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ABSTRACT

One of the main data resources used in many studies over the
past two decades for spoken language understanding (SLU) research
in spoken dialog systems is the airline travel information system
(ATIS) corpus. Two primary tasks in SLU are intent determination
(ID) and slot filling (SF). Recent studies reported error rates below
5% for both of these tasks employing discriminative machine learn-
ing techniques with the ATIS test set. While these low error rates
may suggest that this task is close to being solved, further analysis
reveals the continued utility of ATIS as a research corpus. In this pa-
per, our goal is not experimenting with domain specific techniques or
features which can help with the remaining SLU errors, but instead
exploring methods to realize this utility via extensive error analysis.
We conclude that even with such low error rates, ATIS test set still
includes many unseen example categories and sequences, hence re-
quires more data. Better yet, new annotated larger data sets from
more complex tasks with realistic utterances can avoid over-tuning
in terms of modeling and feature design. We believe that advance-
ments in SLU can be achieved by having more naturally spoken data
sets and employing more linguistically motivated features while pre-
serving robustness due to speech recognition noise and variance due
to natural language.

Index Terms— spoken language understanding, ATIS, discrim-
inative training

1. INTRODUCTION

Spoken language understanding (SLU) aims to extract the meaning
of the speech utterances. While understanding language is still con-
sidered an unsolved problem, in the last decade, a variety of practical
goal-oriented conversational understanding systems have been built
for limited domains. These systems aim to automatically identify the
intent of the user as expressed in natural language, extract associated
arguments or slots, and take actions accordingly to satisfy the user’s
requests. In such systems, the speaker’s utterance is typically recog-
nized using an automatic speech recognizer (ASR). Then the intent
of the speaker is identified from the recognized word sequence using
an SLU component. Finally, a dialog or task manager (DM) inter-
acts with the user (not necessarily in natural language) and helps the
user achieve the task that the system is designed to support.

In the early 90s, DARPA (Defense Advanced Research Program
Agency) initiated the Airline Travel Information System (ATIS) pro-
ject. The ATIS task consisted of spoken queries on flight-related in-
formation. An example utterance is I want to fly to Boston from New
York next week. Understanding was reduced to the problem of ex-
tracting task-specific arguments, such as Destination and Departure
Date. Participating systems employed either a data-driven statistical
approach [1, 2] or a knowledge-based approach [3, 4, 5].

Almost simultaneously with the semantic frame filling-based
SLU approaches, a new task emerged motivated by the success of
the early commercial interactive voice response (IVR) applications
used in call centers. The SLU was framed as classifying users’ utter-
ances into predefined categories (called as intents or call-types) [6].

The biggest difference between the call classification systems
and semantic frame filling systems is that the former does not ex-
plicitly seek to determine the arguments provided by the user. The
main goal is routing the call to an appropriate call center depart-
ment. The arguments provided by the user are important only in the
sense that they help make the right classification. While this has
been a totally different perspective for the task of SLU, it was ac-
tually complementary to template filling in that each call-type can
be viewed as a template to be filled. For example, in the case of
the DARPA ATIS project, while the primary intent (or goal) was
Flight, users also asked about many other things such as Ground
transportation or Airplane specifications. The program also defined
specialized templates for these less frequent intents. This led to a
seamless integration of intent determination (ID) and slot filling (SF)
based SLU approaches. This integrated approach actually yielded
improved end-to-end automation rates as compared to the previous
decoupled and sequential approaches. For example, Jeong et al [7]
proposed to model these two systems jointly using a triangular chain
conditional random field (CRF).

In this paper, rather than focus on specific techniques or features
to improve ID and SF accuracy, our goal is to assess the continued
utility of the ATIS corpus given the two decades of research it has
supported. In the next section, we briefly describe the ATIS cor-
pus and then discuss the evaluation metrics for ID and SF. In Sec-
tion 4, we present the state-of-the-art discriminative training efforts
for both ID and SF for the task of ATIS. Finally, in Sections 5 and 6
we present our detailed analyses on the errors we have seen using ID
and SF models, respectively, with comparable performance to those
reported in the literature. We will show that, by categorizing the er-
roneous cases that remain after N-fold cross validation experiments,
ATIS is still useful and suggests future research directions in SLU.

