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Abstract. We present a declarative language with a formal semantics for speci-
fying both users’ privacy preferences and services’ privadicigs. Expressive-
ness and applicability are maximized by keeping the vocabulary and seman
of service behaviours abstract. A privacy-compliant data-handliogppol for a
network of communicating principals is described.

1 Introduction

Privacy policy languages allow online services to speaify publish their privacy poli-
cies in a machine-readable way. The process of decidingdoais such a policy and
the user’s privacy preferences, whether or not to disclese'sipersonal data to the
service can thus be automated. But, despite a growing needifacy-aware technolo-
gies [21, 1], adoption of privacy policy languages has bdew.sThis is due mainly
to cultural and economical reasons [6], but existing psMacguages also suffer from
technicallimitations. Above all, due to their limited expressivesasd scope, they can-
not express many natural language policies [24]. The proldahat policies are highly
heterogeneous, spread out horizontally (coming from a weédiety of application do-
mains with varying vocabulary and requirements) and valitidexpressed across all
abstraction layers: legislation, organizational andess requirements, application re-
guirements, low-level access control).

Academic research in this area has focused on developing expressive privacy
languages and logics directly specifying temporal serbielaviours [2, 4, 22]. These
efforts do not adequately address the problem of limitegppscand are not likely to be
widely deployed in the real world for the following reasons.

Firstly, inherently informal interactions still cannot expressed in these lan-
guages (e.g. “[...] we will tell our affiliates to limit themarketing to you [...]", from
Citibank’s privacy notice). Secondly, it is often unne@agsto precisely specify the
meaning of a service behaviour. For instance, it is ofteficeiit to view “delete data
within 7 days” as an atomic entity with some intuitive meanimwithout specifying
what “delete” or “within” precisely mean and entail. In suchses, precise temporal
behaviour specifications are an unnecessary overheadoareddolicy authors to think
and work at too low a level of abstraction. Thirdly, some amtaf ambiguity is often
evendesirablefrom the point of view of businesses and their legal depamtserhe
precise behaviour semantics of these languages leavesggtewoom, thus deterring
the adoption.

Observing these shortcomings of existing privacy langsage arrive at the fol-
lowing desirable design goals for a privacy language.

1. A privacy language should be generic in the ontology ofiserbehaviours and
hide the semantics of these behaviours by abstractionder to support the widest
range of policies, both in a horizontal and vertical sense.



2. It should uniformly deal with both sides of disclosure df(personally identifiable
information), namely user preferences and service pglieied enable satisfaction
checking between the two.

3. It should support, and distinguish between, both peibnissand obligations over
service behaviours, in both user preferences and servimegso

4. As usability, and readability in particular [21], is at@@l aspect in any practical
policy language, its syntax should be reasonably humadtatga.

5. The language built on top of the abstract behaviours shioilexpressive enough
to be widely applicable. In particular, it should supportgraeterized behaviours,
hierarchical data types, recursive relations, and arfittanstraints.

6. It should support credential-based delegation of aittherhich is crucial for mod-
ern decentralised and distributed architectures [13].

This paper presents a generic privacy policy language, 8détgned with these
goals in mind. Statements in S4P are meta-statements diixitdiet parameterised ser-
vice behaviours. The service behaviours in S4P can be lsftadt, which should be
sufficient in most cases, or be instantiated to any requéesl bf detail, using any of the
many existing specification techniques including templmgilc, obligation languages,
transition systems, or even concrete pieces of code. Cenoedaviour ontologies and
semantics can be plugged into the language in a modulaofaskcording to need. The
language is also agnostic about how and whether servicescertheir policies. This is
in line with the implicit trust model which requires usersttost services to adhere to
their own policies, and is independent of whether enforagnseestablished informally
via audit trails, by dynamic monitoring, or static analysis

Despite its high abstractness, S4P encapsulates notieasispo privacy and data-
handling. Apart from language design, we present:

— A proof-theoretic semantics that formalizes which queaigstrue in a policy or a
preference, and, based on this notion, an algorithm to deeiten a policysatisfies
a user’s preference (Section 3). This answers the questibauld the user agree
to disclose her data?”

— A model-theoretic semantics that formalizes the intuitiveaning of policies and
preferences in terms of abstract service behaviours acegi@ection 5). We also
show that the satisfaction checking algorithm is sound vaipect to the semantics.
This answers the question: “what does it mean for a servicenply with its own
policy, or with a user’s preference?”

