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Abstract—Mobile devices often store data in reduced resolutions or custom formats in order to accommodate resource constraints

and tailor-made software. The Polyjuz framework enables sharing and synchronization of data across a collection of personal devices

that use formats of different fidelity. Layered transparently between the application and an off-the-shelf replication platform, Polyjuz

bridges the isolated worlds of different data formats. With Polyjuz, data items created or updated on high-fidelity devices—such as

laptops and desktops—are automatically replicated onto low-fidelity, mobile devices. Similarly, data items updated on low-fidelity

devices are reintegrated with their high-fidelity counterparts when possible. Polyjuz performs these fidelity reductions and

reintegrations as devices exchange data in a peer-to-peer manner, ultimately extending the eventual-consistency guarantee of the

underlying replication platform to the multifidelity universe. In this paper, we present the design and implementation of Polyjuz and

demonstrate its benefits for fidelity-aware contacts management and picture sharing applications.

Index Terms—Distributed applications, distributed systems, weak consistency, fidelity, replication, transcoding.

Ç

1 INTRODUCTION

AS personal portable devices proliferate, automated tools
for sharing and keeping data up-to-date on a collection

of devices are gaining widespread use. A practical problem,
however, greatly hinders data replication across mobile
devices. In order to accommodate memory and bandwidth
constraints and to work with custom application software,
mobile devices often store data in formats of reduced
fidelity. For example, some cell phones restrict the amount
of information stored per contact to a small, fixed number of
phone numbers and an address whereas a general personal
information management (PIM) application such as Micro-
soft Outlook running on a desktop or laptop supports a
potentially unlimited number of phone numbers, addresses,
and other pieces of information. In this case, a person’s cell
phone stores low-fidelity contacts while her full-featured
desktop maintains high-fidelity versions of those same
contacts.

Several commercial platforms [21], [23] as well as
academic systems [1], [6], [7], [12], [13], [15], [17] can
replicate data across weakly connected devices, allowing
users to update data even when disconnected and guaran-
teeing eventual consistency. Supporting fidelity-aware
replication entails the following additional requirements:

. A device’s native fidelity level should be accommo-
dated, and fidelity should be reduced when updates
are transferred from a higher fidelity device to a

lower fidelity device. Storing items at a higher
fidelity than what the device needs is wasteful.

. Lower fidelity devices should be allowed to make
updates, which should be reintegrated with the
corresponding items on higher fidelity devices when
possible. Overall, updates should flow seamlessly
across different fidelity representations of an item.

. Application semantics should be preserved while
transferring updates across heterogeneous represen-
tations. For example, a contact manager might
require that updates made to a related set of fields,
such as an address, are always applied atomically;
that is, all fields are updated together or none at all.

We have designed and built the Polyjuz framework to
support replication among weakly connected devices that
store data at differing fidelities. Polyjuz sits between the
application and a conventional replication platform that
synchronizes data items of a single fidelity. Layering
enables Polyjuz to focus solely on fidelity-related function-
alities such as reducing fidelity and reintegrating updates
while allowing users to employ existing software for data
sharing and synchronization.

Polyjuz is based on the key design principle of separat-
ing different fidelity worlds. Polyjuz maintains a separate
collection of data items at each fidelity level, which is
replicated by the underlying platform within that fidelity
world. This separation enables a laptop and a desktop to
synchronize high-fidelity data items using one replication
platform, while two mobile devices synchronize low-
fidelity data items using a different platform. A high-
fidelity device that interacts with low-fidelity devices not
only stores the collection for its native fidelity level but also
stores all lower fidelity collections.

Polyjuz acts as the bridge between the worlds of different
fidelity. For example, when a cell phone and a laptop
synchronize their low-fidelity collections, Polyjuz transfers
items between the low and high-fidelity collections on the
laptop. It reduces the fidelity of items from the high-fidelity
collection when copying them to the low-fidelity collection
and, in the reverse direction, reintegrates updated items in
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the low-fidelity world with their counterparts in the high-
fidelity world. The latter operation adheres to application-
specific semantic requirements. For example, when dealing
with personal contacts, reintegration could simply involve
copying the fields in the low-fidelity representation to the
high-fidelity representation. If required, the atomicity of an
update involving multiple fields of an item can be
preserved during reintegration.

Essentially, Polyjuz implements an eventually consistent
replication mechanism on top of the separate fidelity
worlds. It assigns its own version numbers for updates
and maintains its own version vectors, distinct from those
of the underlying replication platforms. To support fidelity,
it introduces the notion of tagged versions, where the version
number of an item is tagged with a label indicating its
fidelity. Tagged versions and tagged version vectors enable
Polyjuz to apply updates made in one fidelity world in
other fidelity worlds correctly and to ensure that eventual
consistency is achieved across the entire system.

