

Beyond the Datasheet: Using Test Beds to Probe Non-

Volatile Memories’ Dark Secrets

Laura M. Grupp*, Adrian M. Caulfield*, Joel Coburn*, John D. Davis†, and Steven Swanson*

*University of California, San Diego

†Microsoft Research, Silicon Valley Lab

[lgrupp, acaulfie, jdcoburn, swanson]@cs.ucsd.edu

john.d@microsoft.com

Abstract
Non-volatile memories (such as NAND flash and phase

change memories) have the potential to revolutionize

computer systems. However, these technologies have

complex behavior in terms of performance, reliability,

and energy consumption that make fully exploiting

their potential a complicated task. As device engineers

push bit densities higher, this complexity will only

increase. Managing and exploiting the complex and at

times surprising behavior of these memories requires a

deep understanding of the devices grounded in

experimental results. Our research groups have

developed several hardware test beds for flash and

other memories that allow us to both characterize these

memories and experimentally evaluate their

performance on full-scale computer systems. We

describe several of these test bed systems, outline some

of the research findings they have enabled, and discuss

some of the methodological challenges they raise.

1. Introduction
Non-volatile memory has recently emerged as a

possible replacement for main memory and hard disk

drives (HDDs). While these devices have some

limitations, the potential benefits that the components

promise more than outweigh them. In current systems,

non-volatile memories usually appear as solid state

disks (SSDs) that use NAND flash to build “black box”

replacements for conventional HDDs.

Constructing SSDs or other components built from

non-volatile memories presents two problems that

researchers and designers must confront. First, how to

best construct a system to exploit the strengths and

mitigate the weaknesses of the technology. The

latency, bandwidth, bit error rate, and energy efficiency

will all combine to determine which designs are viable

and which are not. Second, they must understand how

the non-volatile memory array will affect the rest of the

system. If a new storage technology significantly

increases performance, it may expose bottlenecks in

other parts of the system.

Addressing the first challenge requires a

comprehensive understanding of non-volatile memory

performance, failure modes, and energy consumption.

This information is difficult to come by. Device

manufacturers hide the details of their devices behind

non-disclosure agreements, and even when datasheets

are freely available, they provide scant details: average

performance characteristics, vague recommendations

about error correction requirements, and inexact

bounds on energy consumption. The datasheets make

no mention of many “warts” that these devices possess.

It is not that datasheets are inaccurate; it is that they are

woefully inadequate if our goal is to fully exploit the

capabilities of these memories.

To address the second challenge and fully evaluate a

new non-volatile storage array, it is easiest to measure

and observe the array in situ, in a working system,

running real applications. The benefits of this approach

– versus, for example analytical model or simulation –

is that it reveals unexpected hardware and/or software

bottlenecks and reveals the actual benefit of this

application.

The only way to address either of these challenges is

to construct working hardware test beds – custom-built

hardware systems that incorporate non-volatile

memories or can emulate them at very high fidelity.

These test beds can provide “ground truth” data on the

behavior of both memory devices and systems that

incorporate them.

This paper describes the non-volatile test beds that

we have built and provides some results from them.

We describe some of the insights we have gleaned

from them and discuss some of the challenges that

building and using these test beds presents. Our

experiences with these systems demonstrate that they

can provide a wealth of useful data and raise

unexpected and important questions that motivate and

inform research into applying non-volatile memories.

2. Hardware Test beds
Hardware test beds come in two flavors:

characterization platforms and application platforms.

Characterization platforms allow researchers to observe

the behavior of the device under test at a finer

granularity than the information provided in the device

datasheet. Application platforms allow researchers to

evaluate the impact of a memory technology at the

application level, in a working system, and in the

presence of real-world software and hardware

overheads. In some cases, the same platform can be

used for both characterization and applications.

Characterization platforms

A device’s datasheet provides some information about

how it will behave, but it does not provide the level of

detail that a characterization platform can extract.

Whereas a datasheet may provide a latency range for a

device operation, the characterization platform can

observe the distribution of latencies for that operation

across the chip or a collection of chips. In general,

these platforms may be able to observe characteristics

of the device that are not reported in the datasheet.

We have used a platform called Ming to characterize

many NAND flash devices. Ming is composed of an

off-the-shelf Xilinx FPGA-based development board as

well as a custom-built flash testing board, enabling

detailed measurements of almost all aspects of flash

memory devices. The test board holds two “burn in”

sockets that accept standard TSOP flash devices. Each

socket has a separate power plane to support per-chip

power measurement. Figure 1 provides a block

diagram of the Ming hardware platform.

