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Abstract— In comparison to the extensive body of existing
work considering publish-once, static anonymization, dynamic
anonymization is less well studied. Previous work, most notably
m-invariance, has made considerable progress in devising a
scheme that attempts to prevent individual records from being
associated with too few sensitive values. We show, however, that
in the presence of updates, even an m-invariant table can be
exploited by a new type of attack we call the “equivalence-
attack.” To deal with the equivalence attack, we propose a
graph-based anonymization algorithm that leverages solutions
to the classic “min-cut/max-flow” problem, and demonstrate
with experiments that our algorithm is efficient and effective
in preventing equivalence attacks.

I. INTRODUCTION

Publishing microdata for research purposes without vio-
lating an individual’s privacy is a problem of practical im-
portance. The majority of existing privacy models deal with
the problem of static anonymization, where the microdata
table is anonymized once and released. By contrast, dynamic
anonymization addresses the problem where the base table can
be updated and released many times.

Dynamic anonymization is intrinsically more difficult than
static anonymization, as multiple releases of data enable
attacks not possible with a single release. In particular, while
differentially private data publishing has recently gained favor
for static tables [2], [10], [12], [17], [18], [28], applying
differential privacy to dynamic anonymization may be prob-
lematic for the same reason repeated queries to a differentially
anonymizing system are problematic — intuitively, the noise
that must be added grows, since adversaries can use differenc-
ing to detect and remove the anonymizing noise [4], [8]. While
extending or modifying ideas found in differential privacy to
apply to the dynamic anonymization problem is an interesting
area for future work, because of the intrinsic difficulty of
randomizing noise-based approaches in the context of multiple
releases, we focus on more syntactic anonymization techniques
that may be more attractive for this problem.

In this paper we focus on the line of work that uses a
partitioned table structure to protect against certain privacy
attacks. To get a sense of the kinds of attacks possible in such
a scenario, consider the following example.

Table Ia shows a sample microdata base table, while Ta-
ble Ib shows its generalization at time T1. In Table Ib, the
Age and Zip columns are the so-called quasi-identifiers, and
Disease is the sensitive value. The Owner column is included
only for clarity of exposition and is not published. Table II

Owner Age Zip Disease
Alice 35 53000 cancer
Bob 49 55000 flu
Chris 42 65000 cancer
Dan 49 55000 flu
Ellen 43 62000 measles
Frank 41 67000 cancer

(a) Microdata at T1

Owner Age Zip Disease
Alice [30-49] [50k-59k] cancer
Bob [30-49] [50k-59k] flu
Chris [40-49] [50k-69k] cancer
Dan [40-49] [50k-69k] flu
Ellen [40-49] [50k-69k] measles
Frank [40-49] [50k-69k] cancer

(b) Generalization at T1

TABLE I
A 2-DIVERSE GENERALIZATION AT T1

Owner Age Zip Disease
Alice 35 53000 cancer
Chris 42 65000 cancer
Ellen 49 55000 measles
Greg 45 60000 flu
Harry 42 65000 cancer

Ian 45 60000 measles
Jane 42 65000 cancer

(a) Microdata at T2

Owner Age Zip Disease
Alice [30-49] [50k-59k] cancer
Ellen [30-49] [50k-59k] measles
Chris [40-49] [50k-69k] cancer
Greg [40-49] [50k-69k] flu
Harry [40-49] [50k-69k] cancer

Ian [40-49] [50k-69k] measles
Jane [40-49] [50k-69k] cancer

(b) Generalization at T2

TABLE II
A NAIVE 2-DIVERSE GENERALIZATION AT T2

Owner Age Zip Disease
Alice 35 53000 cancer
Chris 42 65000 cancer
Ellen 49 55000 measles
Greg 45 60000 flu
Harry 42 65000 cancer

Ian 45 60000 measles
Jane 42 65000 cancer

(a) Microdata at T2

Owner Age Zip Disease
Alice [30-49] [50k-69k] cancer
Greg [30-49] [50k-69k] flu
Chris [40-49] [50k-69k] cancer
c1 [40-49] [50k-69k] flu

Ellen [40-49] [50k-69k] measles
Harry [40-49] [50k-69k] cancer

Ian [40-49] [50k-69k] measles
Jane [40-49] [50k-69k] cancer

(b) Generalization at T2

TABLE III
A 2-INVARIANT GENERALIZATION AT T2

corresponds to the microdata and anonymization at T2, with
records corresponding to {Bob, Dan, Frank} removed and
records of {Greg, Harry, Ian, Jane} inserted. In this naive
anonymization, there are privacy vulnerabilities not present
in either of the 2-diverse snapshots Table Ib and Table IIb in
isolation.

One such vulnerability has been studied in previous work.
To see this vulnerability, suppose there is an adversary who
observed that Alice was in the hospital at times T1 and T2.
The adversary, knowing that Alice is in her 30’s, will be
able to determine that Alice’s record must appear in the first
partition of both snapshots. Observing that the sensitive values
associated with the first partition are {cancer, flu} and {cancer,
measles}, the adversary can infer that the true sensitive value
of Alice is cancer.

In view of this type of privacy violation, the authors in [26]
proposed a novel anonymization mechanism, m-invariance.
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Their key idea is to require that in any snapshot, a particular
data record can only be placed in partitions with a fixed
set of sensitive values, called a signature. Table IIIb is an
anonymization that follows the 2-invariance principle. Here,
Alice is placed in a partition with sensitive values {cancer,
flu} at both T1 and T2, which blocks the intersection attack.
Observe that a counterfeit tuple c1 with value flu that does
not exist in the original microdata is used in order to enforce
m-invariance.

Although this prior work successfully protects against this
“value association attack” (the adversary cannot associate too
small a set of sensitive values with any individual), we observe
that there is another way that the partitioned structure of the
released data can be exploited. We call this new type of attack
the “value equivalence attack.”

As an example of this attack, notice that by comparing the
first partitions of snapshots published at times T1 and T2 in
Table Ib and Table IIIb, the adversary learns that Bob and
Greg must have contracted the same disease. To make matters
worse, suppose later at time T3, Greg recovers and someone
else, Kate, who has flu, is grouped with Alice to form a new
partition {cancer, flu}. This will further disclose the fact that
Kate has the same disease as Bob and Greg. This process
can continue as more snapshots are published, and the list of
individuals known to share the same sensitive value will grow
monotonically.

This type of equivalence information can be dangerous, for
if the adversary somehow learns the true sensitive value of
any individual, the privacy of the remaining people in the
same equivalence class will all be compromised. The adversary
could even be one of the individuals in the data set. In the
previous example, Bob, who knows he himself contracted
flu at T1, can look at the table series and determine that
Greg and Kate both have flu. Clearly, this also happens if
an external adversary somehow learns of someone’s sensitive
value. Furthermore, the damage from such an attack is not
limited to one equivalence class. Using the previous example,
if the adversary learns that Bob has flu, he can not only
determine that Greg and Kate have flu, but also deduce that
Alice, along with other tuples in Alice’s equivalence class,
must have the sensitive value cancer. In that sense, localized
disclosures that are confined to one partition become global
violations of privacy in the presence of dynamic updates,
which pose privacy threats that need to be carefully addressed.

In this paper, we address information leakage via such
“equivalence attacks,” which to our knowledge has not been
studied before. We propose a privacy framework that combines
previously proposed dynamic anonymization techniques with
our new graph-based techniques which leverage a min-cut
algorithm, to protect against both the old “value association
attack” and the new “equivalence attack.”

