection techniques for blog site search. In federated search

the goal is to select collections with relevant documents, while in blog

site search the goal is to identify blogs with relevant posts.

There are more and more web collections that contain multime-

dia data such as image and video. Most existing research in federated

search works only with textual features. It is important to design col-

lection selection and result merging algorithms for media types other

than text. The work by Berretti et al. [2003] selects image databases

with abstract data that reflects the representative visual features of

each visual database. The authors merge retrieved images from dis-

tributed image collections with a learning approach that maps image

retrieval scores assigned by different collections into normalized scores

for merging. The learning approach is similar to the SSL result merg-

ing for text data except that Berretti et al. [2003] use a set of sample

queries for creating training data in learning the score mappings.

The improvement of federated search solutions will directly impact

the above and many other applications.
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L. Gravano, C. Chang, H. Garćıa-Molina, and A. Paepcke. STARTS:

Stanford proposal for internet meta-searching. In J. Peckham, edi-

tor, Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 207–218, Tucson, AZ, 1997. ISBN 0-

89791-911-4.
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L. Gravano, H. Garćıa-Molina, and A. Tomasic. Precision and recall

of GlOSS estimators for database discovery. In Proceedings of the

Third International Conference on Parallel and Distributed Infor-

mation Systems, pages 103–106, Austin, TX, 1994b. IEEE Computer

Society. ISBN 0-8186-6400-2.
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