We have implemented the Polyjuz framework in C# and
built two sample applications. The first is a contact
management application that supports two levels of fidelity
and automatically performs fidelity reductions and update
reintegrations. An experimental evaluation of this applica-
tion shows that Polyjuz achieves eventual consistency with
a modest overhead in the presence of updates to both low
and high-fidelity versions. The second is a picture sharing
application that enables sharing images with devices of
different fidelity and synchronizing updates to image
metadata on any shared device.

The rest of this paper follows this organization: Section 2
provides a motivating scenario highlighting the principal
problems in replicating multiple-fidelity data. Sections 3, 4,
and 5 present the design and implementation of the Polyjuz
framework and explain how Polyjuz performs fidelity-
aware replication. Section 6 presents the contacts manage-
ment and picture sharing applications built on top of
Polyjuz followed by an evaluation in Section 7. Section 8
discusses related work in this area and Section 9 concludes
with a summary of our contributions.

2 MOTIVATION

The following scenario, depicted in Fig. 1, illustrates the
needs of fidelity-aware replication.

Bob and Chuck, who work for the same company, are at a trade
show scouting for new talent. At the trade show, they each talk to
potential candidates and collect their names, e-mail addresses, and

phone numbers, which they record on their company-provided cell
phones. During breaks, Bob and Chuck exchange the candidates’
contact information directly between the cell phones using
Bluetooth since there is no mobile Internet connectivity at the
trade show. At the end of the day, they upload the contacts to their
laptops and to a server in their office.

Back at the office, their colleagues examine the potential
candidates, collect their resumes, and construct a complete
portfolio for each interesting candidate. Later that week, Bob
and Chuck will individually meet each chosen candidate for a
casual interview at a coffee shop near the candidate’s work place.
To prepare for the interviews, Bob and Chuck each fetch the
candidates’ complete portfolios onto their laptops and also carry
the candidates’ contact information, now updated with work
addresses, on their cell phones.

Because the candidates’ recruitment information exists
on different devices and servers, Bob and Chuck and their
colleagues would greatly benefit from an automated system
that enables 1) data sharing, 2) synchronization of updates,
and 3) data operations even when disconnected. If the data
format were identical on all devices, suitable replication
platforms are already available.

However, in the example scenario, the cell phones restrict
the contact format to a name, address, phone number, and
e-mail, whereas the laptops, servers, and desktops can store
an extensible representation for a contact, including a
resume and other attached documents. Replication of data
with multiple representations at different fidelity levels
poses new challenges as outlined below.

2.1 Cross-Fidelity Replication

The system needs to recognize the native fidelity level of
each device and transfer items at that fidelity level. Devices
may not be capable of storing items at any other fidelity
level. Besides, storing or transferring potentially larger
sized, higher fidelity items is wasteful of storage, band-
width, and computation power—precious resources on
mobile devices.

The above requirement entails that the system performs
the necessary transformations before transferring items to
the destination device during synchronization. For exam-
ple, when replicating data from a high-fidelity device like a
laptop to a low-fidelity device like a cell phone, data need to
be transformed from a high-fidelity to a low-fidelity format.
Furthermore, the system needs to repeat these transforma-
tions every time an item is updated in the high-fidelity
world and needs to be replicated in the low-fidelity world.

2.2 Update Reintegration

Further problems arise if the low-fidelity devices are
allowed to make updates. For example, in the above
scenario, a candidate that Bob meets may give him a new
phone number during the interview, which Bob updates on
his cell phone. In this case, when Bob synchronizes his cell
phone with his laptop, the laptop needs to take the updated
low-fidelity item and merge it with the older, high-fidelity
version, making sure to retain the candidate’s resume and
other extra information in the high-fidelity version. We call
this operation a reintegration.

A difficult reintegration scenario occurs when a high-
fidelity device receives an update made at another high-
fidelity device through a low-fidelity intermediary. For
instance, the cell phone could hold a low-fidelity copy of a
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Fig. 1. Example fidelity-aware replication scenario: The solid lines
indicate high-fidelity data exchanges while the dotted lines indicate low-
fidelity data exchanges.



data item that it obtained from the server, which it then
transfers to the laptop before the laptop has a chance to talk
directly to the server. The laptop should accept this updated
item, recognize that this item is of low fidelity, and
subsequently replace it with a high-fidelity version from
the server during a future synchronization. This scenario
can become even more difficult if the cell phone updates the
item before transferring it to the laptop.

2.3 Adherence to Application Semantics

Finally, reintegrations must respect application semantics.
For some applications, a reintegration may just copy the
fields in the low-fidelity representation to the older, high-
fidelity item. However, simply copying over fields may lead
to a violation of atomicity. For instance, suppose one of Bob’s
colleagues in the office updates the address of a candidate
who has moved to a new city but Bob’s cell phone only stores
the street, city, and state fields of the address omitting the zip
code. The cell phone might send its low-fidelity version of
the candidate portfolio, including the updated street, city,
and state fields, to Bob’s laptop, which might reintegrate
these updated fields into the old address while retaining the
old zip code, resulting in an incorrect address.

