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ABSTRACT

In this paper, we propose a novel feature space adaptation technique
to improve the robustness of speech recognition in noisy environ-
ments. Histogram equalization (HEQ) is an effective technique for
improving robustness by reducing the difference between clean and
noisy features. A weakness of HEQ is that it does not take into ac-
count acoustic model, resulting in possible mismatch between HEQ-
processed features and the acoustic model. In this paper, we propose
to adapt HEQ to maximize the likelihood of HEQ-processed features
on the acoustic model, with a constraint on the parameters of HEQ.
In addition, we use a Gaussian mixture model (GMM) to represent
the clean feature space rather than using the acoustic model itself,
and this results in both simpler implementation and better results.
Experimental results show that HEQ with adaptation reduces word
error rate by 7.5% and 5.7% respectively on Aurora-2 and Auroar-4
tasks over the HEQ baseline without adaptation.

Index Terms— robust speech recognition, histogram equaliza-
tion, maximum likelihood adaptation, feature adaptation, feature
normalization.

1. INTRODUCTION

The performance of automatic speech recognition (ASR) degrades
significantly when there is mismatch between the training and test-
ing data. For example, if the acoustic model is trained from clean
speech features while the test speech is corrupted by additive noise
or channel distortion, the performance will be significantly degraded.
To improve the robustness of ASR against such environmental dis-
tortions, various methods have been proposed. These methods can
be grouped into two categories: the feature space methods and the
model space methods. The feature space methods aim to reduce the
noises’ effects by either estimating the clean features from the noisy
features (feature compensation [1, 2]), or normalizing both clean and
noisy features to make them more similar to each other (feature nor-
malization [3, 4, 5, 6]). The model space methods adapt the clean
acoustic model to fit the noisy test data ([7, 8, 9]). In this paper, we
will focus on improving a popular feature normalization technique,
i.e. histogram equalization (HEQ) [5, 10].

HEQ reduces noise effects by normalizing the histograms of the
speech features to predefined reference histograms, e.g. histograms
of clean features. When speech is corrupted by noise, the histograms
of speech features are also changed. By normalizing the histograms
of corrupted features to the histogram of clean features, we hope to
reduce the noise effects. Despite its simplicity, HEQ is found to be
very effective in improving ASR robustness [5, 10].

One weakness of HEQ is that it does not consider the informa-
tion in the acoustic model. As a result, features processed by HEQ
may not fit the acoustic model well. In this paper, we address this
issue by adapting HEQ parameters to maximize the likelihood of the
HEQ-processed test features on the acoustic model. As the HEQ
adaptation studied here is a pure feature space adaptation, if there is
no constraint on the HEQ parameters, the adapted HEQ will map the
feature vectors towards the mean vectors of the acoustic model. To
prevent this, we add a constraint to reduce the flexibility of HEQ. We
also examine the use of simple Gaussian mixture models (GMM) as
our target model instead of using the complex hidden Markov mod-
els (HMM) based acoustic model.

The rest of the paper is organized as follows. In section 2, the
adaptation of HEQ with constraint is described. In section 3, the
effectiveness of HEQ adaptation is evaluated on speech recognition
tasks. Finally, conclusion is presented in section 4.

2. ADAPTATION OF HISTOGRAM EQUALIZATION

In this section, we will first represent HEQ in a parametric form
to facilitate its adaptation. Then we will present the adaptation of
HEQ using the maximum likelihood (ML) criterion with constraints
on HEQ parameters. Finally, we will discuss some implementation
issues.

2.1. Parametric Representation of HEQ

Let 𝑥𝑘
𝑡 be the input feature at frame 𝑡 and dimension 𝑘 with 𝑡 =

1, ..., 𝑇 and 𝑘 = 1, ...,𝐾. 𝑇 is the number of frames in an utterance
and 𝐾 is the number of feature dimensions, respectively. The HEQ-
processed version of 𝑥𝑘

𝑡 is obtained by [5]:

𝑦𝑘
𝑡 = 𝐶−1

ref,𝑘(𝐶𝑥,𝑘(𝑥
𝑘
𝑡 )), 𝑘 = 1, ...,𝐾 (1)

where 𝐶−1
ref,𝑘(⋅) is the inverse reference cumulative distribution func-

tion (CDF) and 𝐶𝑥,𝑘(⋅) is the CDF of 𝑥𝑘
𝑡 , both for dimension 𝑘. As

HEQ processes each dimension independently, we will use one di-
mension for illustration and drop the dimension index for simplicity.