2. AIRLINE TRAVEL INFORMATION (ATIS) CORPUS

An important by-product of the DARPA ATIS project was the ATIS
corpus. This corpus is the most commonly used data set for SLU
research [8]. The corpus has seventeen different intents, such as
Flight or Aircraft capacity. The prior distribution is, however, heav-
ily skewed, and the most frequent intent, Flight represents about
70% of the traffic. Table 1 shows the frequency of the intents in
this corpus for training and test sets.

In this paper, we use the ATIS corpus as used in He and Young [9]
and Raymond and Riccardi [10]. The training set contains 4,978 ut-

19978-1-4244-7903-0/10/$26.00 ©2010 IEEE SLT 2010



Intent Training Set Test Set
Abbreviation 2.4% 3.6%

Aircraft 1.6% 0.9%
Airfare 9.0% 5.8%
Airline 3.4% 4.3%
Airport 0.5% 2.0%

Capacity 0.4% 2.4%
City 0.3% 0.6%

Day Name 0.1% 0.1%
Distance 0.4% 1.1%

Flight 73.1% 71.6%
Flight No 0.3% 1.0%

Flight Time 1.2% 0.1%
Ground Fare 0.4% 0.8%

Ground Service 5.5% 4.0%
Meal 0.1% 0.6%

Quantity 1.1% 0.9%
Restriction 0.3% 0.1%

Table 1. The frequency of intents for the training and test sets.

Utterance How much is the cheapest flight from
Boston to New York tomorrow morning?

Goal: Airfare

Cost Relative cheapest
Depart City Boston
Arrival City New York
Depart Date.Relative tomorrow
Depart Time.Period morning

Table 2. An example utterance from the ATIS dataset.

terances selected from the Class A (context independent) training
data in the ATIS-2 and ATIS-3 corpora, while the test set contains
893 utterances from the ATIS-3 Nov93 and Dec94 datasets. Each
utterance has its named entities marked via table lookup, includ-
ing domain specific entities such as city, airline, airport names, and
dates.

The ATIS utterances are represented using semantic frames, where
each sentence has a goal or goals (a.k.a. intent) and slots filled with
phrases. The values of the slots are not normalized or interpreted.
An example utterance with annotations is shown in Table 2.

3. EVALUATION METRICS

The most commonly used metrics for ID and SF are class (or slot)
error rate (ER) and F-Measure. The simpler metric ER for ID can
be computed as:

ERID =
# misclassified utterances

# utterances

Note that one utterance can have more than one intent. A typical
example is Can you tell me my balance? I need to make a transfer.
In most cases, where the second intent is generic (a greeting, small
talk with the human agent) or vague, it is ignored. If none of the true
classes is selected, it is counted as a misclassification.

For SF, the error rate can be computed in two ways: The more
common metric is the F-measure using the slots as units. This metric
is similar to what is being used for other sequence classification tasks

in the natural language processing community, such as parsing and
named entity extraction. In this technique, usually the IOB schema
is adopted, where each of the words are tagged with their position in
the slot: beginning (B), in (I) or other (O). Then, recall and precision
values are computed for each of the slots. A slot is considered to be
correct if its range and type are correct. The F-Measure is defined as
the harmonic mean of recall and precision:

F −Measure =
2×Recall × Precision

Recall + Precision

where

Recall =
# correct slots found

# true slots

Precision =
# correct slots found

# found slots
.

4. BACKGROUND ON USING DISCRIMINATIVE
CLASSIFIERS FOR SLU

With advances in machine learning over the last decade, especially
in discriminative classification techniques, researchers have framed
the ID problem as a sample classification task and SF as a sequence
classification task. Typically, word n-grams are used as features af-
ter preprocessing with generic entities, such as dates, locations, or
phone numbers. Because of the very large dimension of the input
space, large margin classifiers such as SVMs [11] or Adaboost[12]
were found to be very good candidates for ID and CRFs [13] for SF.
To take into account context, the recent trend is to match n-grams (a
substring of n words) rather than words.