In addition to the hardware, Ming also includes

several software components that make it useful as a

characterization system. The Xilinx FPGA contains a

microprocessor and we configure it with a custom-built

flash memory controller. We run a full-fledged version

of Linux on the processor, and provide a custom driver

for the flash controller. The driver is unique in that it

provides user-level access to low-level flash operations

(read, program, and erase, etc.). The result is that

developing test code for Ming is very easy. For

instance, to test a new error correction or data encoding

technique, it is sufficient to implement it in C.

The combination of the Ming hardware and software

provides a wealth of information about each flash

memory access. The driver returns the operation

latency at 10ns resolution and allows straight forward

measurement of the energy consumed by each chip.

Application platforms

Application platforms offer insight in how a new

technology will affect application-level behavior. They

offer insight into how storage devices will interact with

other hardware and software components. This can, for

instance, reveal bottlenecks in the system that the new

technology exposes. Below we describe the application

platforms our groups have developed and used.

The first is Zarkov. Zarkov relies on the same

FPGA-based controller and FPGA prototyping board

as Ming but holds up to 32, non-removable flash chips.

Zarkov is a key component of the BlueSSD project [5].

BlueSSD aims to provide an open platform for

experimenting with SSD optimizations.

The second application platform is the Flash

Research Platform (FRP). The FRP hardware is a

combination of the BEE3 multi-FPGA research

platform [1] and a custom printed circuit board, a Flash

Dual Inline Memory Module (FDIMM). The

combination of an FPGA and DIMM slot provide the

ability to interface to other non-volatile memories, like

PCM, for future research, leveraging the same BEE3

hardware and software. Each FDIMM exposes 8

independent flash channels and up to four FDIMMs

Flash Memory

Testing Socket

Flash Memory

Testing Socket

FPGA

Flash

Controller

PowerPC

Processor

Flash Bus

Other

Peripherals

Figure 1. The Ming/Zarkov system uses a PowerPC

processor and a custom flash controller built into an

FPGA to provide direct access to flash devices for either

characterization (in Ming) or FTL prototyping (in

Zarkov).

can be connected to an FPGA. The BEE3 has 16

DIMM slots that we can populate with DRAM,

FDIMMs, or other special-purpose modules. Figure 2

illustrates the flexibility of FRP to build small or large

systems using one to four FPGAs and their associated

DIMM slots.

We have built a variety of FDIMMs ranging from

8GB to 128 GB per card or 128 GB – 2TB per BEE3,

using current generation TSOP NAND flash devices.

The majority of the FDIMMs are built using eight 4GB

SLC Samsung NAND flash TSOP package (Writes: 20

MB/s, Reads: 40 MB/s), making a 32 GB module [7].

More details describing the hardware and software

components of the FRP system as an application

platform can be found in [2].

There is also an FRP software layer that is

responsible for translating user-level commands into

NAND flash specific operations. This software

management layer abstracts away the details of the

flash devices operations, such as block erase, and

provides a well-defined hardware independent interface

for read/write /flush or APIs like trim and secure erase.

Likewise, flash-specific commands can be easily

implemented in this layer and sent to the flash

controller.

The FRP management software implements various

algorithms used in the Flash Translation Layer (FTL)

such as cache management, garbage collection, wear

leveling and logical to physical sector remapping [3].

The FRP management software translates various tasks

into the gateware layer commands and monitors the

execution of these commands on the actual hardware.

The FRP management software can be executed on an

embedded CPU in the FPGA, or on the host CPU in the

device driver or even as a user-level application.

Currently, we organize the management layer as a user-

level application on a PC running Windows XP,

trading off performance for ease of implementation.

Co-development of the user-level application and the

FPGA flash controller enable implementing and

instrumenting all flash operations. Like the

Ming/Zarkov platform, the FRP can be a

characterization or application platform. The main

difference is that the FRP platform does not have

separate power planes per flash package on the

FDIMM, enabling only module power measurement

and not individual package power measurement.

The final application platform is a prototyping

system for developing PCIe-attached storage devices

based on next-generation non-volatile memories. The

platform is called Moneta and it targets memories such

as phase change memory, the memristor, or scalable

MRAM technologies.