To implement (1), 𝐶𝑥(⋅) can be estimated from the rank of 𝑥𝑡

among 𝑡 = 1, ..., 𝑇 [11]:

𝐶𝑥(𝑥𝑡) = (𝑅(𝑥𝑡)− 0.5)/𝑇 (2)

where 𝑅(𝑥𝑡) ∈ [1, 𝑇 ] is the rank of 𝑥𝑡. For 𝐶−1
ref (⋅), we adopt a

parametric approximation similar to the polynomial regression used
in [10] to facilitate HEQ adaptation. In our initial experiments, we
fount that using sigmoid functions to approximate 𝐶−1

ref (⋅) produces



slightly better results than using polynomial regression, hence we
adopt sigmoid functions in this paper as follows:

𝐶−1
ref (𝐶𝑥(𝑥𝑡)) ≈

𝑀∑
𝑚=1

𝑎𝑚sig𝑚(𝐶𝑥(𝑥𝑡)) + 𝑎0 (3)

where sig𝑚(𝑥) = [1 + exp(−𝛾(𝑥 − 𝜃𝑚))]−1 is the 𝑚𝑡ℎ sigmoid
function centered at 𝜃𝑚, 𝑀 is the number of sigmoid functions, 𝛾
controls the slope of all the sigmoid functions, and 𝑎0 is an offset
parameter. 𝛾 and 𝜃𝑚 are predefined in our study and treated as con-
stants in HEQ. 𝛾 is chosen such that the approximated HEQ transfor-
mation is smooth and flexible, and 𝜃𝑚 can be evenly spaced points
in the range of CDF function, i.e. [0,1].

Substitute (3) into (1), the processed feature is rewritten as

𝑦𝑡 = 𝐶−1
ref (𝐶𝑥(𝑥𝑡)) ≈ a𝑇 z𝑡 (4)

where a = [𝑎0, 𝑎1, ..., 𝑎𝑚]𝑇 is a vector of HEQ parameters, z𝑡 =
[1, sig1(𝐶𝑥(𝑥𝑡)), ..., sig𝑀 (𝐶𝑥(𝑥𝑡))]

𝑇 is a vector of order statistics,
and ⋅𝑇 represents matrix or vector transpose. The parametric ap-
proximation of HEQ can be seen as a linear transform of z𝑡, while
z𝑡 is computed from the original features in a nonlinear way.

2.2. Estimation of HEQ parameters Using MMSE Criterion

Given a clean training database, we can train the HEQ parameters by
minimizing the mean square error (MSE) between the clean features
and their HEQ-processed versions. Let 𝑥𝑡 denote the clean train-
ing feature of frame 𝑡. The minimum mean square error (MMSE)
estimate of a can be approximated by the least square estimate [10]:

âMMSE ≈ argmin
a

1

𝑇

𝑇∑
𝑡=1

[(𝑥𝑡 − a𝑇 z𝑡)2] (5)

= 𝐸̂[z𝑡z𝑇𝑡 ]
−1𝐸̂[z𝑡𝑥𝑡] (6)

where 𝐸̂[z𝑡z𝑇𝑡 ] is the estimated auto-correlation matrix of z𝑡 and
𝐸̂[z𝑡𝑥𝑡] is the cross correlation estimate. We denote the MMSE es-
timate of HEQ parameters as HEQ-MMSE.

If clean features are used to train HEQ parameters, the trained
HEQ will normalize the histogram of incoming features to that of
clean features. An alternative reference histogram is a predefined
probability density function (p.d.f.), e.g. the Gaussian distribution
[11]. To use Gaussian as reference, we need only replace the training
data 𝑥𝑡 with samples drawn from a zero-mean, unit-variance Gaus-
sian distribution. The trained HEQ does not depend on any speech
data and can be used for all feature dimensions and all databases. In
this paper, Gaussian distribution is used as the reference histogram.

