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Abstract 
Non-volatile memories (such as NAND flash and phase 

change memories) have the potential to revolutionize 

computer systems.  However, these technologies have 

complex behavior in terms of performance, reliability, 

and energy consumption that make fully exploiting 

their potential a complicated task.  As device engineers 

push bit densities higher, this complexity will only 

increase. Managing and exploiting the complex and at 

times surprising behavior of these memories requires a 

deep understanding of the devices grounded in 

experimental results.  Our research groups have 

developed several hardware test beds for flash and 

other memories that allow us to both characterize these 

memories and experimentally evaluate their 

performance on full-scale computer systems.  We 

describe several of these test bed systems, outline some 

of the research findings they have enabled, and discuss 

some of the methodological challenges they raise.  

1. Introduction 
Non-volatile memory has recently emerged as a 

possible replacement for main memory and hard disk 

drives (HDDs). While these devices have some 

limitations, the potential benefits that the components 

promise more than outweigh them. In current systems, 

non-volatile memories usually appear as solid state 

disks (SSDs) that use NAND flash to build “black box” 

replacements for conventional HDDs.  

Constructing SSDs or other components built from 

non-volatile memories presents two  problems that 

researchers and designers must confront. First, how to 

best construct a system to exploit the strengths and 

mitigate the weaknesses of the technology.  The 

latency, bandwidth, bit error rate, and energy efficiency 

will all combine to determine which designs are viable 

and which are not.  Second, they must understand how 

the non-volatile memory array will affect the rest of the 

system.  If a new storage technology significantly 

increases performance, it may expose bottlenecks in 

other parts of the system. 

Addressing the first challenge requires a 

comprehensive understanding of non-volatile memory 

performance, failure modes, and energy consumption.  

This information is difficult to come by.  Device 

manufacturers hide the details of their devices behind 

non-disclosure agreements, and even when datasheets 

are freely available, they provide scant details:  average 

performance characteristics, vague recommendations 

about error correction requirements, and inexact 

bounds on energy consumption.  The datasheets make 

no mention of many “warts” that these devices possess.  

It is not that datasheets are inaccurate; it is that they are 

woefully inadequate if our goal is to fully exploit the 

capabilities of these memories. 

To address the second challenge and fully evaluate a 

new non-volatile storage array, it is easiest to measure 

and observe the array in situ, in a working system, 

running real applications. The benefits of this approach 

– versus, for example analytical model or simulation – 

is that it reveals unexpected hardware and/or software 

bottlenecks and reveals the actual benefit of this 

application. 

The only way to address either of these challenges is 

to construct working hardware test beds – custom-built 

hardware systems that incorporate non-volatile 

memories or can emulate them at very high fidelity.  

These test beds can provide “ground truth” data on the 

behavior of both memory devices and systems that 

incorporate them. 



 

This paper describes the non-volatile test beds that 

we have built and provides some results from them. 

We describe some of the insights we have gleaned 

from them and discuss some of the challenges that 

building and using these test beds presents.  Our 

experiences with these systems demonstrate that they 

can provide a wealth of useful data and raise 

unexpected and important questions that motivate and 

inform research into applying non-volatile memories. 

2. Hardware Test beds 
Hardware test beds come in two flavors: 

characterization platforms and application platforms. 

Characterization platforms allow researchers to observe 

the behavior of the device under test at a finer 

granularity than the information provided in the device 

datasheet.  Application platforms allow researchers to 

evaluate the impact of a memory technology at the 

application level, in a working system, and in the 

presence of real-world software and hardware 

overheads.  In some cases, the same platform can be 

used for both characterization and applications. 

Characterization platforms  

A device’s datasheet provides some information about 

how it will behave, but it does not provide the level of 

detail that a characterization platform can extract.  

Whereas a datasheet may provide a latency range for a 

device operation, the characterization platform can 

observe the distribution of latencies for that operation 

across the chip or a collection of chips. In general, 

these platforms may be able to observe characteristics 

of the device that are not reported in the datasheet. 

We have used a platform called Ming to characterize 

many NAND flash devices.  Ming is composed of an 

off-the-shelf Xilinx FPGA-based development board as 

well as a custom-built flash testing board, enabling 

detailed measurements of almost all aspects of flash 

memory devices.  The test board holds two “burn in” 

sockets that accept standard TSOP flash devices.  Each 

socket has a separate power plane to support per-chip 

power measurement. Figure 1 provides a block 

diagram of the Ming hardware platform. 

