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Abstract

 

Inspired by the success of least absolute 
shrinkage and selection operator (LASSO) in 
statistical learning, we propose an    regularized 
maximum likelihood linear regression (MLLR) 
to estimate models with only a limited set of 
adaptation data to improve accuracy for 
automatic speech recognition, by regularizing the 
standard MLLR objective function with an    
constraint. The so-called LASSO MLLR is a 
natural solution to the data insufficiency problem 
because the    constraint regularizes some 
parameters to exactly 0 and reduces the number 
of free parameters to estimate. Tested on the 5k-
WSJ0 task, the proposed LASSO MLLR gives 
significant word error rate reduction from the 
errors obtained with the standard MLLR in an 
utterance-by-utterance unsupervised adaptation 
scenario. 

1.  Introduction 

Parameter adaptation is one of the most efficient 
techniques to address the potential mismatches between 
the training and testing environments in automatic speech 
recognition (ASR). Although maximum likelihood linear 
regression (MLLR) [1] and maximum a posteriori (MAP) 
[2] adaptation are very popular, they cannot be directly 
applied to some challenging application scenarios, such as 
voice search or voice mail transcription [3], in which only 
one utterance can be available for self-adaptation. The 
limited amount of data may not be enough for reliably 
estimating even one transformation matrix. There are two 
popular solutions to this data insufficiency problem. One 
is to prepare a prior distribution for the transformation, 
and the MAP criterion is used for matrix parameter 
estimation (e.g., MAPLR [4]). The other solution is to 
employ eigen-family methods, such as eigen-voice [5], 
eigen-MLLR [6]. In both cases we need either pre-
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computed prior densities or a collection of basis 
vectors/matrices.  

In statistical learning, least absolute shrinkage and 
selection operator (LASSO) [7] has been demonstrated as 
an effective method to handle the data sparsity problem. 
By adding an    constraint to the original objective 
function, LASSO can be very effective in controlling 
over-fitting because it shrinks parameter values to zero 
and reduces the degree of freedom to estimate them.  

As stated in [1], the linear regression is a special case of 
MLLR. Therefore, it is straightforward to borrow the 
success of LASSO in linear regression to address the data 
sparsity problem in MLLR in which adaptation is 
performed with a linear transformation. In this paper, we 
propose LASSO MLLR, an adaptation method with the 
   constraint. We give the solution and implementation 
detail of LASSO MLLR in Section 2. Tested on the 5k-
WSJ0 task in an utterance-by-utterance unsupervised self-
adaptation scenario, the proposed LASSO MLLR 
algorithms significantly outperform the standard MLLR 
alternatives. Moreover, LASSO MLLR also has very 
good interpretability on transformation matrix elements. 

2.  LASSO MLLR 

In this section, we first give a brief review of maximum 
likelihood linear regression (MLLR). Then, LASSO 
MLLR is formulated as the standard MLLR with the    
constraint. Solution and implementation detail are given. 
Finally, we also propose LASSO-P MLLR from a 
Bayesian view. 

2.1  Maximum Likelihood Linear Regression (MLLR) 

In automatic speech recognition, acoustic model is used to 
characterize the likelihood of acoustic feature with respect 
to the underlying word sequence. The main stream of 
acoustic modeling is to use hidden Markov models 
(HMMs) which gracefully handle the dynamic time 
evolution of speech signals and characterize it as a 
parametric random process. Each state of HMMs usually 
has a continuous output density function modeled by a 
Gaussian mixture model (GMM): 
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where   is the observation vector,  (         
 )  is a 

Gaussian with mean vector     and variance vector    
 , 

and    is the weight for j-th Gaussian component in the 
GMM. 

MLLR model adaptation is one way to address the 
mismatches between the training and testing 
environments. MLLR is performed with a linear 
transformation matrix   on the augmented (p+1)-
dimension mean vector of each Gaussian in the ASR 
system as  

 ̂     , 
where W is a p*(p+1) matrix with   [    ],   is a bias 
vector, and   is a rotation matrix.  ̂  is the new mean of 
state   and     is the augmented vector of the mean vector 
  . 
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 ] . 

This can be solved with the expectation maximization 
(EM) algorithm [8] by maximizing the auxiliary function: 
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where    is the observation vector at time t,   ( ) is the 
posterior probability of state   at time t, and    is the 
covariance matrix of state  . 