Application semantics are thus important, and a fidelity-
aware system should ideally be flexible in supporting diverse
application needs. It should be able to ensure atomic updates
of items if the application requires it while supporting more
eager, opportunistic updates when desired.

The rest of this paper presents Polyjuz and explains how
it provides fidelity-aware replication while meeting the
above challenges. We focus on applications whose data
format is a set of fields—as in contacts, calendar entries, and
e-mail—and updates involve changes to the data associated
with one or more fields. Fidelity awareness, however, is also
crucial for other types of data, such as pictures, media, and
documents. Updates to such data might involve complex
operations—for example, red-eye reduction on a picture or
paragraph reordering in a document. Our picture sharing
application, PolyPix, demonstrates that Polyjuz can provide
limited support for fidelity-based adaptation of images.
Specifically, PolyPix supports updates to image metadata
(e.g., authors, location, or tags) on any device while only
permitting full-fidelity devices to perform complex update
operations on the data portion of an item.

3 DESIGN

3.1 System Model

We follow a system model that is common for weakly
consistent replication systems. The system strives to
replicate a collection of items of a single-data type (support-
ing composite collections of multiple-data types is an easy
extension) on a set of devices called replicas. A replica can
create, update, or delete an item at any time without
coordinating with other replicas. We use the term update
liberally to mean any of these operations. The replication
system usually keeps metadata to identify concurrent
updates or conflicts, which occur when two replicas update
an item without coordination, creating a divergent history
for the item.

A replica synchronizes with another in an opportunistic
manner and receives updated items that it has not seen
before from the remote replica. We do not assume any

predetermined pattern for when and with which remote
partner a replica might synchronize. However, the syn-
chronization patterns must lead to a connected topology in
order to achieve convergence. Fig. 1 illustrates one such
synchronization topology.

For fidelity-aware replication, we assume that a data
item consists of a set of fields. A representation of a given
fidelity level consists of a subset of those fields. We call the
representation containing all the fields the full-fidelity
representation of the item. Each replica specifies a fidelity
level it supports and exposes to the application. A replica
may store items of fidelity lower than its fidelity level, but
never higher. We assume that the fidelity level of a replica is
fixed and known in advance and that there is at least one
full-fidelity replica in the system.

3.2 Architecture

The key principle, we follow in the design of Polyjuz, is
separation. At a high level, our architecture creates separate
worlds of replication for each fidelity level. The same set of
items have a separate, duplicate representation, at the
appropriate fidelity level, in each world. Within a world,
the collection of items are replicated independently with the
help of an off-the-shelf replication platform. On replicas
where the worlds meet, multiple collections might exist, one
for each fidelity level that the replica needs to support. For
example, a full-fidelity laptop that serves as a synchroniza-
tion partner for a low-fidelity cell phone and a full-fidelity
desktop will have two collections, but will only expose the
full-fidelity collection to the application.

Polyjuz unifies the separate fidelity worlds at a layer above
the replication platforms. Essentially, Polyjuz is another
weakly consistent replication system implemented on top of
the underlying platforms. It is, however, fidelity-aware,
ensuring that the operations needed to copy data between
different fidelity worlds—namely, fidelity reductions and
update reintegrations—are performed correctly. It provides
an eventual consistency guarantee that holds across the
unified replication system by building on the consistency
guarantees of the underlying replication platforms.

Fig. 2 illustrates this architecture for a simple setup
where the company’s server and the user’s laptop are dual-
fidelity replicas, i.e., they each support both a high-fidelity
and a low-fidelity collection. The high-fidelity collections
synchronize with each other (shown in solid lines)
independent of the low-fidelity collections (dashed lines).
The Polyjuz layer transfers items across the high and low-
fidelity collections on both the desktop and the laptop.
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Fig. 2. Polyjuz architecture for two dual-fidelity replicas and a low-fidelity
replica. The solid lines indicate high-fidelity collections and data
exchanges while the dotted lines indicate the same for low fidelity.



We chose a layered design for several pragmatic reasons:
First, it keeps the Polyjuz layer simple and specific to
fidelity-aware operations, allowing the reuse of synchroni-
zation protocols, knowledge representation schemes, and
transport mechanisms. Second, it enables Polyjuz to inherit
the benefits of the underlying replication layer. Some
replication systems [10], [13] are optimized for low
bandwidth consumption by exchanging concise knowledge
of previously seen updates during synchronizations while a
few others [1], [15] support partial replication. Polyjuz
inherits such features. Finally, a layered design facilitates
adoption by allowing users to continue to use their favorite
replication platforms.