In addition to the hardware, Ming also includes 

several software components that make it useful as a 

characterization system.  The Xilinx FPGA contains a 

microprocessor and we configure it with a custom-built 

flash memory controller.  We run a full-fledged version 

of Linux on the processor, and provide a custom driver 

for the flash controller.  The driver is unique in that it 

provides user-level access to low-level flash operations 

(read, program, and erase, etc.).  The result is that 

developing test code for Ming is very easy.  For 

instance, to test a new error correction or data encoding 

technique, it is sufficient to implement it in C. 

The combination of the Ming hardware and software 

provides a wealth of information about each flash 

memory access.  The driver returns the operation 

latency at 10ns resolution and allows straight forward 

measurement of the energy consumed by each chip. 

Application platforms 

Application platforms offer insight in how a new 

technology will affect application-level behavior.  They 

offer insight into how storage devices will interact with 

other hardware and software components. This can, for 

instance, reveal bottlenecks in the system that the new 

technology exposes. Below we describe the application 

platforms our groups have developed and used.   

The first is Zarkov.  Zarkov relies on the same 

FPGA-based controller and FPGA prototyping board 

as Ming but holds up to 32, non-removable flash chips.  

Zarkov is a key component of the BlueSSD project [5].  

BlueSSD aims to provide an open platform for 

experimenting with SSD optimizations. 

The second application platform is the Flash 

Research Platform (FRP). The FRP hardware is a 

combination of the BEE3 multi-FPGA research 

platform [1] and a custom printed circuit board, a Flash 

Dual Inline Memory Module (FDIMM). The 

combination of an FPGA and DIMM slot provide the 

ability to interface to other non-volatile memories, like 

PCM, for future research, leveraging the same BEE3 

hardware and software. Each FDIMM exposes 8 

independent flash channels and up to four FDIMMs 
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Figure 1. The Ming/Zarkov system uses a PowerPC 

processor and a custom flash controller built into an 

FPGA to provide direct access to flash devices for either 

characterization (in Ming) or FTL prototyping (in 

Zarkov). 



 

can be connected to an FPGA. The BEE3 has 16 

DIMM slots that we can populate with DRAM, 

FDIMMs, or other special-purpose modules.  Figure 2 

illustrates the flexibility of FRP to build small or large 

systems using one to four FPGAs and their associated 

DIMM slots.  

We have built a variety of FDIMMs ranging from 

8GB to 128 GB per card or 128 GB – 2TB per BEE3, 

using current generation TSOP NAND flash devices. 

The majority of the FDIMMs are built using eight 4GB 

SLC Samsung NAND flash TSOP package (Writes: 20 

MB/s, Reads: 40 MB/s), making a 32 GB module [7]. 

More details describing the hardware and software 

components of the FRP system as an application 

platform can be found in [2]. 

There is also an FRP software layer that is 

responsible for translating user-level commands into 

NAND flash specific operations. This software 

management layer abstracts away the details of the 

flash devices operations, such as block erase, and 

provides a well-defined hardware independent interface 

for read/write /flush or APIs like trim and secure erase. 

Likewise, flash-specific commands can be easily 

implemented in this layer and sent to the flash 

controller. 

The FRP management software implements various 

algorithms used in the Flash Translation Layer (FTL) 

such as cache management, garbage collection, wear 

leveling and logical to physical sector remapping [3]. 

The FRP management software translates various tasks 

into the gateware layer commands and monitors the 

execution of these commands on the actual hardware. 

The FRP management software can be executed on an 

embedded CPU in the FPGA, or on the host CPU in the 

device driver or even as a user-level application. 

Currently, we organize the management layer as a user-

level application on a PC running Windows XP, 

trading off performance for ease of implementation. 

Co-development of the user-level application and the 

FPGA flash controller enable implementing and 

instrumenting all flash operations. Like the 

Ming/Zarkov platform, the FRP can be a 

characterization or application platform. The main 

difference is that the FRP platform does not have 

separate power planes per flash package on the 

FDIMM, enabling only module power measurement 

and not individual package power measurement. 

The final application platform is a prototyping 

system for developing PCIe-attached storage devices 

based on next-generation non-volatile memories.  The 

platform is called Moneta and it targets memories such 

as phase change memory, the memristor, or scalable 

MRAM technologies.   

Moneta uses the same BEE3 FPGA platform as the 

FRP, but instead of incorporating actual non-volatile 

memories, it uses DRAM to emulate a range of fast 

non-volatile memories that are not yet commercially 

available.  To do this, it uses a modified DRAM 

controller that modifies the read and write latencies of 

the DRAM to match those of the non-volatile memory.  

This provides a very high-fidelity model for memories 

and allows us to engineer both the storage array 

architecture and the driver stack to take full advantage 

of the technology. 