2.3. Adaptation of HEQ parameters Using ML Criterion

As the MMSE estimate of HEQ parameters does not consider the
acoustic model, the processed features may have a poor fit with the
acoustic model. This problem can be alleviated by maximizing the
likelihood of the processed features on the acoustic model:

â𝑘
ML = argmax

a𝑘
log𝑝(Y∣Λ), for 𝑘 = 1, ...,𝐾 (7)

where Y = [y1, ..., y𝑇 ], y𝑡 = [𝑦1
𝑡 , ..., 𝑦

𝐾
𝑡 ] is the sequence of HEQ-

processed feature vectors for a test utterance and Λ represents the
acoustic model. As HEQ performs independently for each feature
dimensions, there are 𝐾 independent optimization problem in (7).

We adopt the Expectation-Maximization (EM) framework to
solve the adaptation problem. As the state transition probabilities
are not related to our problem at hand, we can use the following
simplified auxiliary function for dimension 𝑘:

𝑄(a𝑘, â𝑘) =

𝑇∑
𝑡=1

∑
𝑠𝑚

𝛾𝑠𝑚(𝑡) log 𝑝(y𝑡∣𝑠,𝑚,Λ) (8)

where 𝛾𝑠𝑚(𝑡) is the occupation probability of mixture 𝑚 of state 𝑠

at frame 𝑡, â𝑘 is the current estimate of HEQ parameters and a𝑘 is
the parameters to be estimated. Take the partial differentiation of
𝑄(a𝑘, â𝑘) w.r.t. a𝑘 and use the chain rule, we get:

∂𝑄(a𝑘, â𝑘)

∂a𝑘
=

∑
𝑡,𝑠,𝑚

𝛾𝑠𝑚(𝑡)
∂log𝑝(y𝑡∣𝑠,𝑚,Λ)

∂𝑦𝑘
𝑡

∂𝑦𝑘
𝑡

∂a𝑘
(9)

If 𝑝(y𝑡∣𝑠,𝑚,Λ) is a multivariate Gaussian with diagonal covariance
matrix, we have

∂log𝑝(y𝑡∣𝑠,𝑚,Λ)/∂𝑦𝑘
𝑡 = (𝜇𝑘

𝑠𝑚 − 𝑦𝑘
𝑡 )/(𝜎

𝑘
𝑠𝑚)2 (10)

From (4), it is obvious that ∂𝑦𝑘
𝑡 /∂a𝑘 = z𝑘𝑡 . Substitute this equation

and (10) into (9) and make it equal to zero, we get

∂𝑄(a𝑘, â𝑘)

∂a𝑘
=

∑
𝑡,𝑠,𝑚

𝛾𝑠𝑚(𝑡)
𝜇𝑘
𝑠𝑚 − 𝑦𝑘

𝑡

(𝜎𝑘
𝑠𝑚)2

z𝑘𝑡 = 0 (11)

Hence, the close-form solution of a𝑘 is

â𝑘
ML = A−1

𝑘 c𝑘 (12)

where c𝑘 =
∑
𝑡,𝑠,𝑚

𝛾𝑠𝑚(𝑡)

(𝜎𝑘
𝑠𝑚)2

𝜇𝑘
𝑠𝑚z𝑘𝑡 (13)

A𝑘 =
∑
𝑡,𝑠,𝑚

𝛾𝑠𝑚(𝑡)

(𝜎𝑘
𝑠𝑚)2

z𝑘𝑡 z𝑘𝑡
𝑇

(14)

Note that c𝑘 is similar to the cross-correlation between 𝜇𝑘
𝑠𝑚 and z𝑘𝑡

and A𝑘 is similar to autocorrelation matrix of z𝑘𝑡 , but both weighted
by occupation probabilities and variances. It is obvious that A𝑘 is
positive definite and can be inverted.

2.4. ML adaptation with transformation constraints

The ML solution of HEQ tends to map the feature vectors to the
mean vectors of the acoustic model specified by the occupation prob-
abilities. This is because for a Gaussian distribution, maximum like-
lihood is obtained if the feature vector is equal to the mean vector.
As a result, ML adaptation of HEQ will reduce the variances and dis-
criminative power of the adapted features significantly. Hence, the
ML solution is not suitable to be used alone for pure feature space
adaptation like HEQ adaptation. Constraint needs to be imposed to
make the ML solution suitable for speech recognition.