II. RELATED WORK

Various methods have been proposed for anonymizing dy-
namic relational data [5], [6], [7], [9], [19], [22], [23], [26],

[30], all of which only focus on value association attacks but
not value equivalence attacks.

The work [7] is among the first to identify possible attacks
in the dynamic setting. However, in this pioneering work,
only insertion into the base table is supported, which is not
applicable to a fully dynamic data set with both insertion and
deletion as studied in this work. Similarly, the authors in [6]
and [19] also propose practical incremental anonymization
techniques in an insertion only setting. The authors in [26]
propose the novel m-invariance framework. This simple yet
elegant solution is the first work that successfully anonymizes
a fully dynamic data set. However, it targets the “value
association attack” and so does not protect against the “value
equivalence attack” addressed in our work. We present more
details of m-invariance in Section III.

Another recent work [9] addresses value association attacks
in an insertion only setting, where the knowledge that every
record in previous data releases has a “corresponding record”
in subsequent releases lead to “correspondence attacks” (note
that despite the similarity in names, it is in its nature a value as-
sociation attack and very different from the equivalence attack
addressed in this work). Among other things, they improve
over previous techniques by ensuring that no counterfeits are
introduced in the anonymization process.

The work [5] addresses another interesting variant of serial
data publishing, where the adversary leverages the knowledge
that some sensitive values are permanent while others tran-
sient. The authors propose a practical solution that anonymizes
microdata in conjunction with public table, which is the
collection of public information of individuals that can be
used to link to anonymized tuples. Largely along the same
line, authors in [23] observe that global privacy guarantees
can be compromised when sensitive values associated with
the same record change over time across multiple snapshots,
and propose a novel privacy framework to address the involved
privacy compromises.

The authors in [20] consider the problem of ensuring privacy
of a one table snapshot, when the sensitive values of some
individuals in the table are compromised. While the motivation
to prevent information disclosure even when some tuples are
compromised in [20] is somewhat similar to that of this
work, the techniques proposed in [20] are only designed to
work on one table snapshot that cannot be straightforwardly
applied to a table series. In addition, even in the absence of
the knowledge of the sensitive values of some individuals,
the value equivalence information being disclosed when data
are dynamically updated already poses privacy threats that
warrants a thorough analysis.

None of this previous work addresses the problem of the
value equivalence attack that we study in this paper.

III. PRELIMINARIES: m-INVARIANCE [26]

Since we in our work rely on the state-of-art dynamic
anonymization algorithm m-invariance [26] to protect against
“value association attack”, it is important to understand some
concepts used in m-invariance. The key idea of m-invariance
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is to ensure that in a series of table snapshots, any given tuple
must always be placed in a partition with the same set of m
sensitive values, as defined below.

Let T be a microdata table maintained by the publisher.
Let T (j) be the snapshot of T at time j. First define what
QI-group, or partition is.

Definition 1. [26] For a microdata table T (j), QI groups (or
partitions) are disjoint subsets of the tuples in T (j), whose
union equals T (j).

Let T ∗(j) be the anonymized snapshot of T (j) at time j,
the signature of a QI group is defined as follow.

Definition 2. [26] Let QI∗ be a QI group in T ∗(j) for any
j ∈ [1, n]. The signature of QI∗ is the set of distinct sensitive
values in QI∗.

Intuitively signature is the set of sensitive values of the QI
group in which the data is generalized.

Definition 3. [26] A generalized table T ∗(j) is m-unique, if
each QI group in T ∗(j) contains at least m tuples, and all
the tuples in the group have different sensitive values.

Definition 4. [26] A sequence of published relations {T ∗(1),
..., T ∗(n)} (where n ≥ 1) is m-invariant if the following
conditions hold:

1. T ∗(j) is m-unique for all j ∈ [1, n].
2. For any tuple t with lifespan [x, y], t.QI∗(x), t.QI∗(x+

1), ..., t.QI∗(y) have the same signature, where t.QI∗(j)
denote the QI group that contains t at time j ∈ [x, y].

Lemma 1. [26] If {T ∗(1), ..., T ∗(n)} is m-invariant, then
for any tuple t ∈

∪n
i=1 T (i), the adversary cannot associate t

with less than m possible sensitive values.

We use our running example to illustrate the various con-
cepts associated with m-invariance.

Example 1. m-invariant generalization
Table Ib and Table IIIb is a sequence of two snapshots that is

2-invariant. Each pair of two tuples in the generalized Table Ib
(for example tuples representing Alice and Bob), form a QI
group, or a partition, which are standard definitions used in
the privacy literature.

In Table Ib, the signature of the partition with tuples {Alice,
Bob} is the set of sensitive values {cancer, flu}; similarly the
signature of the partition {Ellen, Frank} is {cancer, measles}.

According to Definition 3, both Table Ib and Table IIIb
are apparently 2-unique, for each partition in the generalized
tables has two tuples with distinct values.

Furthermore, the table series in Table Ib and Table IIIb
is 2-invariant as per Definition 4. Because first of all both
tables are 2-unique, additionally the signature of each tuple
representing the same person are the same across Table Ib
and Table IIIb (for instance the signature of tuple Alice in
Table Ib and Table IIIb is the same, namely {cancer, flu}).
Observe that there is a counterfeit tuple c1 in Table Ib with
sensitive value flu to satisfy the 2-invariance requirement.

Alice Bob Ellen Frank

Chris Dan

cancer flu

bucket1

meas. cancer

bucket21 2

(a) Buckets at T1

Alice Ellen

Chris

cancer flu

bucket1

meas. cancer

bucket21 2

(b) Buckets after deletion

Alice Greg Ellen Harry

Chris c1

cancer flu

bucket1

meas. cancer

bucket21 2

(c) Buckets after balancing

Alice Greg Ellen Harry

Chris c1 JaneIan

cancer flu

bucket1

meas. cancer

bucket21 2

(d) Buckets after insertion

Fig. 1. m-invariance Bucketization

By Lemma 1, we know that given the 2-invariant table series
Table Ib and Table IIIb, the adversary cannot associate any
tuple t with less than 2 possible sensitive values. Intuitively,
this is because when the signature of any tuple is the same in
every published table snapshot, the adversary will not be able
to reduce the set of sensitive values that could be associated
with any individual beyond a set of m sensitive values. For
instance, in our example the adversary cannot tell what Alice’s
sensitive value is by looking at Table Ib and Table IIIb,
because the tuple representing Alice is always found in a
partition of the signature {cancer, flu} across the two different
table snapshots (as opposed to when Alice’s record is found
in a partition {cancer, flu} in Table Ib while in a partition
{cancer, measles} in Table IIb, in which case the adversary
knows that Alice has to be a cancer patient by set intersection).

The m-invariance technique ensures that the adversary can-
not associate any tuple with fewer than m sensitive values.
In [26] a “bucketization” algorithm is used to achieve m-
invariance, where a bucket contains all tuples sharing the same
signature.

Briefly, each tuple stays in the same “bucket” throughout
its lifespan. Newly inserted data without a fixed signature yet
can be inserted to an appropriate bucket so that there are equal
number of tuples for each sensitive value in all buckets. Each
bucket can then be split into fine granularity partitions (where
each partition has precisely m distinct sensitive values). We
use the following example to illustrate the use of “bucketiza-
tion” in m-invariance anonymization.