2.2  LASSO MLLR and Its Solution 

As stated in [1], linear regression can be viewed as a 
special case of MLLR, and it is straightforward to borrow 
the success of LASSO [7] to address the linear regression 
estimation problem in MLLR. In particular, we formulate 
LASSO MLLR as follows: 
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with a constraint that  

∑ |   |       , 

where c is a positive constant, and     is the element in 
the j-th row and k-th column of the rotation matrix  . 

Re-formulating the problem in a Lagrange form, we have 
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where   is the Lagrange parameter.  

 

(1) 

We note that there is no close form solution for Eq. (1) 
and we solve it in an iterative manner.  

First we initialize [    ] from the standard MLLR solution, 
then update   by updating     sequentially in each 
iteration. More specially, given the current estimates,    
and   , let      be    with its (   ) entry replaced by 0. 
Denote by 

           (    ) 
   

and 
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Then we update     by solving 
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The solution can be computed explicitly from the first 
order condition: 

   ∑∑       (          )

 

    

      (   )

              (   ) 

where 

  ∑ ∑          

 

    

 

 

(2) 

  ∑∑       
 

 

    

 

 

(3) 

By Karush–Kuhn–Tucke theorems [9], we have  
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Combining Eqs. (4) and (5) together, we have the final 
solution: 
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After updating all entries of the matrix  , we then update 
b again by solving the first order condition: 

  (∑ ∑   ( )  
  

  )  ∑ ∑   ( )  
  (      )    (7) 

To summarize, the solution of LASSO MLLR can be 
computed as follows: 

Step 1) Initialize [    ]  from last iteration. Use the 
standard MLLR solution in the first iteration. 

Step 2) Update every element in matrix   with Eq. (6). 

Step 3) Update the bias   with Eq. (7). 

Step 4) Check whether the parameters are converged. If 

not, go to Step 1).  
 

2.3  Implementation of LASSO MLLR 

With simple reformulation for Eq. (2), we can have 
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Note that    in Eq. (8) does not depend on the matrix, and 
can be computed in advance. The components inside the 
big brackets in Eqs. (9) and (10) are also invariant across 
iterations. In each iteration, they are multiplied by    and 
   , respectively.  

The   value in Eq. (3) also remains the same across 

iterations and can be computed in advance as 
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Therefore, all the accumulator statistics involved in Eqs. 
(2) and (3) can be pre-computed and do not change during 
the iterative update of    . Only very limited 
multiplications are needed in Eqs. (9) and (10). This is 
also true for the update of bias   in Eq. (7). As a result, 
the computation cost is relatively low. 

2.4  LASSO MLLR with Prior  

We can also formulate LASSO MLLR with a maximum 

a posterior objective function as  

                ( ) 
We assume every component of the rotation matrix   
follows a Laplace distribution: 

 ( )  ∏
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where     and     are the hyper parameters for    , and 

they can be estimated either from a training set or a 

development set. We can formulate the LASSO MLLR 

with priors (LASSO-P MLLR): 
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By comparing Eq. (12) with Eq. (1), we can see the 

LASSO-P MLLR shrinks component     to its prior     

instead of zero value.  

The solution of LASSO-P MLLR is very similar to Eq. 

(5): 
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3.  Experiment 

We used the 5k-WSJ0 task to evaluate the effectiveness 
of LASSO MLLR. Testing was conducted on the Nov92 
evaluation set with 330 utterances. Baseline models used 
cross-word triphones obtained with maximum likelihood 
estimation. There were 2818 shared states resulted from 
a decision tree state clustering. Each state observation 
density is characterized by an 8-component Gaussian 
mixture model. The input 39-dimension features were 12 
MFCCs + energy, and their first and second order time 
derivatives. A trigram language model was used for 
decoding. The baseline word error rate (WER) was 
5.08%. 

To evaluate the ASR performance with unsupervised 
self-adaptation, every test utterance was first decoded to 
get a hypothesized sequence of words. Then this 
decoded transcription was used to adapt models for this 
utterance. The adapted model is used to get the final 
decoding sentence.  
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Figure 1. Histogram of the number of frames in the 

WSJ0 test utterances 

 
As shown in Figure 1, the test set of WSJ0 is quite 
suitable to evaluate the proposed approach on the 
insufficient data problem. If we consider that roughly 
39*39+39=1560 frames are need to reliably estimate the 
MLLR transform matrix, no test utterance can reach that 
criterion. Note that the unsupervised adaptation 
technology is a general technology in ASR, the 
discovery in this paper should be able to apply to even 
larger ASR tasks than 5k-WSJ0. 

