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Abstract

 

It is well known that the distorted speech   can 
be considered generated from the clean speech   
with the additive noise   and the convolutive 
channel   as          In this paper, we 
present our recent study on using this structured 
model of physical distortion for robust automatic 
speech recognition. Three methods are 
introduced for joint compensation of additive 
and convolutive distortions (JAC), with different 
online computation costs. They are JAC model 
adaptation, GMM-based JAC model adaptation, 
and JAC feature enhancement. All these 
algorithms consist of two main steps. First, the 
noise and channel parameters are estimated using 
a nonlinear environment distortion model in the 
cepstral domain, and the vector-Taylor-series 
(VTS) linearization technique collectively. 
Second, the estimated noise and channel 
parameters are used to adapt the hidden Markov 
model (HMM) parameters or clean the distorted 
speech feature. 

In the experimental evaluation using the standard 
Aurora 2 task, the proposed JAC algorithms all 
achieve around 89% accuracy using the clean-
trained complex HMM backend, compare 
favorably over previously developed techniques. 
In the meanwhile, the JAC feature enhancement 
method has much smaller computation cost than 
the other two methods, and can be used as a 
high-accuracy low-cost noise robust front end. 
Detailed analysis on the experimental results 
shows that online updating all the noise and 
channel distortion parameters is critical to the 
success of our algorithms. 

1.  Introduction 

————— 
 

Environment robustness in automatic speech recognition 
(ASR) remains an outstanding and difficult problem 
despite many years of research and investment [1]. The 
difficulty arises due to many possible types of distortions, 
including additive and convolutive distortions, which are 
not easy to predict accurately when developing the 
recognizers. As a result, the speech recognizer trained 
using clean speech often degrades its performance 
significantly when used under noisy environments if no 
compensation is applied. Different methodologies have 
been proposed in the past for environment robustness in 
speech recognition over the past two decades.  

There are two main classes of approaches. In the first 
class, the distorted speech features are enhanced with 
advanced signal processing methods. The cleaned or 
enhanced speech features are then fed into the ASR 
system without dynamically changing the underlying 
acoustic models. Examples include the ETSI advanced 
front end (AFE) [2] and stereo-based piecewise linear 
compensation for environments (SPLICE) [3].  

The other class of techniques operates on the model 
domain to adapt or adjust the model parameters so that the 
system becomes better matched to the distorted 
environment; Examples include maximum likelihood 
linear regression (MLLR) [4], parallel model combination 
(PMC) [5] and joint compensation of additive and 
convolutive distortions (JAC) [6][7]. The model-based 
techniques have shown better performance than the 
feature-based approaches [7][8].  

One of the most powerful model adaption technologies is 
JAC which directly addresses the speech distortion 
exploiting a physical model. The distorted speech   can 
be considered generated from the clean speech   with the 
additive noise   and the convolutive channel   as 
         As shown in [9], JAC has significant 
advantages over other model adaptation technologies such 
as MLLR, which adapts the acoustic model to the testing 
environment without imposing any constraints from the 
underlying physical distortion model. 
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Recently, we have developed several JAC-based model 
adaptation technologies such as online estimation of static 
and dynamic distortion parameters with vector Taylor 
series (VTS) expansion [9][10], phase-sensitive distortion 
model [11], and unscented transform for JAC [12]. 
Systems using these JAC methods have been 
demonstrated robust to distortions, and obtain very high 
recognition accuracy in noisy environments.  

Although achieving high accuracy, JAC model adaptation 
methods share the same computational cost as other 
model adaptation technologies since it needs to adapt all 
the model parameters for every input utterance. This time-
consuming requirement hinders JAC from being widely 
used, especially in large vocabulary continuous speech 
recognition (LVCSR) where the number of model 
parameters is large.  