3. Results 
These non-volatile memory test beds have led to some 

interesting and unexpected findings.  Below, we 

describe results from both types of test beds. 

Characterization results 

Both Ming and FRP have proven to be very capable 

tools for understanding flash memory behavior under a 

range of circumstances, from operating outside the 

normal datasheet specification to observing behaviors 

not specified by the datasheet. 

One of the most interesting results came from a 

characterization of write-once-memory (WOM) codes 

applied to flash memory [4].  WOM codes are useful 

for memories, like flash, that only allow bit transitions 
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Figure 2. FRP configuration ranges from (A) a single FPGA 

and associated DIMM cards to (B) a multiple FPGA system 

with up to 16 DIMM cards. These configurations assume 4 

GB DRAM DIMMs and 32 GB FDIMMs. 



 

in one direction (1 to 0).  They store two logical bits 

using three physical bits, but the system can program 

those physical bits twice before erasing them.  Simple 

calculations show that WOM codes should increase 

flash lifetime by 33% by eliminating one third of erase 

operations needed to write a given amount of data to an 

SSD.  Measurements on Ming demonstrated much 

greater increases (5.2x) for some flash chips, but a 

dramatic reduction in lifetime for others.  Ming has 

also allowed us to empirically measure the 

effectiveness of different ECC schemes [8]. 

One of the most important applications we have 

found for Ming is in developing and validating models 

for flash memory performance, power consumption, 

and reliability.  Analytical models such as [6] can 

incorporate significant errors, but by closely examining 

mismatches between the models predictions and 

measurements on Ming, we can increase the accuracy 

of those models.  This type of work will increase in 

importance for error correction and data coding as flash 

memory’s reliability falters with continued scaling.  It 

is likely that developing more robust error correction 

schemes will require integrating increasingly detailed 

physical models into the channel model, mirroring the 

development of the advanced coding techniques for 

hard drives. 

As NAND flash feature sizes scale down with each 

successive silicon technology generation, the device 

behavior resembles more of a distribution than absolute 

discrete values. We can leverage these distributions 

and learn about the device if we can observe the 

distributions. The key is determining if the 

observations are device specific or not.  

Figure 3 shows how the analysis of many data points 

reveals unexpected patterns in flash’s behavior.  The 

figure measures program operation latency for three 

SLC and three MLC devices.  For SLC devices the 

datasheets report a “typical” latency of around 200us, 

and our measurement corroborate that.  For MLC 

devices the datasheets give between 600 and 800us, 

and while that is the average latency, the data in graph 

show that it is not the whole story.  For MLC devices 

exactly half the pages are almost as fast as SLC 

devices, but the other half are up to 5x slower.  The 

“fast” pages are faster to read and consume less energy 

per program operation than the “slow” pages. and for 

some chips, “slow” pages have higher bit error rates. 

Figure 4 shows results from the FRP measuring the 

distribution of bad blocks across multiple flash devices.  

From a set of 16 MLC multi-die packages, we can see 

that the lower half of the blocks contains more bad 

blocks than the upper half.  However, when producing 

a histogram for a set of 168 SLC multi-die packages, 

we saw a more uniform distribution (results not 

shown). Initial bad block distributions can be used in 

the FTL metadata and control structure design. This 

information may also provide insight into defect 

distribution and on-die process variation for a 

particular silicon technology generation and/or fab. 

As with all characterization platforms, most of the 

implementation effort is concentrated on implementing 

Figure 3.  Measured program latencies for SLC and MLC 

flash pages divided into fast and slow groups. 
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Figure 4. Bad block distribution for 16 MLC NAND flash 

components. 
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the software features or making the device compatible 

with existing software. The FRP platform eases this 

development cycle by enabling FTL components either 

in the FPGA, user-level management software or the 

driver. We implemented 8-bit BCH ECC in the user-

level application and this required almost full 

utilization of a single core in a dual core Intel Core 2 

Duo 2.4 GHz processor. This demonstrates that future 

ECC implementations for next generation MLC or SLC 

devices will require complex hardware for error 

correction, making software emulation difficult.  

By using these hardware platforms, we can observe 

how device characteristics change over time.  These 

changes may be indicators of device failure, device 

reliability, data retention time, asymmetry in page or 

block performance for reads, programs or erase, etc. 

Leveraging these characteristics in the FTL can lead to 

improved performance, reliability, advanced coding 

techniques, or other properties that can make the 

system viable or differentiate the system from its 

competitors.  

Application results 

Moneta has allowed us to explore issues that span the 

entire system from the storage hardware through the 

applications.  Existing software assumes that storage 

(i.e., disks) is slow.  PCM-based SSDs will be orders of 

magnitude faster, and will require re-engineering both 

the operating system and the applications. 