Moneta uses the same BEE3 FPGA platform as the

FRP, but instead of incorporating actual non-volatile

memories, it uses DRAM to emulate a range of fast

non-volatile memories that are not yet commercially

available. To do this, it uses a modified DRAM

controller that modifies the read and write latencies of

the DRAM to match those of the non-volatile memory.

This provides a very high-fidelity model for memories

and allows us to engineer both the storage array

architecture and the driver stack to take full advantage

of the technology.

3. Results
These non-volatile memory test beds have led to some

interesting and unexpected findings. Below, we

describe results from both types of test beds.

Characterization results

Both Ming and FRP have proven to be very capable

tools for understanding flash memory behavior under a

range of circumstances, from operating outside the

normal datasheet specification to observing behaviors

not specified by the datasheet.

One of the most interesting results came from a

characterization of write-once-memory (WOM) codes

applied to flash memory [4]. WOM codes are useful

for memories, like flash, that only allow bit transitions

Host PC

Controller

FPGA

A

PCI-E x8,

1 GbE,

10 GbE

D
R

A
M

8 GB

F

L

A

S

H

64 GB

F

L

A

S

H

(A)

Host PC

F

L

A

S

H

F

L

A

S

H

Controller

FPGA

A

Flash

FPGA

B

Flash

FPGA

D

PCI-E x8,

1 GbE,

10 GbE

D
R

A
M

F

L

A

S

H

Ring A2BRing A2D

8 GB

64 GB 64 GB 64 GB 64 GB

F

L

A

S

H

F

L

A

S

H

F

L

A

S

H

F

L

A

S

H

F

L

A

S

H

F

L

A

S

H

64 GB

F

L

A

S

H

F

L

A

S

H

F

L

A

S

H

Flash

FPGA

C

64 GB 64 GB

F

L

A

S

H

F

L

A

S

H

Q
S

H
 A

2
C

(B)

Figure 2. FRP configuration ranges from (A) a single FPGA

and associated DIMM cards to (B) a multiple FPGA system

with up to 16 DIMM cards. These configurations assume 4

GB DRAM DIMMs and 32 GB FDIMMs.

in one direction (1 to 0). They store two logical bits

using three physical bits, but the system can program

those physical bits twice before erasing them. Simple

calculations show that WOM codes should increase

flash lifetime by 33% by eliminating one third of erase

operations needed to write a given amount of data to an

SSD. Measurements on Ming demonstrated much

greater increases (5.2x) for some flash chips, but a

dramatic reduction in lifetime for others. Ming has

also allowed us to empirically measure the

effectiveness of different ECC schemes [8].

One of the most important applications we have

found for Ming is in developing and validating models

for flash memory performance, power consumption,

and reliability. Analytical models such as [6] can

incorporate significant errors, but by closely examining

mismatches between the models predictions and

measurements on Ming, we can increase the accuracy

of those models. This type of work will increase in

importance for error correction and data coding as flash

memory’s reliability falters with continued scaling. It

is likely that developing more robust error correction

schemes will require integrating increasingly detailed

physical models into the channel model, mirroring the

development of the advanced coding techniques for

hard drives.

As NAND flash feature sizes scale down with each

successive silicon technology generation, the device

behavior resembles more of a distribution than absolute

discrete values. We can leverage these distributions

and learn about the device if we can observe the

distributions. The key is determining if the

observations are device specific or not.

Figure 3 shows how the analysis of many data points

reveals unexpected patterns in flash’s behavior. The

figure measures program operation latency for three

SLC and three MLC devices. For SLC devices the

datasheets report a “typical” latency of around 200us,

and our measurement corroborate that. For MLC

devices the datasheets give between 600 and 800us,

and while that is the average latency, the data in graph

show that it is not the whole story. For MLC devices

exactly half the pages are almost as fast as SLC

devices, but the other half are up to 5x slower. The

“fast” pages are faster to read and consume less energy

per program operation than the “slow” pages. and for

some chips, “slow” pages have higher bit error rates.

Figure 4 shows results from the FRP measuring the

distribution of bad blocks across multiple flash devices.

From a set of 16 MLC multi-die packages, we can see

that the lower half of the blocks contains more bad

blocks than the upper half. However, when producing

a histogram for a set of 168 SLC multi-die packages,

we saw a more uniform distribution (results not

shown). Initial bad block distributions can be used in

the FTL metadata and control structure design. This

information may also provide insight into defect

distribution and on-die process variation for a

particular silicon technology generation and/or fab.