In this study, we investigate ways to reduce the online 
computation cost of JAC methods. Section 2 presents the 
physical distortion model and formularizes JAC model 
adaptation with VTS approximation. In Section 3, we 
provide the first solution which uses a clean-trained 
Gaussian mixture model (GMM) for online estimate of all 
distortion parameters, including static and dynamic 
parameters of noise and channel distortions. Section 4 
presents feature-based JAC method which directly 
reduces distortions in the feature domain instead of 
adapting model parameters. In contrast to previous works 
[6], our proposed method utilizes our recently-developed 
technologies in JAC model adaptation by online 
estimating all the distortion parameters to ensure the 
quality of noise reduction. Our method can achieve 
almost the same accuracy as the model-based JAC 
method, with significantly reduced computational cost. 
The experiments are described in Section 5. We 
summarize our study and draw conclusions in Section 6. 

2.  JAC Model Adaptation Algorithm 

Figure 1 shows a model for degraded speech with both 
noise (additive) and channel (convolutive) distortions. 
The observed distorted speech signal  [ ] is generated 
from clean speech  [ ]  with noise  [ ] and channel’s 
impulse response  [ ] according to  

 [ ]   [ ]   [ ]   [ ]   
With discrete Fourier transformation (DFT), the 
equivalent relationship  

 [ ]   [ ] [ ]   [ ]  

can be established in the frequency domain, where k is the 
frequency-bin index in DFT given a fixed-length time 
window. 

 

 

  
Figure 1. A model for acoustic environment distortion 

 
The power spectrum of the distorted speech can then be 
obtained as 

| [ ]|  | [ ]| | [ ]|  | [ ]| 

  | [ ]|| [ ]|| [ ]|       
(1) 

where    denotes the (random) angle between the two 
complex variables  [ ] and ( [ ] [ ]).  

It is noted that Eq. (1) is a general formulation for JAC. If 
      is set to zero, Eq. (1) becomes 

| [ ]|  | [ ]| | [ ]|  | [ ]|   (2) 

which is the formulation often used when power spectra 
[6] are adopted as  the acoustic feature. 

By taking logarithm and multiplying the non-square 
discrete cosine transform (DCT) matrix C to both sides of 
Eq. (2) for all the L Mel filter-banks, we obtain the 
nonlinear distortion model of 

                (         ))   (3) 

where  ,  ,  , and   are the clean speech, noise, channel, 
and distorted speech, respectively, in the cepstral domain. 
By taking the expectation on both sides of Eq. (3) and use 
vector Taylor series expansion (VTS), the static mean 
value of the distorted speech signal is 

                   )  

                (       )      )(       )   
(4) 

where 

          )      (     (            )))  (5) 

By noting,  

   

   

      {
 

     [            ]
}       (6) 

   

   

      (7) 

we can derive the JAC-VTS adaption formulations for  
the k-th Gaussian in the j-th state as (following [9]): 

                (           )  (8) 

           )          )  (       ))  (  

     ))
 
   

(9) 

            )        (10) 

             )         (11) 

            )           ) 

 (       ))   (       ))
 
  

(12) 

h[m] x[m] y[m] 

n[m] 
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             )            ) 

 (       ))    (       ))
 
  
(13) 

We have proposed online estimation formulas for   ,   , 

  ,    , and      in [10] which will not be repeated here. 

 

The implementation steps of the JAC HMM adaptation 

algorithm described so far in this section and used in our 

experiments are plotted in Figure 2 and summarized in the 

following: 

 

1. Read in a distorted speech utterance; 

2. Set the channel mean vector to all zeros; 

3. Initialize the noise mean vector and diagonal 

covariance matrix using the first and last N frames 

(speech-free) from the utterance using sample 

estimates; 

4. Compute the Gaussian-dependent G(.) with Eq.(6), 

and adapt the HMM parameters with Eqs. (8)–(13); 

5. Decode the utterance with the adapted HMM 

parameters; 

6. Re-estimate noise and channel distortions using the 

above-decoded transcription;  

7. Adapt the HMM parameters again with Eqs. (8)–(13); 

8. Use the final adapted HMM model to decode the 

distorted speech feature and get output transcription. 