Example 2. Figure 1a shows how tuples in Table Ib are buck-
etized according to their signature at time T1. At T2, tuples
representing {Bob, Dan, Frank} are removed, as reflected in
Figure 1b. In the next step in Figure 1c, newly inserted tuples
are distributed into appropriate buckets so that each bucket
has the same number of tuples for each sensitive value. For
instance the tuple representing “Greg” with sensitive value
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“flu” is added to the first bucket, while the tuple “Harry”
with “cancer” is added to the second bucket. Note that since
there are no more tuples that carry flu, a “counterfeit” tuple
c1 is inserted into the first bucket. Then in Figure 1d, tuples
that remain to be inserted, {Ian, Jane} are placed in the
second bucket. Finally tuples within a bucket are split into fine-
granularity partitions and published as shown in Table IIIb.

IV. THE EQUIVALENCE ATTACK

As we have mentioned in the introduction, we classify
adversarial attacks into two categories: the previously-studied
“value-association” attack, and the new “value-equivalence
attack,” which is the main focus of this paper. We formally
define both attacks as follows.

Definition 5. Let T ∗(i) be an anonymized table published at
time i, and T ∗ ={T ∗(1), T ∗(2), ..., T ∗(t)} a table series
published over time 1 to t. There is a p-value association
attack, if an adversary can associate any tuple t with a
particular sensitive value with probability (confidence) p. The
table series T ∗ is a p-value association table series if there is
no instance of a p′-value association attack in T ∗ for p′ > p.

The notion of the p-value association attack has been
commonly used in existing privacy models. For example, l-
diversity [16] ensures that no 1

l -value association attack is
possible in the static anonymization scenario, whereas m-
invariance protects against 1

m -value association attacks for
dynamic data publishing.

Definition 6. Let T ∗(i) be an anonymized table published at
time i, and T ∗ ={T ∗(1), T ∗(2), ..., T ∗(t)} a table series
published over times 1 to t. There is an e-value equivalence
attack if an adversary can determine that the multiset of
sensitive values associated with a multiset of tuples P is the
same as that of another multiset of tuples Q, where P ∩Q = ∅
and ∣P ∣ = ∣Q∣ = e. The table series T ∗ is an e-value
equivalence table series if there is no instance of e′-value
equivalence attack in T ∗ with e′ < e.

Note that the worst e-value equivalence attack is the one
with the smallest e.

Example 3. We return to the m-invariant table series in
Table Ib and Table IIIb. The two tables are 2-invariant, so
it is a 1

2 -value association table series.
As an example of an equivalence attack, we see that in

Table Ib, both the partition {Alice, Bob} and {Chris, Dan} are
associated with sensitive values {cancer, flu}. Thus, this is an
instance of a 2-equivalence attack. Additionally, observe that
both {Alice, Bob} in Table Ib and {Alice, Greg} in Table IIIb
are associated with {cancer, flu}. Thus we can infer that Bob
and Greg have the same sensitive value, which is a 1-value
equivalence attack. Obviously e-value equivalence attacks with
smaller e are more problematic.

Note that the value equivalence attack also applies, though
trivially, to many static, publish-once anonymization models.

For instance, by definition, k-anonymity and l-diversity allow
k-equivalence attacks and l-equivalence attacks, respectively.
However, the equivalence attack problem is worse in dynamic
scenarios, when multiple releases allow an adversary to reduce
the e value in e-equivalence attacks over time.

In this work we assume that the adversary has the knowl-
edge that the sensitive values of some individuals do not
change over a certain period of time. This assumption makes
the anonymization problem harder, since it provides another
way to link individuals to values over time. In the case that
certain value does change between two snapshots, our ap-
proach would still ensure the privacy as the value equivalence
connection addressed in this work is lost in that case.

Value equivalence attacks are possible because of the what
we term data-value group correspondence structure, as defined
below.

Definition 7. Let P be a multiset of people, V a multiset
of sensitive values, with ∣P ∣ = ∣V ∣. A data-value group
correspondence structure c is the knowledge that collectively
the multiset of individuals in P carry sensitive values in V ,
denoted as g : {P → V }.

The typical example of data-value correspondence is seen
in partitions. While the partitioned table structure in the
published table conceals one-to-one tuple-to-value mappings,
it reveals a mapping from a multiset of tuples to a multiset
of values. For instance, the adversary learns from Table Ib
three correspondence structures for each partition: g1 :{{Alice,
Bob} → {cancer, flu}}, g2 :{{Chris, Dan} → {cancer, flu}},
and g3 :{{Ellen, Frank} → {measles, cancer}}. As more ta-
ble snapshots are published, more data-value correspondence
structures are exposed.

We note that, like previous work studying k-anonymity and
its successors, we assume that the adversary may know the
set of people corresponding to the tuples in the published,
anonymized table. The adversary could obtain this information
through a linking attack from some public data source to the
quasi-identifiers in the anonymized table.

A. Possible remedies: merge partitions to bucket

In this section we explore solutions to equivalence attacks.
Our first observation is that the way data published in m-
invariance needs to be modified. Specifically, in the original
m-invariance each partition of m tuples has precisely m
distinct sensitive values, or what we call “fine granularity par-
tition” (partitions that cannot be further split without violating
a given “value association” privacy requirement).

In order to prevent both 1
m -value association attacks and

e-value equivalence attacks for all e < m, data cannot always
be published in “fine granularity partitions.”

The reason we focus on e-equivalence attacks with e <
m is that m-invariance already implies the existence of m-
equivalence attacks, since even in a single release, two par-
titions of m records sharing the same set of sensitive values
are vulnerable to an m-equivalence attack by definition. Fur-
thermore, a single release m-invariant table is not vulnerable
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Owner Age Zip Disease
Alice [30-49] [50k-69k] cancer
Bob [30-49] [50k-69k] flu
Chris [30-49] [50k-69k] cancer
Dan [30-49] [50k-69k] flu
Ellen [40-49] [60k-69k] measles
Frank [40-49] [60k-69k] cancer

(a) Merged partitions at T1

Owner Age Zip Disease
Alice 35 53000 flu
Bob 49 55000 flu
Chris 42 65000 cancer
Dan 49 55000 cancer
Ellen 43 62000 measles
Frank 41 67000 cancer

(b) Using Anatomy at T1

TABLE IV
ALTERNATIVE TABLE RELEASE AT T1

Owner Age Zip Disease
Alice [30-49] [50k-69k] cancer
Greg [30-49] [50k-69k] flu
Chris [30-49] [50k-69k] cancer
c1 [30-49] [50k-69k] flu

Ellen [40-49] [50k-69k] measles
Harry [40-49] [50k-69k] cancer

Ian [40-49] [50k-69k] measles
Jane [40-49] [50k-69k] cancer

(a) Merged partitions at T2

Owner Age Zip Disease
Alice 35 53000 flu
Greg 45 60000 flu
Chris 42 65000 cancer
c1 49 51000 cancer

Ellen 43 62000 measles
Harry 42 65000 measles

Ian 45 60000 cancer
Jane 42 65000 cancer

(b) Using Anatomy at T2

TABLE V
ALTERNATIVE TABLE RELEASE AT T2

to any e-equivalance attack for e < m, because any record
in the partition could be associated with any one of these
sensitive values. What we are concerned with is the possibility
that, through multiple releases, even though the sequence is
m-invariant, and thus not vulnerable to 1/e-value association
attacks for e < m (this is the whole goal of m-invariance), the
sequence of tables may be vulnerable to e-value equivalence
attacks for e < m. That is what we seek to prevent.