As discovered, data driven approaches are very well-suited for
processing spontaneous spoken utterances. The data driven approaches
are typically more robust to sentences that are not well-formed gram-
matically, which occurs frequently in spontaneous speech. Even in
broadcast conversations where participants are very well trained and
prepared, a large percentage of the utterances have disfluencies: rep-
etitions, false starts, and filler words (e.g., uh) [14]. Furthermore,
speech recognition introduces significant “noise” to the SLU com-
ponent caused by background noise, mismatched domains, incor-
rect recognition of proper names (such as city or person names), and
reduced accuracy due to sub-real time processing requirements. A
typical call routing system operates at around 20%-30% word error
rate; one out of every three to five words is wrong [15]. Given that
the researchers in this study also determined that one third of the ID
errors are due to speech recognition noise, robust methods for spon-
taneous speech recognition are critically important for successful ID
and SF in SLU systems. To this end, researchers have proposed
many methods ranging from N-best rescoring, exploiting word con-
fusion networks, and leveraging dialog context as prior knowledge
(e.g., [15]).

4.1. Intent Determination

For ID, early work with discriminative classification algorithms was
completed on the AT&T HMIHY system [6] using the Boostexter
tool, an implementation of the AdaBoost.MH multiclass multilabel
classification algorithm [12]. Hakkani-Tür et al. extended this work
by using a lattice of syntactic and semantic features [16]. Discrimi-
native call classification systems employing large margin classifiers
(e.g., support vector machines) include work by Haffner et al. [17],
who proposed a global optimization process based on an optimal
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Correct-Estimated a b b d e f g h i j k l m n o p q

a. Abbreviation 30 2

b. Aircraft 6 3

c. Airfare 64 1

d. Airline 37 2

e. Airport 15 2 1

f. Capacity 1 5 13 2

g. City 3 2

h. Day Name 2

i. Distance 9 1

j. Flight 1 1 1 623

k. Flight No 2 6

l. Flight Time 1

m. Ground Fare 1 3 3

n. Ground Service 36

o. Meal 5

p. Quantity 8

q. Restriction 1

Table 3. The confusion matrix for intent determination.

channel communication model that allowed a combination of het-
erogeneous binary classifiers. This approach decreased the call-type
classification error rate for AT&T’s HMIHY natural dialog system
significantly, especially the false rejection rates.

Other work by Kuo and Lee [18] at Bell Labs proposed the use
of discriminative training on the routing matrix, significantly im-
proving their vector-based call routing system [19] for low rejection
rates. Their approach is based on using the minimum classification
error (MCE) criterion. Later they extended this approach to include
Boosting and automatic relevance feedback (ARF) [20]. Cox [21]
proposed the use of generalized probabilistic descent (GPD), correc-
tive training (CT), and linear discriminant analysis (LDA).

Finally, Chelba et al. proposed using Maximum Entropy models
for ID, and compared the performance with a Naive Bayes approach
with the ATIS corpus. The discriminative method resulted in half
the classification error rate compared to Naive Bayes on this highly
skewed data set. They have reported about 4.8% top class error rate
using a slightly different training and test corpora than the one used
in this paper.

4.2. Slot Filling

For SF, the ATIS corpus has been extensively studied from the early
days of the DARPA ATIS project. However, the use of discrimina-
tive classification algorithms is more recent. Some notable studies
include the following:

Wang and Acero [22] compared the use of CRF, perceptron,
large margin, and MCE using stochastic gradient descent (SGD) for
SF in the ATIS domain. They obtained significantly reduced slot er-
ror rates, with best performance achieved by CRF (though it was the
slowest to train).

Almost simultaneously Jeong and Lee [7] proposed the use of
CRF, extended by non-local features, which are important to disam-
biguate the type of the slot. For example, a day can be the arrival
day, departure day, or the return day. If the contextual cues disam-
biguating them are beyond the immediate context, it is not easy for
the classifier to choose the correct class. Using non-local trigger
features automatically extracted from the training data is shown to
improve the performance significantly.