 

 
Figure 2. Flowchart of JAC model adaptation 

3.  GMM-Based JAC Model Adaptation 
Algorithm 

The process in Section 2 is time consuming since it needs 
to adapt the HMM twice (step 4 and 7) and decode the 
utterance twice (step 5 and 8). If the HMM has large 
amount of parameters as in the LVCSR system, it makes 
JAC model adaptation unsuitable for real-time online 
adaptation despite the high accuracy it can achieve. To 
reduce the runtime cost, we can use clean-trained GMM 
for online estimation of all distortion parameters. The 
implementation steps for the GMM-based model 
adaptation algorithm are plotted in Figure 3 and described 
in the following: 

1. Read in a distorted speech utterance; 

2. Set the channel mean vector to all zeros; 

3. Initialize the noise mean vector and diagonal 

covariance matrix using the first and last N frames 

(speech-free) from the utterance using sample 

estimates; 

4. Compute the Gaussian-dependent G(.) with Eq.(6), 

and adapt the GMM parameters with Eqs. (8)–(13); 

5. Re-estimate noise and channel distortions;  

6. Adapt the HMM parameters with Eqs. (8)–(13); 

7. Use the final adapted HMM model to decode the 

distorted speech feature and get output transcription. 

 

 
Figure 3: Flowchart of GMM-based JAC model 

adaptation 

 
Usually, the GMM has much smaller number of 
parameters than the HMM. Therefore, the GMM adaption 
in step 4 has much less computation costs than the HMM 
adaptation. As a result, the GMM-based JAC adaptation 
method significantly reduces the runtime cost; with only 
one round full HMM model adaptation (step 6) and one 
round decoding (step 7). 

4.  JAC Feature Enhancement Algorithm 

Although GMM-based JAC model adaptation can reduce 
the runtime cost from the JAC model adaptation in 
Section 2, the HMM adaptation in its step 6 is still time 
consuming in LVCSR system. In this section, we clean 
the distorted speech feature using JAC technology. The 
flowchart is in Figure 4. 

 

Figure 4: Flowchart of JAC feature enhancement 
 

The following are the detailed implementation steps. 

1. Read in a distorted speech utterance; 
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2. Set the channel mean vector to all zeros; 

3. Initialize the noise mean vector and diagonal 

covariance matrix using the first and last N frames 

(speech-free) from the utterance using sample 

estimates; 

4. Compute the Gaussian-dependent G(.) with Eq.(6), 

and adapt the GMM parameters with Eqs. (8)–(13); 

5. Online estimate noise and channel distortions;  

6. Adapt the GMM parameters with Eqs. (8)–(13); 

7. Use the final adapted GMM model to clean the 

distorted speech feature with Eq. (17) or Eq. (21); 

8. Use the clean-trained HMM model to decoded the 

cleaned speech feature obtained in step 7 and get 

output transcription. 

 
There is no more HMM adaptation step in this JAC 
feature enhancement technology. Given that the number 
of model parameters in GMM is much smaller than that in 
HMM, JAC feature enhancement has very reasonable 
runtime cost, and can be applied to LVCSR tasks. In the 
following, we discuss two JAC feature enhancement 
algorithms for step 7.In general, we can use the minimum 
mean square error (MMSE) method to get the estimate of 
clean speech  

 ̂      )   (   )|   ))  

                    ∫    ) (   )|   ))    )
 

   
(14) 

Suppose the clean-trained GMM is denoted as 

   | )  ∑           
 )

 

   

  

together with Eq. (3), we have  

 ̂      )  ∑  ( |   )) (   )     
   

                      (      (          )   ))))  
(15) 

                      )    ∑  ( |   ))    (   
   

                                                       (          )   )))   
Here, 

 ( |   ))  
       )          

 )

∑        )          
 ) 

   

 (16) 

with          
  updated in step 6 using Eqs. (8)–(13).   