As an example of why data cannot be published in “fine
granularity partitions” without being vulnerable to both value
association attack and value equivalence attack, let us again
look at the two 2-invariant snapshots in Table Ib and Table IIIb.
Observe that when the tuple Bob is deleted from the partition
{Alice, Bob} in Table Ib, no tuple can be paired with the
remaining tuple Alice to form a new 2-tuple partition if both
value equivalence attacks and value association attacks are to
be prevented. To see this, suppose the tuple Alice is paired
with a tuple that carries any sensitive value other than flu. It
will then violate m-invariance and a value association attack
becomes possible. On the other hand, if the tuple Alice is
grouped with a tuple, say Greg, with sensitive value flu, a
value equivalence attack becomes possible (the adversary will
learn that Greg and Bob have the same sensitive value).

Intuitively, fine granularity partitions expose too much data-
value correspondence structure. Larger partitions, on the other
hand, entail a significant loss of utility. Accordingly, we
propose a hybrid table publishing mechanism that publishes
large partitions while preserving data utility.

Specifically, we first merge partitions sharing the same
signature to a big partition for which we call bucket. So,
for instance, the two {cancer, flu} partitions in Table Ib are
merged into one bucket in Table IVa. The same applies to
Table IIIb, and we get Table Va. Note that the bucket concept
is the same as the bucket used in m-invariance which holds all
data sharing the same signature. It is also worth noting that

there is a syntactic difference between the merged partition
used in our new publishing scheme, which contains multiples
of the signature, and the original m-invariance partitions,
which require all tuples in the same partition to have distinct
sensitive values. However we observe that the risk of linking
any person in the partition to a sensitive value — or essentially
the value-association attack — in the merged partition is still
1
m , the same as that of the original m-invariance. As a result
the new publishing scheme we introduce it is not relaxing the
privacy requirement as defined in the original m-invariance.

We then resort to a previously proposed privacy mechanism
known as Anatomy [25], which publishes quasi-identifiers as
is while perturbing the associations between quasi-identifiers
and sensitive value. This is illustrated in Table IVb and
Table Vb. It has been shown in [25] that Anatomy greatly
improves range query accuracy as compared to generalization-
based anonymization.

Definition 8. Let T̂ be an anonymized table, Ai and vi the i-
th quasi-identifier and its value, As and vs the sensitive value
attribute and its value. Count-style range queries are of the
form:
select count(*) from T̂
where v1lb < A1 < v1ub AND .. vnlb < An < vnub AND As =
vs;

We observe that applying Anatomy on merged partitions
that share the same signature preserves data utility.

Proposition 1. Let T ∗ be a m-invariance table published
using fine granularity partitioning and Anatomy. Let R∗ be the
table where the partitions in T ∗ that share the same signature
are merged. Let Q be any count-style range query. Define the
relative query result difference d = ∣Q(T∗)−Q(R∗)∣

Q(T∗) . We have
the following:

(1) d = 0 if there is no counterfeits in T ∗;
(2) d ≤ max{pb, pq

1−pq } otherwise, where pq denote the
percentage of counterfeit tuples in the query region, and pb
denote the maximum percentage of counterfeits in any buckets.

An explanation of this proposition can be found in the full
version of this paper [11]. The authors in [26] have shown that
empirically the percentage of counterfeit tuples injected by the
m-invariance algorithm is well below 0.1%. As a result, both
pb and pq tend to be small, making the relative difference
between answering queries over R∗ (the proposed hybrid
table publishing using merged partition and Anatomy) and T ∗

(the original m-invariance with fine granularity partition and
Anatomy) insignificant. As we will see, our experimental re-
sults confirm this observation. Note that following the practice
of previous work, Proposition 1 considers utility as defined by
the error in expected counts returned by queries. Alternative
utility definitions, like a less common metric that measures
the range of values that could be returned by count queries,
could leads to lower utility for the merged partitions that we
propose.

Notice in the example in Table IVb and Table Vb, with
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Owner Age Zip Disease
Alice 35 53000 flu
Greg 45 60000 flu
Chris 42 65000 cancer
c1 49 51000 cancer
Ian 45 60000 measles

Jane 42 65000 cancer

TABLE VI
A 2-INVARIANT TABLE AT T3 USING ANATOMY

merged partitions, the adversary can no longer tell whether the
sensitive value of Bob is the same as that of Greg. With this
new table publishing mechanism, a intuitive greedy approach
to prevent e-equivalence attack for all e < m seems to
be simply ensuring that all updates are of at least size m.
However, we show that the new table publishing mechanism
is only part of the solution, and does not completely prevent
e-equivalence attacks for all e < m, as can be illustrated in
the following example.

Example 4. Continuing with the Table IVb, Table Vb in
Example 3, suppose that at time T3, tuples {Ellen, Harry}
are deleted from Table Vb at T2, resulting in Table VI.
And equivalence attack can still happen. First, with g1 :
{{Ellen, Frank} → {measles, cancer}} in Table IVb and
g2 : {{Ian, Jane} → {measles, cancer}} in Table VI, we
can see a 2-equivalence attack involving {Ellen, Frank} and
{Ian, Jane}.

More problematically, one can infer g3 :{{Ellen, Frank,
Ian, Jane} → {cancer, cancer, measles, measles}}
from g1 and g2 using simple composition. Given g3 and
g4 : {{Ellen, Harry, Ian, Jane} → {cancer, cancer,
measles,measles}} in Table Vb we know that Frank and
Harry have the same sensitive value.

Observe in this example that the naive greedy approach
which always inserts/deletes 2 tuples at a time does not prevent
1-equivalence attack; the equivalence-attack problem needs to
be better formalized and a more sophisticated solution to be
developed. This toy example involving only three table snap-
shots also shows how data value correspondence structures
can be composed into value equivalence attack in a fairly
complex way. We will show that the decision problem of e-
equivalence attack for a given e is in general NP-hard.

V. FORMALIZATION OF EQUIVALENCE ATTACK

We formally define equivalence attacks in this section.

Definition 9. Given N partitions {P1, P2, ...PN} of a pub-
lished table series T ∗, the person vector Sk of partition Pk
with respect to a sequence of n individuals R = {r1, r2, ...
rn} is a row vector Sk = [s1, s2, ... sn], where si ∈ {0, 1}
and represents the presence/absence of individual pi in Pk.
Similarly a value vector Uk of partition Pk with respect to a
sequence of m sensitive values V = {v1, v2, ... vm} is a row
vector Uk = [u1, u2, ... um], where ui ∈ ℤ+ is a non-negative
integer that represents the number of occurrences of sensitive
value vi in Pk.

We define the person matrix S to be the N × n matrix
with Sk as row k, or S = [ST1 , S

T
2 , ...S

T
N ]T ; and similarly

the value matrix U as the N ×m matrix with Uk as row k,
U = [UT1 , U

T
2 , ...U

T
n ]
T .

Example 5. As an example of person/value vector, consider
the first partition {Alice, Bob, Chris, Dan}:{flu, flu, cancer,
cancer} in Table IVb. The set of people can be represented
using the vector S1 = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] with respect
to {Alice, Bob, Chris, Dan, Ellen, Frank, Greg, Harry , Ian,
Jane, c1}; while the set of values can be represented by
the value vector U1 = [2, 2, 0] with respect to {cancer, flu,
measles}.