— A protocol that regulates communication of user data in avast of users and
services (Section 6). This answers the question: “how c&hebéble safe commu-
nication in a network of collaborating agents?” The protatsures a useful safety
property, despite the language’s abstractness.

A small case study of a real-world privacy policy is presdnteSection 4. Our imple-
mentation of S4P is briefly described in Section 7. The papeclades with a discus-
sion of S4P with regards to the six design goals from aboveti@e8). A technical

report contains a formalization of the protocol and full qfiso[9].



2 Related work

P3P [15] is a language for presenting a website's privacycadn a structured,
machine-readable way. User preferences cannot be exgriesB88P, so ad hoc mecha-
nisms (e.g. the Privacy Tab Slider in Internet Explorer éhergyntactic pattern match-
ing language APPEL [16]) for managing preferences and ¢hgakem against poli-
cies are required. The downside of this approach is thatxhet&orrespondence be-
tween preferences and P3P policies is unclear, both sjcalgtand semantically. Poli-
cies can only express what a websitaydo and cannot express positive promises (e.qg.
“we will notify you if [...]"). Its vocabulary is fixed and welzentric, which limits its
expressiveness further [18]. P3P does not satisfy any alittaesign goals in Section 1.

DAMP [5] is a formal framework that links an internal privapplicy of an en-
terprise with its published policy. DAMP’s main complexisgems from supporting
hierarchical data types using modal operators. S4P supbi@rarchical types via con-
straints (discussed in [7]). Like S4P, DAMP does not fix thealulary of actions and
data types, and keeps the semantics of actions abstraaicAsissatisfies design goal
1 from Section 1, but not the other goals; for instance, DAMPRmt differentiate be-
tween promises and permissions.

Ardagnaet al.[2] propose a unified language for expressing serviaeséss control
policies users’release policiesand servicestata-handling policiesThe language
does not support first-class obligations that are indepgraf@ccess control rules [14],
and a user’s release policy (corresponding to “prefereiceur terminology) cannot
express requirements on the service’s privacy promises.ldiguage commits to a
predefined vocabulary and lacks a model semantics.

Barthet al. [4] use linear temporal logic to specify positive and negatemporal
constraints on the global trace of a network of principatshexging user data. Satisfac-
tion between preferences and policies is equivalent tokthg@ntailment between two
formulas. Hence for data sending actions, their logic Sasi®ur design goals 2 and 3
(but not the others). Behaviours other than sending datacirsupported (particularly,
no non-monotonic actions such as deletion), and extensgion&l be non-trivial as the
effects of behaviours on the state are modelled explicitly.

EPAL [3] is a language for specifying and enforcing orgatiaas’ internal rules for
accessing user data; essentially, it is an access conmpldae (comparable to XACML
[23]) with a privacy-centric vocabulary. It does not satibrily deal with specifying
user preferences and matching them against policies.

3 S4P

Preliminaries. A phrase of syntax igroundiff no variables occur in it, andlosedif
nofreevariables (i.e., in the scope of a quantifier) occur in it.

The phrases in S4P are built from a first-order function-lgigsaturez with
constant symbol€Const and some set of predicatd¥red. As usual, an atorra
is a predicate symbol applied to an expression tuple of thkt rarity. The predi-
cate symbols are domain-specific, and we often write atomisfix notation, e.g.
Aliceis a NicePerson.



In order to abstractly represent Pll-relevant service bielas, we assume a
further set of predicate symbolBehSymh Atoms constructed from predicates
in BehSymb are calledbehaviour atoms These are also usually written in in-
fix notation and may include atoms such &delete Email within 1yr) and
(allow X to control access to FriendsInfo).

Further, we assume a domain-specific first-order constlanguage whose rela-
tion symbols are disjoint frorfPred, but which shares variables and constants W&ith
A constraintis any formula from this constraint language. The only fartrequirement
on the constraint language is the existence of a computabisnd validity relation=,
i.e., we can test if a ground constraint is true (writterc). The constraint language
may, e.g., include arithmetics, regular expressions andtcaints that depend on envi-
ronmental data (e.g. time).

Assertions. An assertiona is of the form(E says fo if f1,..., fq where ¢), where
E is a constant fronConst, the f; arefacts(defined below), and is a constrainton
variables occurring in the assertion. In an assertiea(esays f if f1,..., f, where c),
the keyword ff” is omitted whernn = 0; likewise, ‘where " is omitted whenc = true.
Henceforth, we keep to the following conventiorgs denote variable€ U, Scon-
stants fromConst, e denotes an expression (i.e., either a variable or a copstanton-
straint,a an atom b a behaviour aton a ground behaviour aton} a set of ground
behaviour atomsf a fact,F a ground factp an assertion, and a set of assertions. We
use®b for variable substitutions, angfor ground total variable substitutions (mapping
every variable to a constant).