Constraint can be added to control the degree of difference be-
tween the initial features (i.e. HEQ-MMSE-processed features) and
their adapted version. The adapted features are expected to be dif-
ferent from the original features such that the likelihood can be im-
proved. However, they are not expected to be too different from the
original features as this will cause a new type of mismatch. There-
fore, if we use HEQ-MMSE as the starting point of HEQ adaptation,
we can impose a constraint such that the search space of the HEQ
parameters will be near to the MMSE solution. This will ensure that



the adapted features won’t be too far away from the original HEQ-
MMSE processed features.

Two types of constraints may be applied. The first is to add a reg-
ularization term ∣∣a𝑘−a𝑘

MMSE∣∣2 in the ML objective function, which
directly constrains the values of HEQ parameters. The second con-
straint is that the adapted HEQ transformation (not the parameters
themselves) should be near to the transformation of HEQ-MMSE.
This means that given a z, the processed feature using ML solution,
i.e. z𝑇 â𝑘

ML, should be close to that using MMSE solution z𝑇 â𝑘
MMSE.

Let W = [z1, ..., z𝑆 ] be the matrix of 𝑆 selected z. We can add a
constraint as follows:

â𝑘
ML = argmax

a𝑘
log𝑝(Y∣Λ)− 𝛼𝑇 ∣∣W𝑇 a𝑘 − W𝑇 a𝑘

MMSE∣∣2

for 𝑘 = 1, ..., 𝐷 (15)

where 𝑇 is the number of frames in the test utterance and 𝛼 > 0
is used to control the weight of the two conflicting terms in
the objective function. A bigger 𝛼 will make it more difficult
for the adapted HEQ transformation to deviate from the MMSE
transformation. The vectors z can be selected to be represen-
tative, e.g. evenly from the CDF input space [0,1]. For ex-
ample, if we have 5 z vectors, they can be chosen as z1 =
[1, sig1(0), ..., sig𝑀 (0)]𝑇 , z2 = [1, sig1(0.25), ..., sig𝑀 (0.25)]𝑇 ,
..., and z5 = [1, sig1(1), ..., sig𝑀 (1)]𝑇 .

The close-form ML solution with constraint is still â𝑘
ML =

A−1
𝑘 c𝑘, with c𝑘 and A𝑘 changed to:

c𝑘 =
∑
𝑡,𝑠,𝑚

𝛾𝑠𝑚(𝑡)

(𝜎𝑘
𝑠𝑚)2

𝜇𝑘
𝑠𝑚z𝑘𝑡 + 2𝛼𝑇WW𝑇 a𝑘

MMSE

A𝑘 =
∑
𝑡,𝑠,𝑚

𝛾𝑠𝑚(𝑡)

(𝜎𝑘
𝑠𝑚)2

z𝑘𝑡 z𝑘𝑡
𝑇
+ 2𝛼𝑇WW𝑇 (16)

In our study, we find that the constraint on transformation in
(15) produces better performance than adding the regularization term
∣∣a𝑘 − a𝑘

MMSE∣∣2. Hence, in this study, we will only use the solution
in (16) in experimental studies and denote it as HEQ-ML.

2.5. Implementation Issues

A two-pass decoding strategy is necessary to implement HEQ adap-
tation. In the first pass, the most likely state sequences are obtained
by decoding the HEQ-MMSE-processed test features. The mixture
occupation probabilities 𝛾𝑠𝑚(𝑡) can be obtained from the state se-
quences. Then HEQ-ML can be computed using the close-form so-
lution in (16). Only one iteration of EM is used in our study and
HEQ-MMSE is used as the initial estimate of HEQ-ML. In the sec-
ond pass, the final recognition output is obtained by decoding the
HEQ-ML-processed test features with the acoustic model.

To avoid the first pass decoding, we use a simpler model as the
target model for HEQ adaptation, e.g. Gaussian mixture models
(GMM). If the clean acoustic space is represented by a GMM, the
posterior probability of the GMM mixtures can be computed without
using Viterbi decoding. Hence, the HEQ adaptation becomes a pure
feature space technique and easy to be used in most speech recogni-
tion systems. In [12], similar approach was used in the scenario of
constrained maximum likelihood linear regression (CMLLR).