Figure 5 shows the results of this optimization for 

the Linux storage driver.  The horizontal axis measures 

transfer size, while the vertical axis measures sustained 

throughput.  The “baseline” data shows the 

performance with the stock Linux IO stack.  The 

“optimized” data is the performance of the same 

Moneta array with an optimized software stack.  For 

4KB accesses, optimizing the software stack improves 

performance by 4.6 times and reduces per-IOP 

software overhead by 60%.  The data also show that, 

for 512 byte requests, the remaining software 

overheads limit Moneta’s performance far more than 

the hardware. 

These results are useful for operating system 

designers, but they also provide the basis for 

understanding the changes needed at other layers as 

well.  Our lab is now studying how to modify these 

layers to run well on Moneta, and everything we learn 

will inform the design of software systems that will run 

on next-generation arrays when fast non-volatile 

memories become available. 

4. Discussion 
Hardware test beds offer unique advantages, but they 

also increase the difficulty of performing some 

research. The main benefit of building real, working 

hardware prototypes and measuring real system is that 

it places the results and analysis on a firm footing.  It 

also significantly expands the range of workloads that 

researchers can run on the prototype systems, since the 

hardware prototypes are much faster than simulated 

versions of the same system. 

Systems like Ming provide a different kind of 

experimental foundation.  Ming provides concrete, 

detailed measurements that can inform other work.  

The alternative, using device models derived from 

datasheets is limiting in several ways.  First, datasheets 

provide limited, coarse-grain information about device 

performance.  For instance, almost all of the interesting 

results in [4] were uncovering behaviors not 

documented in datasheets.  Without measuring these 

properties directly, it would be impossible to exploit 

them. 

However, there is no free lunch and abandoning 

datasheets comes at a cost.  Trends that appear in 

experimental data may not hold across different 

hardware revisions, over temperature ranges, or remain 

valid over the lifetime of the device.  Measured 

variation between devices from different manufacturers 

or in different manufacturing technologies also raises 

the danger of encouraging the researchers to over-

specialize systems rather than designing for flash 

memory in general. 

The solution to both of these difficulties is thorough, 

ongoing testing to both identify unintended 

consequences of particular usage patterns and to 

understand the variation and trends in behavior 

between manufacturers and over time. 

Hardware test beds can also significantly increase 

the time required to evaluate an idea.  Developing 

Moneta took about 10 months, but a simulator for the 

same system would have taken, perhaps, 3 months to 

build.  The results from a simulator would have been 

less reliable, and, more important, fully implementing 

the system has suggested several directions for further 

research.  

The final danger in building hardware prototypes 

arises because presently available technologies may 

constrain the design of a system.  For instance, to 

reduce cost, Zarkov uses an off-the-shelf FPGA 

prototyping board that has limited IO capacity.  This 



 

restriction limits the number of flash chips the 

controller can communicate with at once, and this, in 

turn, constrains the space of SSD designs it can model. 

There are two potential solutions to this problem.  

The first is to treat the hardware as an emulation 

system rather than a prototype implementation.  This is 

the approach we took with Moneta, and it requires the 

researcher to maintain a clear distinction between the 

modeled system and the test bed system.  In Moneta, 

this manifests itself in the memory controller that 

inserts delays to model fast non-volatile memories.  

More generally, the modeled system and the test bed 

may differ in terms of capabilities and performance.  

For instance, the modeled system might emulate faster 

memory by artificially slowing the rest of the system 

and scaling the measured performance of the system 

afterward. 

The second solution is to build the test bed system 

from scratch rather than leveraging off-the-shelf 

hardware components.  This approach is more 

expensive and time consuming than using general-

purpose prototyping platforms, and it is not always 

possible:  if the memory technology of interest is not 

yet commercially available, emulation (as described 

above) is the only alternative. 

5. Conclusion 
Hardware test beds for non-volatile memory-based 

systems can provide researchers with a wealth of 

concrete information about both device and full system 

performance.  We have described a few of the systems 

we have built to study these systems and highlighted 

both the advantages that these systems offer as well as 

the challenges they present.  On balance, we believe 

that taking the time construct working prototypes and 

gather data first hand about memory technology 

performance is well-worth the effort.  Indeed, as 

system-level interactions become more complex, these 

test beds will become an increasingly important means 

to fully understand the implications of non-volatile 

memories in computer system design. 
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Figure 5. Optimizing the software stack for the Moneta test 

bed can improve performance by up to 10x and provides 

insights into designing software for fast non-volatile memories. 
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