Facts and queriesWe can now define the syntax fafcts fandqueries ¢

f = a|ecansay f | emayb | ewillb
q = esays f? [ c? [ =q | uAGe [ 1V | 3X(q)

Facts withcan say are used to expresielegation of authorityand have a special
query evaluation semantics, as defined in the proof systémwbEacts involvingmay
andwill are not treated specially for query evaluation, but arergiddor the privacy-
related model semantics in Section 5.

For example, (2)—(18) in Fig. 1 are assertions, and (1) a@pdte queries.

Atomic query evaluation. A query is evaluated in the context of a set of assertions;
a closed query evaluates to either true or false. Our queajuation semantics is a
simplified variant of the one from SecPAL [8]. We first definentrule proof system
that generates ground judgements of the fotm E says F:

(Esays fif f1,...,fawherec) €4  [Ey(c) At Ej says Ep cansay F
Forallie {1,....n}: 4+ E says y(f;) AFEysays F
AF E says y(f) AFEpsays F

The first rule is derived from the standard modus ponens euld, the second rule
defines delegation of authority usingn say.

For example, assertions (2), (3), (4), and (10) in Fig. 1 supihe derivation of
(Alice says MS complies with COPPA?): From (3) and (4) we get thaflice says that



TRUSTe is a member o£0PPASchemes, which with (2) implies thaTRUSTe can say
who complies withCOPPA. Combine it with (10).

Compound query evaluation. The relatiort- so far only deals with the case where the
query is of the basic forne says f?). We extend it to all closed queries by interpreting
compound queries as formulas in first-order logic. Form#tya be a set of assertions
andq be a closed quernyMassr= {a | A+ a} and Meonsr= {C| |= c}. ThenA4 I q iff
Masstd Meonstr = q in first-order logic.

User-service pair. In anencountebetween a user and a service, the service requests
a PIl from the user, and the user may agree or disagree to skbslire. Since the
essential parameters of an encounter are the user and theesdris useful to view
these two parameters as a single pair:

A user-service pair = (U, S) is a pair of constants denoting theer (name)U
(the PIl owner) and theervice(name)S (the requester and potential recipient of the
PII) during an encounter.

Assertions may contain placeholdékssr) and (Svc) which get dynamically in-
stantiated during an encounter byand S, respectively. That way, the same privacy
preference can be used for encounters with multiple sesyviaed the same privacy
policy can be used for encounters with multiple users.

Will- and may-queries. Two particular classes of queries will serve in defining poli
and preference later. In the following, fet (U, S) be a user-service pair.

— A t-will-query g is a query in which no subquery of the for{8 says Swill b?)
occurs in the scope of a negation sigr).(

— A T-may-query Gy is a query in which no subquery of the forftd says Smay b?)
occurs in a disjunction or in the scope of an existential ¢jianor of a negation
sign.

The definition above syntactically restricts the queriesuoigng in a policy or a
preference to those that have an intuitive meaning in terfreancupper or a lower
bound on behaviours. Disjunction and existential quasatiie are allowed and have
an obvious meaning withinill-query, e.g.

3t (Ssays Swill delete Email within t? A t < 2yr?).

A may-query, however, represents an upper bound on a service&vioair, and dis-
junction does not make much sense in this context. If a sewinted to state that it
may possibly use the user’s email address for comtaftir marketing (or possibly not
at all), it would specify aonjunctivequery:

U says Smay use Email for Contact? A U says Smay use Email for Marketing?

If this query is successful in the contextdfs preference, the service is permitted to
use the email address for contact, marketing, both, or tosmit at all.

Policies and preferencesNow we define the syntax of preferences and policies:

— A t-preferencellyy, is a pair(Apr, Qw) Where 4y, is a set of assertions arg, a
closedt-will-query.



— A t-policy My is a pair(Ap,qm) Where 4y, is a set of assertions armg a closed
T-may-query.

Intuitively, the will-query qy of the preference specifiesl@ver boundon the be-
haviours of the service. It expressesligations i.e., the behaviours that the service
must exhibit. The assertiongy,, specify anupper boundon the behaviours, i.e., the
permissionsand typically involve the modal venhay.