3. EXPERIMENTS

3.1. Experimental Settings

The HEQ adaptation is evaluated on the Aurora-2 [13] and Aurora-4
tasks [14]. The acoustic model of Aurora-2 task follows the standard
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Fig. 1. Relative WER reduction achieved by HEQ-ML over HEQ-
MMSE with different 𝛼 in (15).
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Fig. 2. Relative WER reduction achieved by HEQ-ML over HEQ-
MMSE with different number of mixtures in target GMM.

configuration in [13]. For Aurora-4, a triphone-based acoustic model
is used, with 2800 shared states and 8 mixtures per state. A decision
tree is used for generating the shared states. Bigram langauge model
is used for recognition. Both Aurora-2 and Aurora-4 acoustic models
are trained from clean speech data.

Mel-frequency cepstral coefficients (MFCC) are extracted by the
feature extraction program WI007 delivered with the Aurroa-2 [13].
MFCC, together with their delta and accelerations, are used as the
features for acoustic modeling. 𝑐0 energy is used and log energy is
not. When applied, HEQ-MMSE and HEQ-ML are applied to all the
39 feature dimensions independently.

For parametric representation of HEQ, we use 11 sigmoid func-
tions evenly spaced in the interval [0,1], i.e. 𝜃1 = 0, 𝜃2 = 0.1,
𝜃3 = 0.2,..., and 𝜃11 = 1. The 𝛾 in (3) is chosen to 30 to en-
sure smoothness of the approximated HEQ transformation function.
When HMMs are used as the target model for HEQ adaptation, only
the best state sequence is used to compute the occupation probabili-
ties of mixtures. There are totally 11 constraint vectors used in (15),
and their locations are the same as the values of 𝜃 described above.

3.2. Tuning of 𝛼

The parameter 𝛼 controls the weight of constraint in HEQ adapta-
tion. When 𝛼 = 0, pure ML solution is obtained, and when 𝛼 = ∞,
pure MMSE solution is used. The relative word error rate (WER) re-
duction achieved by HEQ-ML over HEQ-MMSE on Aurora-2 with
various selection of 𝛼 is plotted in Fig. 1. HMMs are used as the tar-
get models for HEQ adaptation. From the figure, it is observed that
the performance of HEQ-ML is quite stable near 𝛼 = 1, and more
than 5% improvement can be achieved. Therefore, in the following
experiments, we fix 𝛼 to be 1 for all cases.

Although the best state sequence generated from the first-pass
decoding contains a lot of errors, especially for low SNR levels,
HEQ-ML is still able to improve the performance. This shows that



Table 2. Recognition WER (%) on AURORA-4 task. Avg. represents the average results over all test cases.
Test Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg.

HEQ-MMSE 13.33 21.33 34.33 35.84 36.24 34.77 37.57 20.77 31.23 42.43 46.74 51.16 44.27 46.45 35.46

HEQ-ML 12.60 19.82 32.23 34.22 34.11 32.74 36.28 19.82 29.94 40.59 44.49 47.18 40.99 43.13 33.44

R.R. 5.5 7.1 6.1 4.5 5.9 5.8 3.4 4.6 4.1 4.3 4.8 7.8 7.4 7.1 5.7

Table 1. Recognition WER on Aurora-2 task in different SNR levels.
∞ represents clean test cases and 0-20 represents average WER from
0dB to 20dB. R.R represents relative WER reduction achieved by
HEQ-ML over HEQ-MMSE.

SNR (dB) ∞ 20 15 10 5 0 -5 0-20

HEQ-MMSE 0.99 2.30 4.38 9.50 22.97 51.05 80.68 18.04

HEQ-ML 0.96 2.12 4.03 8.86 21.26 47.14 77.61 16.68

R.R. 3.5 7.7 8.2 6.7 7.5 7.6 3.8 7.5

instead of being guided by the errors in the state sequence, HEQ-ML
captures and compensates the environmental differences between the
test features and the acoustic model. This should be due to the con-
straint in (15) which significantly limits the flexibility of HEQ.