There are 6 partitions in Table IVb, Table Vb and Table VI.
The person matrix is S = [ST1 , S

T
2 , ...S

T
6 ]
T , where S1 corre-

sponds to the set of people in the first partition in Table IVb;
S2 the second partition in Table IVb, S3 the first partition in
Table Vb, so on and so forth. We have the person matrix

S =

∣∣∣∣∣∣∣∣∣∣∣∣∣

S1

S2

S3

S4

S5

S6

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

A B C D E F G H I J c1
1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 1 1 1 0
1 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Similarly, with U1 = [2, 2, 0], etc, we have value matrix

U = [UT1 , U
T
2 , ...U

T
6 ]T :

U =

∣∣∣∣∣∣∣∣∣∣∣∣∣

U1

U2

U3

U4

U5

U6

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

cancer flu meas.
2 2 0
1 0 1
2 2 0
2 0 2
2 2 0
1 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
Definition 10. Let S be the person matrix and U the value
matrix defined above. An instance of an e-equivalence attack
is characterized by a not all-zero vector of weights W =
[w1, w2, ..., wN ], where e = ∣∣W ⋅S∣∣1

2 ∕= 0, such that
(1) W ⋅ U = 0⃗,
(2) W ⋅ S ∈ ℤn.
Additionally, the W that minimizes ∣∣W ⋅ S∣∣1 character-

izes an instance of the minimum equivalence attack, and
Min Eqi(S,U ) = min( ∣∣W ⋅S∣∣12 ) is the minimum equivalence
attack value.

Example 6. We revisit the equivalence attacks identified in
Example 4. The 2-equivalence attack illustrated in Example 4,
{Ellen, Frank} equivalent to {Ian, Jane}, corresponds to the
weight vector W3 = [0, 1, 0, 0, 0,−1]. To see this, W3 ⋅ U =
[0, 0, 0] (condition (1) of Definition 10), suggesting that the
linear combination W3 of sensitive values in partition struc-
tures produces value equivalence. This linear combination W3

can be decoded with W3 ⋅ S = [0, 0, 0, 0, 1, 1, 0, 0,−1,−1, 0],
illustrating the fact that the sensitive value assumed by {Ellen,
Frank} is the same as {Ian, Jane}. Notice e = ∣∣W3⋅S∣∣1

2 =
2, suggesting that this is a 2-equivalence attack. Also ob-
serve in this example how the second entry “1” in W3 =
[0, 1, 0, 0, 0,−1] effectively points to S2 ({Ellen, Frank}) in
S, while the sixth entry “-1” to S6 ({Ian, Jane}).

Additionally the weight vector W4 = [0, 1, 0,−1, 0, 1]
corresponds to the 1-equivalence attack demonstrated in Ex-
ample 4, because we have W4⋅U = [0, 0, 0], e = ∣∣W4⋅S∣∣1

2 = 1,
and W4 ⋅ S = [0, 0, 0, 0, 0, 1, 0, −1, 0, 0, 0], suggesting that
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the sensitive value of Frank is the same as that of Harry.
Note that W ⋅ S ∈ ℤn is required, due to the value

equivalence semantics in equivalence attacks.

Lemma 2. Let W be the weight vector representing an
equivalence attack as defined in Definition 10. The decision
problem of whether Min Eqi(S,U) = e for some e given a
table series T ∗ is independent of W ∈ ℤN or W ∈ ℝN .

This is a useful property that allows us to consider only
W ∈ ℤN . Theorem 1 states the hardness of this minimum
equivalence attack problem, which follows from Lemma 2 and
a reduction from the Shortest Vector problem. Both proofs can
be found in the full version of this paper [11].

Theorem 1. Given person matrix S and value matrix U ,
determining Min Eqi(S,U ) is NP-Hard.

Given Theorem 1, we are unlikely to be able to effi-
ciently determine if the published table series is exactly an
e-equivalence table series for some e, and the problem of
optimally anonymizing given an e-equivalence table series
privacy requirement appears even more daunting. Accordingly
we use a graph-based approximation to anonymize an e-
equivalence table series.

VI. GRAPH BASED ANONYMIZATION

We note that since m-invariance is the state-of-art in pre-
venting value association attacks, orthogonal to the value
equivalence attack this work addresses, we enforce m-
invariance principle in our anonymization using a variant of
m-invariance bucketization algorithm (in Section III). Because
m-invariance imposes a special structure on the people matrix
S and value matrix U , this allows us to simplify the problem
with the following matrix manipulation. We show that even
with the m-invariance constraints, the problem is NP-hard in
the full version of this paper [11].

A. Matrix manipulation

To enable a graph representation of the anonymization
problem, the matrix consisting of person/value vectors is
processed as follows.

Matrix Partition. Let the person matrix be
S = [ST1 , S

T
2 , ...S

T
N ]T , and the value matrix U =

[UT1 , U
T
2 , ...U

T
N ]T . Partition the set of value vectors

{U1, U2, ..., UN} into Q̂1, Q̂2 ..., Q̂M , such that for any
Ur, Us ∈ Q̂i, Ur and Us are pairwise linearly dependent; and
for any Ur ∈ Q̂i and Us ∈ Q̂j , i ∕= j, Ur are Us are linearly
independent. Partition the person vectors {S1, S2, ..., SN}
into P̂1, P̂2 ..., P̂M accordingly, such that Sr ∈ P̂i if and
only if Ur ∈ Q̂i.

Let Pi be the sub-matrix generated by adjoining rows
vectors from P̂i, so that Pi = [ST�1

, ST�2
, ...]T for all S�k

∈ P̂i.
Maintaining the same order we construct Qi = [UT�1

, UT�2
, ...]T

for all U�k
∈ Q̂i.

Example 7. We revisit Example 6, which identifies equivalence
attack over Table IVb, Table Vb and Table VI. Partition U
into Q1 and Q2, where Q1 = [UT1 , U

T
3 , U

T
5 ]T and Q2 =

[UT2 , U
T
4 , U

T
6 ]T ; accordingly partition S into P1 = [ST1 ,

ST3 , S
T
5 ]
T and P2 = [ST2 , S

T
4 , S

T
6 ]
T . Observe that the row

vectors in Q1 are pairwise linearly dependent (they come from
partitions of the same signature), and the same is true for Q2.

P1 =

∣∣∣∣∣∣∣ S1

S3

S5

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
A B C D G c1
1 1 1 1 0 0
1 0 1 0 1 1
1 0 1 0 1 1

∣∣∣∣∣∣∣ , Q1 =

∣∣∣∣∣∣∣ U1

U3

U5

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
cancer flumeas.

2 2 0
2 2 0
2 2 0

∣∣∣∣∣∣∣
With P1, Q1 we can derive 2-equivalence attacks W ′1 =

[1,−1, 0], W ′2 = [1, 0,−1].

P2 =

∣∣∣∣∣∣∣ S2

S4

S6

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
E F H I J
1 1 0 0 0
1 0 1 1 1
0 0 0 1 1

∣∣∣∣∣∣∣ , Q2 =

∣∣∣∣∣∣∣ U2

U4

U6

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
cancer flu meas.

1 0 1
2 0 2
1 0 1

∣∣∣∣∣∣∣
Similarly with P2, Q2 possible equivalence attacks include

W ′3 = [1, 0,−1] and W ′4 = [1,−1, 1], matching the attacks
identified in Example 6. Note that some columns in P1 and
P2 are omitted for clarity of presentation, as they are always
0 due to m-invariance.