Finally, Raymond and Riccardi [10] compared SVM and CRF
with generative models for the ATIS task. They concluded that dis-

criminative methods perform significantly better, and furthermore, it
is possible to incorporate a-priori information or long distance fea-
tures easily. For example they added features such as “Does this
utterance have the verb arrive”. This resulted in about 10% rela-
tive reduction in slot error rate. The design of such features usually
requires domain knowledge.

5. ANALYSIS OF INTENT DETERMINATION IN ATIS

In this section, our goal is to analyze the errors of a state-of-the-art
ID system for the ATIS domain, cluster the errors, and then cate-
gorize the error types. These categories of error types will suggest
potential areas of research that could yield improved accuracy. All
experiments and analyses are performed using manual transcriptions
of the training and test sets to isolate the study from noise introduced
by the speech recognizer.

5.1. Discriminative Training and Experiments

For the following experiments, we used the ATIS corpus as described
previously in Section 2. Since the superior performance of the dis-
criminative training algorithms has been shown by the earlier work,
we have employed the AdaBoost.MH algorithm in this study. We
used only word n-grams as features. We have not optimized Boost-
ing parameters on a tuning set nor learned weak classifiers. The data
is normalized to lower case, but no stemming or stopword removal
has been performed.

The ATIS test set was classified according to the classes defined
in Table 1. The ID error rate we obtained was 4.5%, which is com-
parable to (and actually lower than) to what has been reported in the
literature.

5.2. Analysis of Intent Determination Errors

Next, we checked the ID errors with three training and test set-ups:

1. All Train: uses all ATIS training data to train the model,
and errors are computed on the ATIS test set. In total, this
model erroneously classified only 40 utterances (an error rate
of 4.5%). The intent confusion matrix for these errors is pro-
vided in Table 3.
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2. 25% Train: uses 25% of the training examples in the ATIS
training set, and errors are computed on the ATIS test set. In
total, this model erroneously classified 65 utterances (an error
rate of 7.3%).

3. N-fold: uses all examples for both testing and training in 10-
fold cross validation experiments. In total, this model erro-
neously classified 162 utterances (an error rate of 3.0%).

As seen in Table 3, the problem is mostly the non-Flight utter-
ances erroneously classified as Flight. While one cause of these er-
rors is the unbalanced intent distribution, we have manually checked
each error and clustered them into 6 categories:

1. Prepositional phrases embedded in noun phrases: These er-
rors involve phrases such as Capacity of the flight from Boston
to Orlando, where the prepositional phrase suggests flight in-
formation, whereas the destination category is mainly deter-
mined by the head word of the noun phrase (capacity in this
case). Since classifier has no syntactic features, such sen-
tences are usually classified erroneously. Using features from
a syntactic parser can alleviate this problem.

2. Wrong functional arguments of utterances: This category is
similar to the first category but the difference is that, instead
of a prepositional phrase, the confused phrase is a semantic
argument of the utterance. Consider the example utterance
What day of the week does the flight from Boston to Orlando
fly? These are errors that can be solved by using either a syn-
tactic parser that identifies functions of phrases or a semantic
role labeler.

3. Annotation errors: These are utterances that were assigned
the wrong category during manual annotation.

4. Utterances with multiple sentences: These are utterances with
more than one sentence. In such cases, the intent is usually in
the last sentence, whereas the classification output is biased
by the other sentence.

5. Other: These include several infrequent error types such as
ambiguous utterances, ill-formulated queries, and preprocess-
ing/tokenization issues:

• Ambiguous utterances: These errors involve utterances
where the destination category is not clear in the utter-
ance. An example from the ATIS test set is list Los
Angeles. In this utterance, the speaker intent could ei-
ther be to find cities that have flights from Los Angeles
or flights to Los Angeles.

• Ill-formulated queries: These are utterances which in-
clude a phrase that may mislead the classification or
understanding. An example from the ATIS test set is:
What’s the airfare for a taxi to the Denver airport? In
this case, the word airfare implies a destination cate-
gory of Airfare, whereas what is meant is Ground trans-
portation fare. These type of errors are easier for hu-
mans to handle, but it is not presently clear how they
can be resolved in automatic processing.