3.3. Results with GMM-based Target Model

Rather than using HMMs as the target model, we can also use a
simple GMM as the target model. In Fig. 2, the relative WER reduc-
tion of HEQ-ML over HEQ-MMSE is shown with different kinds of
target model. The EM-GMM curve in the figure is obtained by us-
ing EM-trained GMMs with different number of mixtures as the tar-
get model. The AM-HMM curve is obtained when HMMs are used
as the target model, i.e. the results presented in the previous sec-
tion. There are totally 552 mixtures in the HMMs. The AM-GMM
curve is the result with a GMM created by pooling the mixtures of
the HMMs. From the figure, it is observed that, despite their sim-
plicity, EM-GMM and AM-GMM both performs better than AM-
HMM. This may be due to the fact that we only use one best state
path in AM-HMM. It is also observed that when there are 128 mix-
tures in the GMM, EM-GMM’s performance becomes stable and is
near to that of AM-GMM. The best results with EM-GMM is about
7.5% relative WER reduction over HMM-MMSE. The detailed re-
sults of EM-GMM (with 512 mixtures) are compared with that of
HEQ-MMSE for every signal-to-noise ratio (SNR) in Table 1. It is
observed that the HEQ-ML reduces WER in all SNR levels.

We also evaluate HEQ-ML on the Aurora-4 task. A GMM with
512 mixtures are used as the target model for HEQ-ML. The recog-
nition WER is shown in Table 2. From the table, it is observed that
HEQ-ML reduces WER consistently for all the 14 test cases. The
average reduction of WER is 5.7%.

4. CONCLUSIONS

In this paper, we propose to estimate HEQ parameters by maxi-
mizing the likelihood of the test features on the acoustic model.
Constraint is imposed to prevent HEQ transformation to deviate
too much from the initial transformation. Experimental results
on Aurora-2 and Aurora-4 tasks show that the adapted HEQ con-
sistently outperforms the original HEQ in all test cases when the
acoustic model is trained from clean features. The proposed adap-
tation scheme may be extended to multi-class HEQ in the future,

where one HEQ transformation is used for each acoustic class.

5. REFERENCES

[1] L. Buera, E. Lleida, A. Miguel, A. Ortega, and O. Saz, “Cepstral vec-
tor normalization based on stereo data for robust speech recognition,”
IEEE Trans. Audio, Speech, and Language Processing, vol. 15, no. 3,
pp. 1098–1113, March 2007.

[2] L. Deng, J. Droppo, and A. Acero, “Enhancement of log mel power
spectra of speech using a phase-sensitive model of the acoustic environ-
ment and sequential estimation of the corrupting noise,” IEEE Trans.
Speech and Audio Processing, vol. 12, no. 2, pp. 133–143, Mar. 2004.

[3] S. Furui, “Cepstral analysis technique for automatic speaker verifica-
tion,” IEEE Trans. Acoustics, Speech and Signal Processing, vol. 29,
no. 2, pp. 254–272, 1981.

[4] O. Viikki and K. Laurila, “Cepstral domain segmental feature vector
normalization for noise robust speech recognition,” Speech Communi-
cation, vol. 25, pp. 133–147, 1998.

[5] A. de la Torre, A. M. Peinado, J. C. Segura, J. L. Perez-Cordoba, M. C.
Benitez, and A. J. Rubio, “Histogram equalization of speech represen-
tation for robust speech recognition,” IEEE Trans. Speech and Audio
Processing, vol. 13, no. 3, pp. 355–366, 2005.

[6] X. Xiao, E. S. Chng, and H. Li, “Normalization of the speech modula-
tion spectra for robust speech recognition,” IEEE Trans. Audio, Speech,
and Language Processing, vol. 16, no. 8, pp. 1662–1674, Nov. 2008.

[7] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear re-
gression for speaker adaptation of continuous density hidden Markov
models,” Computer Speech and Language, vol. 9, no. 2, pp. 171–185,
Apr. 1995.

[8] J. L. Gauvain and C. H. Lee, “Maximum a posterirori estimation for
multivariate Gaussian mixture observations of Markov chains,” IEEE
Trans. Speech and Audio Processing, vol. 2, no. 2, pp. 291–298, Apr.
1994.

[9] J. Li, L. Deng, D. Yu, Y. Gong, and A. Acero, “High-performance
HMM adaptation with joint compensation of additive and convolutive
distortions via vector taylor series,” in Proc. ASRU ’07, Kyoto, Japan,
Dec. 2007, pp. 65–70.

[10] S.-H. Lin, B. Chen, and Y.-M. Yeh, “Exploring the use of speech
features and their corresponding distribution characteristics for robust
speech recognition,” IEEE Trans. Audio, Speech, and Language Pro-
cessing, vol. 17, no. 1, pp. 84 –94, jan. 2009.
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