Lemma 3. Let Pi and Qi, 1 ≤ i ≤ M , be the partitioned
sub-matrices for S and U respectively. If S and U follows
m-invariance for some m and Min Eqi(S,U) ≤ m, then
we have the following equality: mini (Min Eqi(Pi, Qi)) =
Min Eqi(S,U).

Since we enforce m-invariance, which in its original form
implies the existence of m-equivalence attacks (any two m-
tuple partitions with the same signature allows for an m-
equivalence attack), if we only consider e-equivalence attacks
with e ≤ m, by Lemma 3 we can partition person/value
vectors in the matrices according to the signatures of their
original partitions, and compute the minimum equivalence
attack individually. This restriction e ≤ m will be relaxed
to any e-value in min-cut based anonymization.

Delta Encoding. We publish merged partitions that share
the same signature in one bucket in each snapshot as discussed
in Section IV-A. In each partitioned matrix, we order row
vectors by timestamp, and then use a delta encoding scheme
to facilitate its representation as a graph. Given a person matrix
S = [ST1 , S

T
2 , ..., S

T
N ]T , we define the recoded person matrix

as S′ = [ST1 , S
T
2 − ST1 , ..., S

T
N − STN−1]

T . Similarly given
a value matrix U = [UT1 , U

T
2 , ..., U

T
N ]T , the recoded vector

matrix is U ′ = [UT1 , U
T
2 − UT1 , ..., UTN − UTN−1]T .

Example 8. P1 and Q1 in Example 7 are recoded as

P ′1 =

∣∣∣∣∣∣∣
A B C D G c1
1 1 1 1 0 0
0 −1 0 −1 1 1
0 0 0 0 0 0

∣∣∣∣∣∣∣ , Q′1 =

∣∣∣∣∣∣∣
cancer flu meas.

2 2 0
0 0 0
0 0 0

∣∣∣∣∣∣∣
The same 2-equivalence attack in Example 7 is represented

with W ′1
′ =W ′2

′ = [0, 1, 0]. Similarly with

P ′2 =

∣∣∣∣∣∣∣
E F H I J
1 1 0 0 0
0 −1 1 1 1
−1 0 −1 0 0

∣∣∣∣∣∣∣ , Q′2 =

∣∣∣∣∣∣∣
cancer flu meas.

1 0 1
1 0 1
−1 0 −1

∣∣∣∣∣∣∣
there is a 2-equivalence attack W ′′3 = [0, 1, 1] and a 1-

equivalence attack W ′′4 = [1, 0, 1].

The recoded person matrix can be interpreted as follows.
Each row vector corresponds to a bucket snapshot (merged
partitions with the same signature), and each column repre-
sents a tuple. Additionally, each column now has no more
than two non-zero entries: a “1” entry for the first snapshot
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Fig. 2. Graph of buckt1 with sig. {cancer, flu} in Example 9

at which the tuple is inserted, and a “-1” entry indicating the
snapshot at which the tuple is deleted.

Lemma 4. Let P ′, Q′ be the recoded sub-matrix of P , Q as
described above. We have the following equality: Min Eqi(P ′,
Q′) = Min Eqi(P , Q).

This is because if there is a minimum equivalence attack
W = {w1, w2, w3, ..., wn} for P ′, Q′, then W ′ = {w1, w1 +
w2, w1 + w2 + w3, ..., w1 + .. + wn} must be the minimum
equivalence attack for P,Q by adjustment of weight vector.

B. Graph based representation

Algorithm 1 Graph construction
BuildGraph (pMatrix, vMatrix)
add a special node 0
i=1
for each row vector pVector in pMatrix and corresponding
row vector vVector in vMatrix do

add a node i representing the row vector i
for each “1” entry at position c in pVector do

increment the weight of the edge from node i to node
0 (add edge if one does not exist)

end for
for each “-1” entry at position c in pVector do

find node j where the corresponding j-th row vector in
pMatrix has an “1” entry at position c
decrement the weight of the edge from node j to node
0 (remove edge if weight is 0)
increment the weight of the edge from node j to node
i (add edge if one does not exist)

end for
i++

end for

Next the matrices are translated to a graph as by Algo-
rithm 1. A graph is built for each partitioned person matrix
Pi, where each row vector Sk ∈ Pi will be represented by a
graph node �k (which maps to a bucket snapshot). For every
vector Sk, if there is a “1” entry, add an edge of weight 1
from node �k representing Sk to the special node �0. If there
is a “-1” entry at column j, find the row vector Sl in which
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1
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3
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1
w=1 (E)

3

(c) T3

Fig. 3. Graph of buckt2 with sig. {cancer, meas.} in Example 9

there is a “1” entry at the same column j (there has to be
one for the deletion has to happen after insertion), increment
the weight of edge �l to �k, and decrement weight of edge �l
to �0. In the end, each tuple is represented by an edge that
connects two graph nodes representing the snapshot in which
it is inserted and deleted, with the exception of all tuples not
yet deleted, which are represented by edges from snapshot it
is inserted to �0.

Example 9. In this example we translate the matrix in
Example 8 into graphs. First we translate P ′1 in Example 8,
which corresponds to the first partition in Table IVb, Table Vb
and Table VI, to Figure 2. The special node 0 is initially added
as the first node in the graph. At time T1, the first row vector
of P ′1 is processed by adding an edge with w = 4(A,B,C,D)
from node 1 to node 0, leading to Figure 2a. At T2, for the
second row vector in P ′1, an edge with w = 2(G, c1) is inserted
from node 2 to node 0. Furthermore, the tuples for Bob and
Ellen are deleted in this snapshot, so we decrement the weight
of edge (1 → 0) by 2 and increment the weight of edge
(1→ 2) by 2, resulting the graph in Figure 2b. At T3, node 3
is added with no edge modification due to the third, all-zero
person vector in P ′1. Likewise P ′2 can be translated to Figure 3
following the same steps.

In these graphs the equivalence attacks identified in Ex-
ample 8 are marked by the dashed lines. For example, in
Figure 2c, node 2 has a cut with in-edge of weight 2 and
an out-edge of weight 2, suggesting a 2-equivalence attack
{Bob, Dan} ↔ {Greg, c1}. Similarly, in Figure 3c, collectively
node 2 and node 3 have a cut with an in-edge of weight 2
and out-edge of weight 2, indicating a 2-equivalence attack
{Ellen, Frank} ↔ {Ian, Jane}. In the same graph node 1
and node 3 have a cut with weight 1 in-edge and a weight 1
out-edge, illustrating the minimum-equivalence attack in this
graph {Frank} ↔ {Harry}.

Theorem 2. Let G be the graph representation of the person
matrix S and value matrix U , and G′ be the undirected version
of graph G. Let the connected components of G′ be Gi, let
ci be the value of the min-cut of component Gi. Let c be
the minimum non-zero value among ci. We have the following
inequality: 2∗ Min Eqi(S, U ) ≥ c.
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Algorithm 2 Graph based min-cut anonymization
Anonymize (bucketSet, graphSet, pMatrixSet, insertion,
deletion, m, e)
for each bucket in bucketSet do

graph ← current graph of the bucket in graphSet
pMatrix ← current person matrix of the bucket in pMa-
trixSet
signature ← the signature of bucket
necessaryInsertionCurrBucket ← AnonymizeBucket
(bucket, graph, insertion, deletion, m, e)
remove necessaryInsertionCurrBucket from insertion;
add counterfeits if needed

end for
bucketize remaining insertion data in insertion using m-
invariance bucketization
update graph in graphSet for bucket that has new insertions.