• Preprocessing/Tokenization issues: These are errors that
could be resolved by using a domain ontology or spe-
cial pre-processing or tokenization related to the do-
main. Some domain specific abbreviations and restric-
tion codes are examples of this category.

Error Type All Train 25% Train 10-Fold
1 42.5% 33.8% 24.5%
2 22.5% 13.8% 30.0%
3 2.5% 6.1% 18.4%
4 0% 0% 8.0%
5 17.5% 12.5% 7.2%
6 15.0% 33.8% 11.7%

Table 4. The distribution of error categories for ID using all and
25% of the training data, and using all the training and the test set
with 10-fold cross validation.

Fig. 1. Learning curve for intent determination using the training
data with the original order and average of 8 shuffled orders.

6. Difficult Cases: These are utterances that include words or
phrases that were previously unseen in the training data. For
the example utterance Are snack served on Tower Air?, none
of the content words and phrases appear with the Meal cate-
gory in the training data.

Table 4 presents the frequency of each of these errors for the
three experiments. As seen, categories 1 and 2 constitute a majority
of the errors. Both of these categories can be resolved using a syntac-
tic parser with function tags. However, note that the ATIS corpus is
highly artificial and utterances are mostly grammatical and without
disfluencies. Furthermore, when working with ASR, utterances may
include recognition errors. In a more realistic scenario, one might
consider shallow parsing or syntactic and semantic graphs [16] for
extracting richer and linguistically-motivated features that could re-
solve such cases.

Figure 1 shows the error rate on the ATIS test set when varying
training set sizes are used. When manually examining the test set,
we found clusters of similar utterances occurring one after the other
(probably are uttered by the same user). To eliminate the bias from
the data collection order, we also estimated the error with a random
ordering of the training set, and averaged the error rates over 8 such
experiments. As can be seen from this plot, the error rate keeps
shrinking as more data is added, suggesting that more training data
would be beneficial.
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6. ANALYSIS OF SLOT FILLING IN ATIS

In this section, our goal is similar to the ID analysis: analyze the re-
sults of a state-of-the-art SF system for the ATIS domain and cluster
the errors into categories.

6.1. Discriminative Training and Experiments

Following methods described in the literature, we employed linear
chain CRFs to model the slots in the ATIS Domain. We used only
word n-gram features and did not use a development set to tune pa-
rameters. The ATIS test set was then classified using the trained
model. We converted the data sets into the IOB format so that we
have only one word per sample to classify. Using the CoNLL eval-
uation script1, the SF F-Measure we obtained was 93.2% with the
IOB representation2, which is comparable to what has been reported
in the literature.

6.2. Analysis of Slot Filling Errors

Analyzing the SF decisions, the model found 2,614 of 2,837 slots
with the correct type and span for the input out of 9,164 words.
We manually checked each of the 223 erroneous cases and clustered
them into 8 categories:

1. Long distance dependencies: These are slots where the dis-
ambiguating tokens are out of the current n-gram context. For
example, in the utterance Find flights to New York arriving in
no later than next Saturday, a 6-gram context is required to
resolve that Saturday is the arrival date. This category was
previously addressed in the literature. For example, Raymond
and Riccardi [10] extracted features using manually-designed
patterns and Jeong and Lee [7] used trigger patterns to cover
these cases.

2. Partially correct slot value annotations: These are slots as-
signed a category that is partially correct; either the category
or the sub-category matches the manual annotation. For ex-
ample, the word tomorrow can either be a Depart Date.Relative
or Arrive Date.Relative for the utterance flights arriving in
Boston tomorrow. Note that these can overlap with other er-
ror types.

3. Previously unseen sequences: While this category requires
further analysis, the most common reason is the mismatch
between the training and test sets. For example, meal related
slots are missed by the model (8.0% of all errors) because
there are no similar cases in the training set. This is also the
case for the aircraft models (10.0%), and traveling to states
instead of cities (3.3%), etc.