If we use      as the 0th-order approximation of     ), 
then 

 ̂      )     )    ∑  ( |   ))    (   
   

                                              (   (        )))  
(17) 

This formulation was first proposed in [6], and we denote 
it as JAC-0.In [13], another solution was proposed when 
expanding Eq. (3) with 1st-order VTS: 

                   (   (         ))  

           (      )       )     )  

With some derivations, we can have  

    )            (    )
  

(   )      ) (18) 

with 

       *(      )(      )
 
+  

             [(      ) (  (      )     

  )     ))
 

]  

(19) 

Assume the noise and clean speech are independent, we 

get 

       [(      ) (  (      ))
 

]  

             *(      )(      )
 
  

 +        
   

(20) 

The final solution denoted  as JAC-1 is 

 ̂      )   ∑ ( |   ))    )
 
      

     ∑  ( |   )) (           
 (    )

  
(   )   

   

    ))  

(21) 

Note that although Eqs. (17) and (21) were also proposed 
in [6] and [13], they are not widely used due to the 
inferior accuracies than the model-based JAC methods. 
The key of JAC-based feature enhancement is to get a 
reliable estimation of noise and channel distortion 
parameters, and accurately calculate the Gaussian 
occupancy probability in Eq. (16). In [6] and [13], only 
static noise and channel mean vectors are estimated. In 
contrast, we propose to online update all the distortion 
parameters [10]. After updating both the static and 
dynamic model parameters with the online distortion 
estimations, we can have a more accurate estimation of 
the Gaussian occupancy probability. As shown in the 
following experiment section, this is critical to the success 
of JAC-based feature enhancement. 

5.  Experiments and Discussions 

The effectiveness of different JAC algorithms presented 
in Section 2, 3, and 4 has been evaluated on the standard 
Aurora 2 task [14] of recognizing digit strings in noise 
and channel distorted environments. The clean training set, 
which consists of 8440 clean utterances, is used to train 
the baseline maximum likelihood estimation (MLE) 
HMMs. The test material consists of three sets of 
distorted utterances. The data in set-A and set-B contain 
eight different types of additive noise, while set-C contain 
two different types of noise plus additional channel 
distortion. Each type of noise is added into a subset of 
clean speech utterances, with seven different levels of 
signal to noise ratios (SNRs). This generates seven 
subgroups of test sets for a specified noise type, with 
clean, 20db, 15db, 10db, 5db, 0db, and -5db SNRs.  The 
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baseline experiment setup follows the standard script 
provided by ETSI [14], including the complex ―backend‖ 
of HMMs trained using the HTK toolkit.  

In the complex backend provided by [14], there are 11 
whole-digit HMMs, one for each of the 11 English digits, 
including the word ―oh‖. Each HMM has 16 states, with 
simple left-to-right structure and no skips over states. 
Each state is modeled by a Gaussian mixture model 
(GMM) with 20 Gaussians. All HMM’s covariance 
matrices are diagonal. In addition, there are one ―sil‖ and 
one ―sp‖ model. The ―sil‖ model consists of 3 states, and 
each state is modeled by a GMM with 36 Gaussians. The 
―sp‖ model has only one state and is tied to the middle 
state of the ―sil‖ model. The total number of Gaussians in 
the HMM is 3628. We also train a single GMM with 552 
Gaussians for the algorithms in Section 3 and 4.   

The features are 13-dimensional MFCCs, appended by 
their first- and second-order time derivatives.  

 The cepstral coefficient of order 0 is used instead of the 
log energy in the original script. This gives a baseline of 
61.51% Accuracy (Acc).  

The JAC algorithms presented in this paper are then used 
to adapt the above MLE HMMs or to clean the distorted 
feature utterance by utterance for the entire test set (Sets-
A, B, and C). The detailed implementation steps 
described in Section 2, 3, and 4 are used in the 
experiments. We use the first and last N=20 frames from 
each utterance for initializing the noise means and 
variances.  

Table 1 summarizes the recognition accuracy of the 
baseline, the JAC model adaptation algorithm described 
in Section 2, the GMM-based JAC model adaptation 
algorithm presented in Section 3, and the JAC feature 
enhancement algorithm discussed in Section 4. JAC 
model adaptation obtained the best accuracy of 89.99%.  