This theorem states a necessary condition of an e-
equivalence attack, that is the min-cut value of connected
components of this graph has to be no greater than 2 ∗ e
(We give a proof of this fact in the full version of this
paper [11]). On the other hand, in order to anonymize an e-
equivalence table series, it would be sufficient to ensure that
the min-cut value of connected components is greater than
2 ∗ (e− 1), since then the value of the minimum equivalence
attack Min Eqi(S, U ) has to be greater than e − 1, thus
satisfying the e-equivalence table series requirement.

Algorithm 3 Anonymization for each bucket
AnonymizeBucket(bucket, graph, insertion, deletion, m,e)
deletionCurrBucket ← deletion in this bucket
deletionCurrBucket ← deletionCurrBucket ∪ all counter-
feits tuples in bucket
insertionCurrBucket ← tuples necessary to ensure m-
invariance
newGraph ← BuildGraph(graph, insertionCurrBucket,
deletionCurrBucket)
while (MinCut(newGraph) ≤ 2 ∗ (e− 1)) do

insertionCurrBucket = insertionCurrBucket ∪ signature
newGraph ← BuildGraph(graph, insertionCurrBucket,
deletionCurrBucket)

end while
update the graph of this bucket to newGraph
return insertionCurrBucket

Our anonymization algorithm produces a 1
m -value associa-

tion, e-value equivalence table series as follows. Algorithm 2
(Anonymize) calls Algorithm 3 (AnonymizeBucket) for each
graph translated from a sub-matrix, which corresponds to a
history of bucket snapshots that has all tuples sharing the
same signature. In AnonymizeBucket, all counterfeits in the
current bucket are greedily marked as deleted (to attempt to
reduce the number of counterfeits). We then check the current
tuples in the bucket, to determine the minimal set of tuples
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Fig. 4. Graph of buckt2 with sig. {cancer, meas.} in Example 10

Owner QIs Disease
Alice qi1 cancer
Bob qi2 flu

Chris qi3 cancer
Dan qi4 flu
Ellen qi5 meas.
Frank qi6 cancer
c2 qi′2 meas.
c3 qi′3 cancer

(a) T1

Owner QIs Disease
Alice qi1 cancer
Greg qi7 flu
Chris qi3 cancer
c1 qi′1 flu

Ellen qi5 meas.
Harry qi8 cancer

Ian qi9 meas.
Jane qi10 cancer

(b) T2

Owner QIs Disease
Alice qi1 cancer
Greg qi7 flu
Chris qi3 cancer
c1 qi′1 flu
Ian qi9 meas.
Jane qi10 cancer
c4 qi′4 meas.
c5 qi′5 cancer

(c) T3

TABLE VII
A 1

2
-VALUE ASSOCIATION, 2-VALUE EQUIVALENCE TABLE SERIES

necessary to be inserted in order to ensure 1
m -value association

(by making sure that each sensitive value has equal numbers
of tuples in the bucket, similar to m-invariance). Next we
check, after applying the deletion and minimal insertion, if
the min-cut value of the new graph will ensure an e-value
equivalence table series. We can return if the min-cut of the
graph is greater than 2∗ (e−1) (as per Theorem 2); otherwise
we iteratively insert into the bucket a set of m tuples whose
sensitive values are exactly the signature (such that 1

m -value
association is always maintained), until the min-cut value of
the new graph becomes greater than 2∗(e−1), at which point
we stop and return (this is guaranteed to stop by Lemma 5).
In this process whenever there is a need to insert some tuple
that is absent in the global set of inserted tuples we make up a
counterfeit accordingly. After all buckets have been processed,
tuples that remain to be inserted will be bucketized in the same
manner as the bucketization in m-invariance.

Lemma 5. In AnonymizeBucket procedure, the iterative pro-
cess where a set of m tuples is inserted until the min-cut value
of the new graph is greater than 2 ∗ (e− 1) is guaranteed to
stop.

A proof of Lemma 5 can be found in the full version of
this paper [11].

Example 10. We apply this algorithm on our running example,
assuming the privacy requirement is m = 2 and e = 2. Note
that according to Theorem 2, a sufficient condition for a 2-
value equivalence table series is that the value of the min-cut
of the graph has to be greater than 2 ∗ (2− 1) = 2.
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At time T1, the tuples {Alice, Bob, Chris, Dan} are buck-
etized to the bucket1 with signature {cancer, flu} by m-
invariance bucketization (Figure 1 in Example 2), resulting
to the graph in Figure 2a. The min-cut of this graph is 4,
satisfying the equivalence publishing requirement. Similarly
tuples {Ellen, Frank} are placed in bucket2 with signature
{measles, cancer}, however the min-cut value of the corre-
sponding graph is 2 in Figure 3a. So our algorithm inserts
two more tuples with value {measles, cancer} to increase the
min-cut value. There are no more tuples with value measles
or cancer to be inserted, so we make up two counterfeits c2,
c3 with values measles and cancer. The new insertion batch
{Ellen, Frank, c2, c3} leads to the graph in Figure 4a. This
time the min-cut becomes 4, a sufficient condition that no 1-
equivalence attack is possible.

At T2, the tuples {Bob, Dan} are deleted from bucket1,
leaving two tuples with value cancer, which violates the 1

m -
value association requirement (Figure 1b in Example 2). Given
that there is only one tuple (Greg) with flu to be inserted, we
make another counterfeit c1 with value flu and insert {Greg,
c1} into bucket1. The resulting graph is in Figure 2b, which
has min-cut of value 4 and is sufficient. Now in bucket2, where
tuple Frank was deleted, we also greedily mark {c2, c3} as
deleted, leaving only one tuple with value measles. Again to
ensure 1

m -value association, we need to insert at least one
tuple with value cancer, so we insert tuple Harry. However
the min-cut value of the resulting graph is 2, accordingly we
further insert a pair of {cancer, flu} tuples, {Ian, Jane} in
addition to Harry, which gives us Figure 4b. The min-cut
value of this graph is 4, ensuring a 2-equivalence table series.
Observe that in this example, the counterfeits c2, c3 that were
previously inserted are successfully removed.

Finally, at T3, with no insertion and deletion in bucket1,
we get the graph in Figure 2c. Note that the minimum min-cut
value of all connected components is still 4 (the min-cut of a
single node graph is undefined), so we leave bucket1 as is.
In bucket2, the tuples {Ellen, Harry} are deleted, resulting a
graph of min-cut of 2. We insert two counterfeits {c4, c5} with
values {measles, cancer} given the absence of any insertion
tuples, which boosts the value of min-cut to 4 (Figure 4c). The
resulting table series are shown in Table VII.

VII. EXPERIMENTS

A. Experimental Setup

In our experiments, we used the same data sets as previous
work on m-invariance [26], namely the two census data sets
OCC and SAL that are downloadable from http://ipums.org.
Each data set contains 600K tuples from American census
data.