When estimating the LASSO MLLR matrix, we start 
from the estimate obtained with standard MLLR, and 
then iteratively update the transformation matrix by 
using the algorithm in Section 2.2.  

Figure 2 shows the influence of   for LASSO MLLR by 
plotting all the non-zero elements of the estimated 
transformation matrix   in a 39*39 image. If the 
resulting     in LASSO MLLR is non-zero, there is a 
circle in the j-th row and k-th column. When   increases 
from 20 to 60, more and more elements in matrix   
become 0. Here are some observations. 

 Most non-zero elements are in the upper triangle, 

which means the elements to the left of the j-th 

column (        )  contribute more to 

estimating the transformed GMM mean 

parameters of the j-th dimension.  

 There is a clear diagonal line from the (0, 0) to 

(38, 38) coordinates, showing that     is very 

important for the MLLR transformation. 

Moreover, the magnitude of     is significantly 

larger than other values of     (   )  which 

cannot be shown in the figures.  

 There are three horizontal lines in the y-axis 

with values of 12, 25, and 38. They are 

corresponding to the feature dimensions of 

energy, delta energy, and delta delta energy, 

which are the most important feature dimensions. 

 

Table 1 compares the WERs of the baseline, the 
standard MLLR, and the LASSO MLLR with different   
values. The standard MLLR gets a slightly better WER 
than the baseline. Within a range of   (from 20 to 100), 
LASSO MLLR is much better than the standard MLLR. 
As expected if    is too small (e.g., 1), LASSO MLLR 
behaves similarly as the standard MLLR, with few zero 
elements. In contrast, if   is too large, the matrix   is 
very sparse and we begin to lose the power of prediction. 
The best LASSO MLLR achieved a 4.60% WER, 
corresponding to about 6.7% relative WER reduction 
from the 4.93% WER of the standard MLLR.  

The WER of the LASSO-P MLLR is also given in Table 
1. The hyper parameters,     and    , are estimated 
from the MLLR transformation matrices for every 
speaker in the training set. 

 

 
Figure 2. Non-zero elements in LASSO MLLR matrix  . 

If     is non-zero, there is a circle in the j-th row and k-th 

column. 

 
As shown in Figure 2, by adjusting the value of  , we can 
easily control the sparsity of the transformation matrix. 
This is a natural way to address the sparse data problem. 
LASSO MLLR also offers a good interpretation of the 
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transformation coefficients as we have demonstrated 
before. By examining plots, such as those in Figure 2, we 
can have a good sense of what reasonable   values to be 
set in Eq. (1) if we desire a specific set of constraints for 
the MLLR matrix. 

 

Table 1. Detailed WERs of baseline, standard MLLR, 

LASSO MLLR with different   values, and LASSO-P 

MLLR 

 

system  WER 

Baseline 5.08 

MLLR 4.93 

LASSO MLLR (   ) 4.84 

LASSO MLLR (    ) 4.71 

LASSO MLLR (    ) 4.60 

LASSO MLLR (     ) 4.69 

LASSO-P MLLR 4.67 

 

4.  Conclusion and future work  

In this study we have proposed LASSO MLLR model 
adaptation to address the data insufficiency problem. 
Because the    constraint can make some transformation 
elements be exactly zero, LASSO MLLR is a natural 
solution to the adaptation data insufficiency problem. We 
used the 5k-WSJ0 task for the unsupervised self-
adaptation test. LASSO MLLR achieved about 6.7% 
relative WER reductions from standard MLLR. Although 
a better WER than ridge MLLR was not clearly observed, 
the proposed LASSO MLLR has better parameter 
interpretability, and provides a natural way to address the 
data sparseness issue. 

This paper only presents our initial study. We are now 
working on some potential improvements of LASSO 
MLLR. For example, in the current set of experiments, we 
fix the   value for all testing utterances. It is desirable to 
automatically set the   value according to the amount of 
available adaptation data. In some application scenarios, 
adapting model for every utterance is not affordable. We 
need to extend the LASSO adaptation to constrained 
MLLR [9], which can apply the transformation to the 
feature space. 
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