The may-query gnm of a policy expresses apper boundon service’s behaviours.
The query advertises gtlossiblerelevant behaviours of the service. The service uses
Om to ask for permission for all behaviours that it might poss#éxhibit. The assertions
Ap specify alower boundon the behaviours, and typically involve the modal veit.

The servicgoromisego exhibit the mentioned behaviours.

This intuition is formalized by a trace semantics in Secéon

Satisfaction. Should a user agree to the disclosure of her PII? This depmmabether
the service’s policgatisfiesher preference. Checking satisfaction consists of twasstep
First, every behaviour declaredpassiblan the policy must b@ermittedby the prefer-
ence. Thus, itis checked that the upper bound specified ipdley is contained in the
upper bound specified in the preference. Intuitively, aisermust ask for permission
upfront for anything that it might do with a user’s Pll. Sedpavery behaviour declared
asobligatoryin the preference must lomisedby the policy. Thus, it is checked that
the lower bound specified in the preference is containedarativer bound specified in
the policy. Intuitively, a user asks the service to promisedbligatory behaviours.

Since these dualities are reflected in the language syrttaxking if a service pol-
icy satisfies a user preference becomes straightforwardin B/e just need to check
if the may-query in the policy and theill-query in the preference are both satisfied. In
general, queries are not satisfied by a single assertionybasbt of assertions. This is
because assertions may have conditions that depend onastestions, and authority
over asserted facts may be delegated to other principatsdtbe queries are evaluated
against the union of the assertions in the poldoglthe preference.

Definition 1. A t-policy Mp = (Ap,0m) satisfiesa 1-preferencelly, = (Apr, Gw) iff

For example, ift = (Alice,MS), thet-policy on the right in Fig. 1 satisfies the
preference on the left, because both queries (1) and (19)esieable from assertions
(2)—(18). We will look at this example more closely in the hssction.

Complexity. The computational complexity of policy evaluation is usyd@iven in
terms of parameterizedata complexitywhere the size of the rules (assertions with
conditions) is fixed, and the parameter is the number of f@ssertions without con-
ditions). The data complexity of S4P is polynomial in geharad linear for ground
policies and preferences; this follows from complexityules on logic programming
[20].



(1) (Svc) says (Svc) will allow Alice to Edit ParentalControls?
A Alice says (Svc) complies with COPPA?
(2) Alice says X can say y complies with COPPA if
X is member of COPPASchemes.
(3) Alice says FTC can say
X is member of COPPASchemes.
(4) FTC says TRUSTe is member of COPPASchemes.
(5) (Usr) says (Svc) may use Cookies for X if
(Svc) will revoke Cookies within t
wheret < 5yr.
(6) (Usr) says (Svc) can say (Svc) will
revoke Cookies within t.
(7) Alice says (Svc) may
allow Alice to action object
(8) Alice says (Svc) may revoke Cookies within t.
(9) Alice says Alice is using software
MSNClient version 9.5.

(10) TRUSTe says MS complies with COPPA.
(11) MS says MS will allow (Usr) to Edit ParentalControls if
(Usr) is member of msntype
msntypeupports parental controls,
(Usr) is using software MSNClient version v
where v < 9.5.
12) MS says MSNPremium supports parental controls.
13) MS says MNSP1us supports parental controls.
14) MS says MSN9DialUp supports parental controls.
15) MS says MSN can say X is member of g
whereg € {MSN,MSNPremium,MSNPlus,MSNQDialup}
(16) MSN says Alice is member of MSNPremium.
(17) MS says (Usr) can say (Usr) is using software
MSNClient version V.
(18) MS says MS will revoke Cookies within 2yr.
(19) (Usr) says MS may use Cookies for AdTracking? A
(Usr) says MS may revoke Cookies within 2yr? A
(Usr) says MS may allow (Usr) to Edit ParentalControls?

(
(
(
(

Fig. 1. Alice’s privacy preference (left), Microsoft privacy policy (right)

4 Case Study

Now we discuss an example to illustrate some of the concéptgesand S4P's intended
usage. In the following, the numbers in parentheses refeigtol.

Alice’s privacy preference. Where does Alice’s preference (1-9) come from? There
are several possibilities. First of all, she is offered tlesieamong a small number of
default preferences for specific application domains.d?egices could be customized
using application- or browser-specific user interfaces dioanot offer the full expres-
siveness and flexibility of S4P, but let the user extend omededixceptions to the pre-
defined preferences. User agents can also download defafétrgnces provided by
trusted third parties for specific application domainssidase emphasizes the need for
a trust delegation mechanism in the language.