OCC data set has a sensitive attribute Occupation, in
addition to four QI attributes, Age, Gender, Education and
Birthplace. SAL has the same set of four QI attributes,
but a different sensitive column Salary. All attribute values
are discrete, and their domain size information is shown in
Table VIII.

attribute Age Gender Education Birthplace Occupation Salary
domain size 79 2 17 57 50 50

TABLE VIII
ATTRIBUTE DOMAIN SIZE OF OCC AND SAL DATA SETS

In order to simulate insertion and deletion, we adopt the
same method used in prior work [26], which is to randomly
draw a subset of tuples from the original data set as an
update batch. Specifically, we first randomly select d tuples
from the original data set of D tuples as the initial batch T0.
Subsequently, at each time stamp i, i ≥ 1, we randomly delete
r tuples from Ti−1, while picking r tuples from the pool of
remaining data as the insertion batch into Ti−1, for a total of
D−d
r timestamps. By default d is set at 200k, r at 20k, which

gives us D−d
r = 600k−200k

20k = 20 snapshots.
In addition, we synthetically generate extremely skewed

update data to “stress test” the algorithms. Since the randomly
chosen insertion/deletion batches are well-behaved in the sense
that the distribution of sensitive values is close to the overall
value distribution of the data pool, it is interesting to see how
the anonymization algorithms behave when the distribution
of sensitive value in update batch becomes very skewed.
We explore the behavior of the anonymization algorithms in
response to the updates of varied skewness. Conceivably the
more skewed the update batch, the more difficult it is to
anonymize and more counterfeits may be necessary.

# tuples

min+49*s

min+2s

min
min+s

sensitive value‐id1 2 49 …0

Fig. 5. Synthetic data generation

We construct synthetic insertion batches parameterized by a
skewness parameter s as follows. First build a linear function
with slope s over the domain of natural numbers [0, N − 1],
where N is the domain size of sensitive values (in our case
50), as the probability mass function as shown in Figure 5.
Then randomly map each sensitive value to [0, N − 1], and
populate sensitive values in the update batch according to
the probability mass, i.e., min number of tuples for the least
frequent sensitive value, and min+49∗s for the most frequent
one. Note that in order to maintain that the sum of all sensitive
values equal to r (the size of the update batch), min will
be set to appropriate values according to slope s. We are
able to vary the skewness from no skewness (s = 0) to
extreme skewness(s = 15, in which case min approaches 0).
Note that the mapping from sensitive values to [0, N − 1]
is randomly generated each time, creating different skewed
insertion batches. On the other hand, the deletion batches are
randomly drawn from previous snapshot of database. We apply
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Fig. 6. Time vs. # of tuples compromised in m-invariance

this skewed update stream over both SAL and OCC data sets.
We evaluate both m-invariance [26] and our e-equivalence

anonymization algorithm using our implementations of the al-
gorithms in C++. Execution time is reported from experiments
on an Intel Pentium4 3GHz server with 2GB memory running
Linux. The iGraph library [1] is used to compute graph min-
cut. Although we vary privacy parameters, by default we set
m in m-invariance to 10, and e in e-equivalence to 5.

B. Experimental Results

Existing Anonymization and Equivalence Attacks. In the
first set of experiments, we show that data can be compromised
by equivalence attacks via partitioned table structures. We first
feed the state of art m-invariance algorithm [26] and our e-
equivalence algorithm with the same sequence update batches
randomly generated as described in Section VII-A; and then
we count the number of tuples compromised by e-equivalence
attacks, with e < 5. The result is plotted in Figure 6. The upper
curve in each graph denotes the number of tuples compromised
if the original m-invariance algorithm is used. Because the
original m-invariance splits tuples in the same bucket into
fine-granularity partitions, an exhaustive check of equivalence
attacks becomes too computational expensive beyond the fifth
snapshot, where the curve stops and the number of tuples
compromised is already significant. Additionally, we alter the
m-invariance algorithm by not splitting buckets into fine-
granularity partitions and show the number of compromised
tuples in the lower curve. Observe that even in this case the
number of tuples compromised is still significant after 20
updates. In comparison, no tuples will be compromised if our
e-equivalence anonymization is used.

While the more rigorous e-equivalence anonymization pro-
posed in this work affords protection against equivalence
attacks, one might wonder if the approach causes a loss of
utility. Encouragingly, we found that the cost of utility is
minimal, as measured by the number of counterfeits introduced
and the query error rate.

Number of Counterfeits Injected. Similar to m-
invariance [26], e-equivalence may need to use counterfeits
in order to release data conforming to given privacy criteria.
The number of counterfeits is an important metric, with the
intuition that fewer counterfeits is better.
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Fig. 7. Time vs. # of counterfeits with random updates
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Fig. 8. Time vs. # of counterfeits with skewed update

Figure 7 shows the comparison of e-equivalence and m-
invariance, with m = 10 and various values of e. While
e-equivalence anonymization uses slightly more counterfeits
than m-invariance, both only inject a small number of coun-
terfeits (well under 100, which is a very small portion of the
200k tuples concurrently published).

In addition, we “stress-test” the algorithm in face of skewed
updates synthetically generated as described in Section VII-A,
with results reported in Figure 8. When the update batch is
moderately skewed (with skewness s < 9), both algorithms
use no counterfeits. As the skewness parameter s goes up,
more counterfeits are injected by both algorithms (in order
to make up for the sudden rise/drop of tuples of certain
sensitive value, say “flu”). However, even in the extremely
skewed case (s = 15, the largest skewness parameter possible
in our data set), the number of counterfeits introduced is
still proportionally insignificant to total number of tuples.
Furthermore, observe that the number of counterfeits used by
e-equivalence is rather close to m-invariance, again suggesting
that the cost of preventing e-equivalence attack is insignificant.

Range Query Error Rate. Relative query error rate is
a commonly used method to measure utility [25], [26]. It is
defined as ∣act−est∣/act, where act and est are the actual and
estimated count of tuples satisfying the count query, using the
original and anonymized table respectively. Figure 9 compares
the utility of anonymizations produced by m-invariance (with
Anatomy) and e-equivalence algorithm (with merged partitions
in addition to Anatomy), using the relative query error rate
of 1000 randomly generated range queries after applying the
sequence of updates randomly drawn from the original data
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Fig. 9. Selectivity vs. error rate
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Fig. 10. Elapsed time vs. e

set. While the error rate goes up for more selective queries,
the differences between m-invariance and e-equivalence are
not significant. Similarly, the difference in error rate is also
negligible when skewed updates are used. This is encouraging,
for it indicates that our graph min-cut based anonymization
algorithm can protect the new type of equivalence attack with
virtually no additional utility penalty over the previous state-
of-art m-invariance anonymization.

Execution Time. Figure 10 compares the execution time
for anonymization for m-invariance with our e-equivalence
anonymization. The e-equivalence anonymization runs slightly
slower than m-invariance due to the overhead of the graph
min-cut computation.

VIII. CONCLUSIONS

In this paper we studied a new type of adversarial attack,
equivalence attacks, that arises in anonymizing dynamic data
sets. We propose a graph-based anonymization algorithm to
protect against such attacks. Our experimental studies show
that this new algorithm addresses equivalence attacks effi-
ciently and effectively, and can be applied to anonymizing
a dynamic data set.

There are several directions in which this work can be
extended. First, while we have greatly reduced the storage and
computation overhead by capturing the structural information
embedded in the released table series using graphs, it would be
interesting to explore the possibilities of developing a graph
reduction algorithm that can further reduce the size of the
graph that needs to be maintained. Second, this work, like
most existing work that focuses on syntactic anonymization,

is susceptible to certain types of adversarial attacks like
minimality attack [24] and deFinetti attack [15]. Extending the
current work to address such weakness would be interesting
future work.
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