As with all characterization platforms, most of the

implementation effort is concentrated on implementing

Figure 3. Measured program latencies for SLC and MLC

flash pages divided into fast and slow groups.

0

200

400

600

800

1000

1200

1400

1600

1800

B
-S

LC
2

5
0

n
m

A
-S

LC
4

E-
SL

C
8

B
-M

LC
8

 7
2

n
m

F-
M

LC
1

6
 3

4
n

m

B
-M

LC
3

2
-2

 3
4

n
m

P
ro

gr
am

 L
at

e
n

cy
 (

µ
s)

Fast 50% of Pages

Slow 50% of Pages

Figure 4. Bad block distribution for 16 MLC NAND flash

components.

0

2

4

6

8

10

12

14

16

18

2
5

6

1
7

9
2

3
3

2
8

4
8

6
4

6
4

0
0

7
9

3
6

9
4

7
2

1
1

0
0

8

1
2

5
4

4

1
4

0
8

0

1
5

6
1

6

N
u

m
b

e
r

o
f

B
ad

 B
lo

ck
s/

b
u

ck
e

t

Bad Block Bucket (256 blocks)

the software features or making the device compatible

with existing software. The FRP platform eases this

development cycle by enabling FTL components either

in the FPGA, user-level management software or the

driver. We implemented 8-bit BCH ECC in the user-

level application and this required almost full

utilization of a single core in a dual core Intel Core 2

Duo 2.4 GHz processor. This demonstrates that future

ECC implementations for next generation MLC or SLC

devices will require complex hardware for error

correction, making software emulation difficult.

By using these hardware platforms, we can observe

how device characteristics change over time. These

changes may be indicators of device failure, device

reliability, data retention time, asymmetry in page or

block performance for reads, programs or erase, etc.

Leveraging these characteristics in the FTL can lead to

improved performance, reliability, advanced coding

techniques, or other properties that can make the

system viable or differentiate the system from its

competitors.

Application results

Moneta has allowed us to explore issues that span the

entire system from the storage hardware through the

applications. Existing software assumes that storage

(i.e., disks) is slow. PCM-based SSDs will be orders of

magnitude faster, and will require re-engineering both

the operating system and the applications.

Figure 5 shows the results of this optimization for

the Linux storage driver. The horizontal axis measures

transfer size, while the vertical axis measures sustained

throughput. The “baseline” data shows the

performance with the stock Linux IO stack. The

“optimized” data is the performance of the same

Moneta array with an optimized software stack. For

4KB accesses, optimizing the software stack improves

performance by 4.6 times and reduces per-IOP

software overhead by 60%. The data also show that,

for 512 byte requests, the remaining software

overheads limit Moneta’s performance far more than

the hardware.

These results are useful for operating system

designers, but they also provide the basis for

understanding the changes needed at other layers as

well. Our lab is now studying how to modify these

layers to run well on Moneta, and everything we learn

will inform the design of software systems that will run

on next-generation arrays when fast non-volatile

memories become available.

4. Discussion
Hardware test beds offer unique advantages, but they

also increase the difficulty of performing some

research. The main benefit of building real, working

hardware prototypes and measuring real system is that

it places the results and analysis on a firm footing. It

also significantly expands the range of workloads that

researchers can run on the prototype systems, since the

hardware prototypes are much faster than simulated

versions of the same system.

Systems like Ming provide a different kind of

experimental foundation. Ming provides concrete,

detailed measurements that can inform other work.

The alternative, using device models derived from

datasheets is limiting in several ways. First, datasheets

provide limited, coarse-grain information about device

performance. For instance, almost all of the interesting

results in [4] were uncovering behaviors not

documented in datasheets. Without measuring these

properties directly, it would be impossible to exploit

them.

However, there is no free lunch and abandoning

datasheets comes at a cost. Trends that appear in

experimental data may not hold across different

hardware revisions, over temperature ranges, or remain

valid over the lifetime of the device. Measured

variation between devices from different manufacturers

or in different manufacturing technologies also raises

the danger of encouraging the researchers to over-

specialize systems rather than designing for flash

memory in general.

The solution to both of these difficulties is thorough,

ongoing testing to both identify unintended

consequences of particular usage patterns and to

understand the variation and trends in behavior

between manufacturers and over time.