Alice cares about online child protection, so her privacgference containwill-
query (1). According to thisvill-query, Alice requires web services she interacts with
to allow her to edit parental control settings. Furthermehe requires services to com-
ply with the Federal Trade Commission (FTC) Children’s @elPrivacy Protection
Act (COPPA). Of course, Alice does not exactly know whichibasses comply with
COPPA, so she delegates authority over COPPA complianceviacy seal programs
that certify COPPA compliance, using &% say” assertion (2). But she does not know
the entire list of such programs either, so she delegaté®uaiyt over such schemes
to the FTC (3). She also has a statement from the FTC sayingRIdSTe is such a

scheme (4).

Alice’s may-assertions allow any service to use cookies for any purpsdeng as
the service promises that the cookies expire within five y€a6). Assertions (7,8) are
default statements allowing service behaviours that Aticesking for.

In our scenario, Alice uses MSN Client to access content fld&N, and has an
assertion (9) stating the version of the client software (stay also have additional
assertions stating other environment variables).



Microsoft’s privacy policy. The English statements italics are taken verbatim from
Microsoft's Online Privacy Statemeént

Microsoft is a member of the TRUSTe Privacy Progrdimis means that Microsoft
complies with a number of privacy standards including, itipalar, COPPA (10)If
you have an MSN Premium, MSN Plus, or MSN 9 Dial-Up accourd, use MSN
Client software version 9.5 or below, you can choose to séii8pl Parental Controls
for the other users of that accou(it1-14). The various types of MSN membership are
delegated to MSN, usingan say (15).

MSN knows that Alice has a MSNPremium account (16). In ourl@mentation,
such assertions can be created on the fly during evaluating iserfaces to databases
and directory services such as SQL Server and Active Dirgcto

Microsoft believes a user’s claim about the version of hentl(17).

When we display online advertisements to you, we will plafgch one or more
persistent cookies on your computer in order to recognize gomputer each time we
display an ad to yo{19). The cookies we use for advertising have an expiry date of no
more than 2 year§18).

Themay-query (19) explicitly mentions all behaviours for this enater.

Satisfaction evaluation. Does the policy satisfy Alice’s preference? Satisfaction i
checked by evaluating Aliceisill-query and the serviceisay-query against the union
of the assertions in both preference and policy. Wilequery (1) first checks whether
the service allows Alice to edit parental control settinfise answer is yes according
to assertion (11), because Alice is a member of MSN Premiwording to MSN (16)
which has been delegated authority over MSN Premium merhipsr¢l5). Further-
more, MSN Premium accounts support parental controls dogpto (12), and Alice is
using a version of MSN client that supports parental cost{®) and is trusted on that
fact (17).

The second part of (1) checks compliance with COPPA. Thistiablished via a
delegation from Alice to TRUSTe using (2) and (10). The ctindiin (2) is satisfied
by another delegation chain, from Alice to FTC, using (3) éd

The may-query (19) consists of three conjuncts. The first one isati by Al-
ice’s assertion (5) which in turn depends on (6) and Micrtsefill-assertion (18). The
remaining two conjuncts are satisfied by Aliceiay-assertions (7,8).

Hence Alice’s preference is satisfied by the policy, so her agent is willing to
disclose her PII to the website.

5 Trace Semantics

Def. 1 induces an algorithm, based on query evaluation Hecking if a policy satisfies

a preference, but it does not show that the algorithooisect As yet, no definition of
“correct” exists. This section formalizes a notion of catreess and proves correctness
of the satisfaction checking procedure.

Behaviour function and traces. Policies and preferences bound services’ behaviours.
We are interested in whether a particular runtrace, of a servicecomplieswith a

1 Retrieved from http://privacy.microsoft.com/en-gb/fullnotice.mspx 6/02/2010.



policy or a preference. Since we care only about Pll-releb@haviours exhibited by

a trace, we keep the notion of trace as abstract as possiklas#ime a set whose
elements are calletlaces as well as ambstract behaviour functioBeh which maps
each trace to a set of ground behaviour atoms. In order tomizeigenerality of our
language, we make no further assumption8eh. Intuitively, a trace exhibits exactly

the behaviours iBeh(t). (Conversely, a ground behaviour atom can be seen as a trace
property.)