We evaluate GMM-based JAC model adaptation with two 
setups. The first is to combine all the 3628 Gaussians in 
the HMM model into a GMM. The other setup is to use 
the single GMM with 552 Gaussians. Both setups give 
very similar accuracy: a little higher than 89%.  This 
means that 552 Gaussians are good enough for this task 
using GMM-based JAC model adaptation technique. The 
accuracy gap between the algorithms in Section 2 and 3 is 
due to the high-quality decoded transcription in Step 5 of 
JAC model adaptation. That transcription guides the 
online noise and channel estimations with limited useful 
Gaussians. In contrast, GMM-based JAC adaptation uses 
all the Gaussians for online estimation. 

The accuracies of two JAC feature enhancement 
algorithms are also compared in Table 1. Both methods 
use the GMM with 552 Gaussians. JAC-0 gets 88.61% 
accuracy which is very close to the 89.06% accuracy 
achieved by GMM-based JAC model adaptation. In 
contrast, JAC-1 only got 86.08% accuracy, making JAC-0 

a better choice of high-accuracy low-cost noise robust 
algorithm.   

 

Table 1. Recognition accuracy of the baseline, JAC model 

adaptation, GMM-based JAC model adaptation, and JAC 

feature enhancement algorithms 

Algorithm Accuracy 

Baseline 61.51% 

JAC model adaptation 89.99% 

GMM-based JAC model adaptation  

(Combine all the Gaussians in HMM to form 

GMM) 

89.13% 

GMM-based JAC model adaptation  

(GMM with 552 Gaussians) 

89.06% 

JAC-0 feature enhancement 88.61% 

JAC-1 feature enhancement 86.08% 

 
To examine the effect of individual contributions of JAC 
feature enhancement algorithms, we conducted several 
experiments incrementally and summarized the results in 
Table 2. If steps 5 and 6 in Section 4 are skipped, JAC-0 
obtains 86.12% accuracy since only the initial noise and 
channel estimation was used to clean the distorted speech 
feature,. If we use all steps but only update noise and 
channel mean parameters as in [6], the accuracy is 
increased to 86.72% for JAC-0. After updating all the 
distortion parameters (mean and variance for both static 
and dynamic features), the accuracy of JAC-0 can be 
boosted to 88.61%. The similar observation can be made 
for the JAC-1 algorithm.  

 

Table 2. Recognition accuracy of JAC feature 

enhancement algorithms with different options 

 JAC-0 

feature 

enhancement 

JAC-1 

feature 

enhancement 

No online distortion 

update 

86.12% 84.63% 

Online update noise and 

channel mean parameters 

only 

86.72% 84.69% 

Online update all 

distortion parameters 

88.61% 86.08% 

 

6.  Conclusions 

In this paper, we have presented a way to get a high-
accuracy low-cost noise robust ASR system. Starting 
from the JAC model adaptation which enjoys high 
accuracy at high computational cost, we improve the 
efficiency by using GMM-based JAC adaptation and 
JAC-feature enhancement. All these technologies are built 
on the basis of the speech distortion physical model. By 
online estimating all the noise and channel distortion 
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parameters, we can obtain high accuracies for all the 
presented technologies.  

In the experimental evaluation using the standard Aurora 
2 task, the JAC-0 feature enhancement algorithm 
achieved 88.61% accuracy using the clean-trained 
complex HMM backend. The JAC feature enhancement 
algorithm achieves almost the same accuracy as the 
GMM-based JAC model adaptation, with much less 
online computational cost. This enables us to deploy JAC 
feature enhancement method to the LVCSR tasks.  

Several research issues will be addressed in the future. 
First, this paper studied 0th order and 1st order expansion 
for feature enhancement. In [15], high order expansion is 
used to make the approximation accurate. We will explore 
this direction in the future. Second, the success of JAC 
feature enhancement methods heavily relies on whether 
we can have a good adapted GMM. In current study, we 
only use the standard VTS technology to update GMMs 
while we have shown that phase-sensitive distortion VTS 
and unscented transform technologies can help to improve 
the modeling quality [11][12].  We will apply these 
technologies in the next step. 
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