Hardware test beds can also significantly increase

the time required to evaluate an idea. Developing

Moneta took about 10 months, but a simulator for the

same system would have taken, perhaps, 3 months to

build. The results from a simulator would have been

less reliable, and, more important, fully implementing

the system has suggested several directions for further

research.

The final danger in building hardware prototypes

arises because presently available technologies may

constrain the design of a system. For instance, to

reduce cost, Zarkov uses an off-the-shelf FPGA

prototyping board that has limited IO capacity. This

restriction limits the number of flash chips the

controller can communicate with at once, and this, in

turn, constrains the space of SSD designs it can model.

There are two potential solutions to this problem.

The first is to treat the hardware as an emulation

system rather than a prototype implementation. This is

the approach we took with Moneta, and it requires the

researcher to maintain a clear distinction between the

modeled system and the test bed system. In Moneta,

this manifests itself in the memory controller that

inserts delays to model fast non-volatile memories.

More generally, the modeled system and the test bed

may differ in terms of capabilities and performance.

For instance, the modeled system might emulate faster

memory by artificially slowing the rest of the system

and scaling the measured performance of the system

afterward.

The second solution is to build the test bed system

from scratch rather than leveraging off-the-shelf

hardware components. This approach is more

expensive and time consuming than using general-

purpose prototyping platforms, and it is not always

possible: if the memory technology of interest is not

yet commercially available, emulation (as described

above) is the only alternative.

5. Conclusion
Hardware test beds for non-volatile memory-based

systems can provide researchers with a wealth of

concrete information about both device and full system

performance. We have described a few of the systems

we have built to study these systems and highlighted

both the advantages that these systems offer as well as

the challenges they present. On balance, we believe

that taking the time construct working prototypes and

gather data first hand about memory technology

performance is well-worth the effort. Indeed, as

system-level interactions become more complex, these

test beds will become an increasingly important means

to fully understand the implications of non-volatile

memories in computer system design.

References
[1] J. D. Davis, C. P. Thacker, and C. Chang, BEE3:

Revitalizing Computer Architecture Research, no.

MSR-TR-2009-45, April 2009

[2] J. D. Davis and L. Zhang, FRP: a Nonvolatile

Memory Research Platform Targeting NAND

flash, in The First Workshop on Integrating Solid-

state Memory into the Storage Hierarchy, Held in

Conjunction with ASPLOS 2009, ACM, Inc.,

March 2009

[3] E. Gal and S. Toledo, Algorithms and data

structures for flash memories, ACM Computing

Surveys (CSUR), v.37 n.2, p.138-163, June 2005

[4] L. Grupp, A. M. Caulfield, J. Coburn, E. Yaakobi,

S. Swanson, P. H. Siegel, Characterizing Flash

Memory: Anomalies, Observations, and

Applications, In the Proceedings of the 42nd

International Symposium on Microarchitecture.

[5] S. Lee, K. Fleming, J. Park, K. Ha, A. M.

Caulfield, S. Swanson, Arvind, J. Kim, BlueSSD:

An Open Platform for Cross-layer Experiments for

NAND Flash-based SSDs, In the 5th Workshop on

Architectural Research Prototyping, 2010.

[6] V. Mohan, S. Gurumurthi, M. R. Stan,

FlashPower: A detailed power model for NAND

flash memory, DATE 2010: 502-507.

[7] Samsung Corporation, K9XXG08XXM Flash

Memory Specification, http://www.samsung.com/

global/system/business/semiconductor/product/200

7/6/11/NANDFlash/SLC_LargeBlock/8Gbit/K9F8

G08U0M/ds_k9f8g08x0m_rev10.pdf, 2007.

[8] E. Yaakobi, J. Ma, L. Grupp, P. H. Siegel, S.

Swanson, J. K. Wolf, Error Characterization and

Coding Schemes for Flash Memories, To appear

in: Workshop on the Application of

Communication Theory to Emerging Memory

Technologies, 2010.

Figure 5. Optimizing the software stack for the Moneta test

bed can improve performance by up to 10x and provides

insights into designing software for fast non-volatile memories.

0

500

1000

1500

2000

2500

3000

3500

0.5 5 50 500

B
an

d
w

id
th

 (
M

B
/s

)

Transfer size (KB)

baseline optimized