Definition 2. A trace tcomplieswith a set of traces T iff € T. A set of traces1Tis at

least as stricas a set of tracesliff T, C To.

5.1 Trace Semantics of Policies
To specify the trace semantics of a policy, we need two aryilielations.

Promised obligations. Lett = (U, S), let 4, 4, be sets of assertions, artla set of
ground behaviour atoms. The relati ‘T"ff‘q Ap holds if the behaviours i include
all behaviours promised hyill-assertions iy, in the context of foreign assertiorfs
(later, 2 will come from the user preference):

B =W Ay iff B2 {B|AUA - Ssays Swill B}

Queried permissions. Let 1 = (U,S), 4 be a set of assertiong a set of ground
behaviour atoms, amgj,, at-may-query. The relatiorB |:T§l Om holds if all behaviours
in B are contained in the behaviours timaaybe exhibited, as specified lmy,, in the
context of4 (later, 2 will come from both the policy and the preference). The iefat
is defined as the smallest relation satisfying:

B =13 U says Smay B2, if B C {B};
B ':T/,qq Q1 A0, if 3 B1,B such thatB = B, U By, By ':Tgl 01 andB; ):;ngl 02,
0 ):?E g, if 4+ gand no subquery of the forfy says Smay B?) occurs ing.

Trace semantics of a policy. The following definition formalizes the intuitive mean-
ing of a policy: a policy characterizes all those traces thapect both the lower and
upper bounds on behaviours (as expressed bwil@ssertions and theay-query,
respectively, in the context of an additional set of assestiz).

Definition 3. Lett = (U,S), My = (Ap,0m) be at-policy, and4 a set of assertions.
Then[Mn p|]]f'ﬂ denotes the set of all traces t such that

Beh(t) ={% A and Beh(t) =75 1 Gm.

Example. Let T = (Alice,MS) and [y consists of (10-19) from Fig. 1. Ld; =
(allow Alice to Edit ParentalControls), By = (revoke Cookies within 2yr), andBz =

(use Cookies for AdTracking). Let 4 consist of (2-9). Thefil p|}]f_'ﬂ denotes the set
of all tracest such that ’

{B1,B2} C Beh(t) C {B1,B,Bs},

which corresponds with the intention of the privacy polig@sdribed in Section 4.



5.2 Trace Semantics of Preferences
We specify the trace semantics of a preference by two otheéliany relations.

Permissions. Lett = (U,S), let 4, 4, be sets of assertions, arila set of ground
behaviour atoms. The relatiah =5 A, holds if all behaviours irB are contained in
the set of behaviours permitted by they-assertions iy, in the context of foreign
assertions (later, .42 will come from the service policy):

Obligations. Lett= (U, S), 4 be a set of assertions,a set of ground behaviour atoms,
andqy at-will-query. The relatiorB ):m gw holds if the behaviours itB include all
behaviours specified as required tpy, in the context ofZ (later, 2 will come from
both the service policy and the user preference). The oelagidefined as the smallest
relation satisfying the following:

B =1'% Ssays Swill B?, if B D {B};

Q%lztﬂqlAqg, |f23): qlandQ%l:Tﬂqg,

GBHVﬂqlqu, if B =19 gy or B =Y o

B I_Wq 3x(q), ifthere |sE € Constsuch thatB ="} d[E/X;

B |_m g, if 4+ gand no subquery of the forr{rSsays Swill B?) occurs ing.

Trace semantics of preferencesThe following definition formalizes the trace seman-
tics of a preference in the context of a set of assertions.

Definition 4. For a user-service pait = (U, S), at-preferencdly = (Apr, Gw), and a
set4 of assertions[My]", is the set of all traces t for which

Beh(t) =1'7 Apr  and  Beh(t) \—T Apyua Ow-
Example. Lett = (Alice,MS) andly, consists of (1-9) from Fig. 1. LeA consist of
(10-18),B; = (allow Alice to Edit ParentalControls), and
B = {allow Alice to X Y, revoke Cookies within X, use Cookies for X | X,y € Const}.
Then[M ]}, denotes the set of all tracesuch that
{B1} C Beh(t) C B

which corresponds with the intention of Alice’s preferefican Section 4.

5.3 Satisfaction and Compliance

Now we link up proof-theoretic satisfaction with model-tinetic compliance. Assum-

ing that a service trace complies with the service’s owngypthe theorem tells us that
successfully evaluating all queries is indeed sufficiengfaranteeing that the service’s
trace also complies with the preference.