4. Annotation errors: These are the slots that were assigned the
wrong category during manual annotation.

5. Other: These include several infrequent error types such as
ambiguous utterances, ill-formulated queries, and preprocess-
ing/tokenization issues:

• Ill-formulated queries: These errors usually involve an
ungrammatical phrase that may mislead the interpreta-
tion of the slot value or there is insufficient context to
disambiguate the value of the slot. For example, in the
utterance Find a flight from Memphis to Tacoma dinner,

1http://www.cnts.ua.ac.be/conll2000/chunking/output.html
2It is 94.7% using the representation used by [10], who reported 95.0%

Error Type Percentage
1 26.9%
2 42.4%
3 57.6%
4 8.4%
5 6.7%

Table 5. The distribution of the types of errors in the ATIS test set.
Note that these do not sum to 100% as some errors include multiple
types.

it is not clear if the word dinner refers to the description
of the flight meal.

• Ambiguous utterances: These are utterances where the
slot category is not explicit given the utterance. For
example, in the utterance I would like to have the air-
line that flies Toronto, Detroit and Orlando, it is not
clear if the speaker is searching for airlines that have
flights from Toronto to Detroit and Orlando or from
some other location to Toronto, Detroit and Orlando.

• Preprocessing/Tokenization issues: These are errors that
could be resolved using a domain ontology or special
pre-processing or tokenization related to the domain.
For example, in the utterance What airline is AS, it
would be helpful to know AS is a domain specific ab-
breviation.

• Ambiguous part-of-speech tag-related errors: These are
errors that could be resolved if the part-of-speech tags
were resolved. For example, the word arriving can be a
verb or an adjective, as in the utterance I want to find the
earliest arriving flight to Boston. In this case, the slot
category for the words earliest arriving is Flight-Mod,
but since the word arriving is very frequently seen as a
verb in this corpus, it is assigned no slot category.

Table 5 lists the frequency of each of these errors. Categories 1,
2, and 3 constitute vast majority of the errors. Each of these cate-
gories can be attacked using a different strategy. Category 1 utter-
ances are the easiest to resolve using richer feature sets during dis-
criminative training. Using a-priori information may also help when
available. Also, discovering linguistically motivated long distance
patterns is a promising research work. Category 2 utterances happen
mainly due to the nuance between the arrive and depart concepts
(23.1% of all errors), which are very hard to distinguish in some
cases as in the example above. Category 3 utterances simply require
a better training set or human intervention of manual patterns as they
are underrepresented or missing in the training data.

7. DISCUSSION AND CONCLUSIONS

Leveraging recent improvements in machine learning and spoken
language processing, the performance of the SLU systems for the
ATIS domain has improved dramatically. Around 5% error rate for
the SLU task implies a solved problem. It is clear, however, that the
problem of SLU is far from being solved, especially for more real-
istic, naturally-spoken utterances of a variety of speakers from tasks
more complex than simple flight information requests. New data
sets from such tasks can avoid over-tuning to one particular data set
in terms of modeling and feature design.
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The recent French Media corpus [23] offers a step towards this
goal: it has three times more data and greater than a 10% concept
error rate for SF. However, the data was not collected from an op-
erational system. Instead, data was collected using a wizard of Oz
setup with selected volunteers. Another effort is the Let’s Go di-
alog system used by real users of the Pittsburgh bus transportation
system [24]. However, SLU annotations are not yet available.

Even with such low error rates, the ATIS test set includes many
example categories and sequences unseen in the training data, and
the error rates have not converged yet. In that respect, more data
from just the ATIS domain may be useful for SLU research.

The error analysis on the ATIS domain shows the primary weak-
nesses of the current n-gram-based modeling approaches: The local
context overrides the global, the model has no domain knowledge
to make any inferences, and it tries to fit any utterance into some
known sample, hence not really robust to any out-of-domain utter-
ances. This was also observed by Raymond and Riccardi [10], where
the CRF model fits 100% to the training data. One possible research
direction consists of employing longer distance syntactically or se-
mantically motivated features, while preserving the robustness of the
system to the noise introduced by the speech recognizer and variance
due to natural language.

A lesser studied set of the ATIS corpus, Class D utterances,
which are contextual queries, is another significant portion of this
corpus, waiting to be understood. While most people treated un-
derstanding in context with handcrafted rules (e.g., [4]), to the best
of our knowledge, the only study towards building a statistical dis-
course model has been proposed by Miller et al. [25].
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