Theorem 1. LetMpy = (Api,qm) be at-policy andlpr = (Apr, qw) a T-preference. If a
trace t complies wittfr1 ;] 25, ANA My satisfiedpr, then t complies withiMp 7, .

This theorem is completely independent of any concreteuntisttion of traces, of
the behaviours, and of thBeh mapping. The essential correctness propertySt?
holds despiteits abstractness. (Of course, if behaviour-specific ptogeiare to be
proved, therBeh needs to be filled with some structure.)

6 Safe data handling

In this section we describe a protocol for Pl disclosure metwork of users and ser-
vices that use S4P to express their preferences and polieg®ectively. The protocol
also regulates transitive communication of Plls to thirdipa and evolution of privacy
policies. The protocol guarantees privacy of users’ PlIs.

User-service encounter.If a serviceSwishes to collect a PII from a uskk, then the
following steps are performed (heres= (U, 9)):
1. U andSdecide on a-preferencdly, and at-policy My, respectively, to be used
for this encounter. These may be fixed or result from negotiat
2. If My satisfied 1y, thenU sends PII td5, otherwise the protocol is aborted. The
trust model dictates who checks satisfactidn(as the main stakeholde§(wish-
ing to keep parts of its policy secret), or a trusted thirdypakvailable computa-
tional resources may also influence the decision.
3. Skeeps a copy dfl,; andlp, together with the PII.

Transitive service-service encounter.In most scenarios, disclosing a Hito a third
party S represents a privacy-relevant behaviour, which should éreot:d by a be-
havioural atom(send P to S) (e.g. (send Email to eMarketing)) which the Beh
mapping should keep track of.
A serviceSmay thus only disclose a Pl to a third pa8yif
1. The policy ofSallows the disclosure, and
2. The policy ofS complies withU's preference. Again, the trust model dictates the
place to check satisfaction, e.g.®{not requiring to trus8 on checking), a8
(who might have more resources), or at a trusted third party.

Policy evolution. A service may wish to alter its policy even after having cciiésl
the PII. For example, a service may want to disclose the Pdl poeviously unknown
third party, even though the behaviour corresponding tadteelosure action was not
declared in thenay-assertions in the service’s policy. Or it may wisbt to delete PlII
despite having promised it in thall-query.

Strictly speaking, both cases represent compliance \eoisitof the service’s own
original policy. Sometimes such violations should be p&edias long as the new be-
haviours still comply with the user’s original preferente.this scheme, the service
would need to alter its policy in such a way that the new behagi comply with the
new policy. It then has to check if the new policy still saBsfthe preference. If so, the
service may start complying with the new policy, otherwismiist continue complying



with the original policy. This scheme guarantees that tinéiee still complies with the
user’s preference.

Privacy guarantee. Assuming users and services follow the protocol and thateas!
vices comply with their own policies, the following safetyoperty holds.
— If a serviceSpossessdd’s Pl P, eitherU has senP earlier toSdirectly,
— or elseS obtainedP via a third-party exchange from some servievhich pos-
sessed at that time, and the user’s preference says$haty send Pto S
— In either case, the trace 8fcomplies with the user’s preference.
A formalization of the protocol and of the safety propertyasnd in [9].

7 Implementation

Our prototype implementation focuses on three phasesuatitad) policies and prefer-
ences, enforcing policies (including disclosure), andfyieg trace compliance.

Evaluating policies and preferences.During an encounter, the service discloses its
interface, i.e., the type of the required PII, and the asdediprivacy policy. The privacy
policy is evaluated against the privacy preference as tegtin Section 3. When one
or more PII have the required type and a suitable prefer¢heeyser is given a choice
in a privacy-aware identity selection protocol. If the sktttion check fails, the user
can stop or modify her preferences.

We found that for typical policies, our implementation dfisiction checking com-
pletes within a few milliseconds, even in the context of afbmic assertions.

Enforcing policies. Services store collected Plls and keep track of associabtsr
and obligations by attaching the correspondent “stickgf@rence. Obligations are en-
forced by reacting to external and scheduled events. Bafor@ction is performed on
a collected PII, queries are evaluated against the attguieddrence. Services record
privacy-relevant behaviour in execution traces.

Verifying compliance of traces. Execution traces can be used by internal or external
auditors in order to check the behaviour of services. Traoeserified according to the
trace semantics given in Section 5.

Our implementation of S4P is based on the SecPAL [8] evalnangine imple-
mentation, extended with generic predicates andifgwill-constructs. The evaluation
process begins by translating each assertion into consttdbatalog clauses. Queries
against the resulting constrained Datalog program areiated using a resolution al-
gorithm with tabling [17] in order to guarantee terminatmren with recursive facts in
policies and preferences. The translation preserves $diely semantics: a query is
true in the context of S4P’s assertions iff the correspapdiatalog query evaluates to
true against the Datalog program.

A successful query can be visualized by a proof viewer thapigically displays
the deduction steps in a proof graph; a failed query can blysethusing our logical
abduction tool [10]. In future work, we plan to adapt the ttmobkuggest modifications
of privacy preferences in the case of non-satisfaction.



8 Evaluating S4P’s design

This section briefly discusses S4P’s language design wgtirds to the six design goals
listed in Section 1.

Generality and abstractness. Abstractness avoids premature commitment to a lim-
ited set of features suitable for one particular applicatiomain, but not necessarily
for another. It allows concrete ontologies and semanticifipations to be plugged in
flexibly, depending on the context and needs. Abstractrsetbais conducive to a mod-
ular language design, simplifying formal reasoning. As waeehshowed in this paper,
useful correctness properties can be established wittivedialittle effort, without hav-
ing to instantiate the temporal and stateful semantics lodbieurs.

S4P is abstract in several aspects. First, the vocabul&gptsabstract. Even though
most websites’ natural language privacy statements haeenaon structure (e.g. ad-
hering to the Safe Harbor Privacy Principles), with detailsnotification, user choice,
third party disclosure, user access, and security, the&alwalaries vary greatly, espe-
cially across different application domains.

Second, we have kept the semantics of behaviours abstrassioyning a mapping
from traces to behaviour atoms. In most cases it is suffit@agree on the semantics
of behaviours only informally, especially for behaviounsadlving human interaction.
Our framework facilitates such partial informality by prdwng the abstract level of
behaviour atoms. If a more formal treatment is needed, @méxvork can be used to
concretize the meaning of behaviours to any desired lewehilex privacy obligations
[22] and temporal logic to express trace constraints [4kaemples of how our abstract
notion of behaviour could be concretized.

Third, we are not tied to a specific compliance enforcemertteghdn practice, auto-
matically enforcing compliance is unfeasible or unnecgssastead, informal methods
such as auditing are used. To automate enforcement, thedinest way is to imple-
ment a reference monitor for dynamically checking the pssioins, accompanied by
an obligation monitoring system [12, 19]. For simple systeithrmay be possible to en-
force compliance by static analysis, as has been done fptagsaphic protocols and
access control policies [11].

Uniform treatment of preferences and policies.In S4P, both preferences and policies
are uniformly expressed as assertions and queries in esedimgjuage. Satisfaction
checking between policies and preferences reduces toesimuglry evaluation.

Support for both permissions and obligations. S4P introduces two modal verbs for
specifying upper boundsn@y) and lower boundswill) on service behaviours. This
minimal syntactic construct is sufficient for expressingnpissions, promises, and obli-
gations, as formalized in Section 5.

Human-readable syntax. The case study from Section 4 showed that real-world online
policy statements in natural language can be translatedS4e fairly directly in a
way that preserves human readability to a reasonable dégrieeis achieved by S4P’s
infix notation for phrases and the restriction of asserttonsssentially the Horn logic
fragment, which can be written as if-clauses.



Expressiveness.S4P’s relatively high expressiveness compared to otheagyilan-
guages is mainly due to its abstractness, but also to a nuaidanguage features.
First, the application-specific predicates are paranegdyiwhich allows the modelling
of arbitrary relations. Second, the if-conditions of adees are recursive, which is nec-
essary for transitive trust relations. And third, the whelaise may contain arbitrary
application-specific constraints, including arithmeticatring ones, and functions for
retrieving environmental data.

Support for delegation. The need for trust policies has been long recognized in autho
rization logics, which has led to the development of languaanstruct for delegation of
authority. But trust and delegation is equally importanpiivacy policies (see e.g. Sec-
tion 4). S4P supports delegation by qualifying all statetmrith thesays-modality and
providing thecan say primitive to allow utterances to be dependent on other fpais’
utterances.

Conclusion. Summarizing, we believe that the abstractness of S4P, jniection with
the other design goals from Section 1, makes it a partiguddtitactive privacy language
in terms of expressiveness, applicability, usability, faxdormal analysis.
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