On the other hand, layering has obvious downsides. It
increases storage overhead by keeping multiple representa-
tions of items on replicas that support multiple fidelity
levels as well as two layers of replication metadata. And, as
discussed later, it can also increase bandwidth overhead by
creating spurious conflicts when idempotent fidelity opera-
tions are performed independently on different replicas.

An alternative, integrated design, where fidelity aware-
ness is directly built into a single replication platform, will
avoid these extra overheads. The core mechanism intro-
duced in this section can support fidelity in an integrated
replication system equally well. However, we stick with the
layered design for the previously mentioned reasons and
offer optimizations to reduce the additional overheads our
design entails in Section 4.

3.3 Overview of Weakly Consistent Replication

Polyjuz uses the following basic design principles of weakly
consistent replication systems and supports other replica-
tion platforms built with the same principles for its
underlying layer.

Each item has a version number to track updates. A
version number is a two-tuple consisting of a replica identifier
and an update count. A replica assigns a unique version
number to each update (or a create or a delete) of an item
containing its own identifier and an update count it
maintains. The update count grows monotonically.

Additionally, each version has a version vector used to
detect concurrent updates or conflicts [11]. A version vector
is a vector of update counts, one per replica. An update count
u for replica r implies that the version incorporates any
update of the item performed at r with an update count less
than or equal to u. This implication leads to a trivial check for
conflicts: version v1 of item i is concurrent with version v2 of
item i if and only if v1½r1� > v2½r1� and v1½r2� < v2½r2� for some
replicas r1 and r2. In other words, the version vector defines a
partial order over the possible update history of an item. If
the version vectors of two versions are ordered, then one
supersedes the other, otherwise they are concurrent. We use
the same symbol, v for example, to denote both a version of an
item and its version vector for convenience.

The replication system notifies the application about
conflicts. The application can then resolve the conflict in an
automated manner [8], [16], [19] or, in turn, expose it to the
user. Conflict resolution results in an updated version of the
item with a new version number and a new version vector
that combines the version vectors of the conflicting versions
and the new version number. Combination means that for
each replica r the update count in the new version vector

will be the maximum of the corresponding update counts in
the version vectors of the conflicting versions.

The version vector information is also used during a
synchronization to decide which updates are missing at a
replica. In an unoptimized synchronization protocol, a
replica will send the version vectors of all its items to the
remote replica. If the remote replica has an item whose
version number is not contained in the received version
vector, the version is a missing update, which the remote
replica then sends. In practice, replicas often keep a concise
knowledge of the updates they have seen, for instance, the
version vectors of all their items combined into a single-
version vector [1], [10], [13], [15], and only send this
compressed knowledge during a synchronization.

These basic mechanisms ensure that the system achieves
eventual consistency. That is, if updates cease, all replicas in the
system reach an identical state, appearing to have applied all
nonconflicting updates to an item in the same order.

Fig. 3 illustrates the operations of a weakly consistent
replication system for an example scenario with three
replicas—the server, laptop, and desktop, depicted in Fig. 1.
In step 1, the server S first creates an item i with version
number S1 and version vector <S1>. We use the triplet
item_id:version_number:version_vector to represent the meta-
data of an item. The laptop L then receives this version from
the server during a synchronization. In step 2, the laptop
performs an update changing the item’s metadata to
i:L1:<L1S1> and sends the updated version to the desktop
D on a subsequent synchronization. In step 3, the desktop
performs an update leading to the version i:D1:<D1L1S1>
which it sends to the server S to replace the older version.
Finally, in step 4, the laptop synchronizes with the server
and receives the most recent version of i. The system
reaches a consistent state at this point.

3.4 Contact Management Scenario

Fig. 4 describes a sample scenario that illustrates the
difficulty in maintaining an address book on three devices
of varying fidelity. As in Fig. 2, the server and the laptop are
full-fidelity devices while the cell phone is a low-fidelity
device. In step 1, the server adds a new contact for Jon Doe to
the company’s address book. The laptop receives this new
contact during a synchronization. In step 2, the user proceeds
to update Jon Doe’s e-mail address from jon@acm.org to
doe@acm.org on his laptop. This updated contact is sent to the
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Fig. 3. Example metadata changes during weakly consistent replication
for a scenario with three replicas of equal fidelity.



cell phone on a subsequent synchronization. However, since
the cell phone’s address book is constrained to storing only a
contact’s name and phone fields, the laptop generates a low-
fidelity representation of Jon Doe’s contact to ship to the cell
phone. In step 4, the user updates Jon Doe’s phone number
from 693-1111 to 693-2222 on the low-fidelity cell phone.
Later, the cell phone synchronizes with the server and sends
over an updated contact for Jon Doe with a new phone
number. In step 5, the server reconciles the cell phone’s
updates to the low-fidelity Jon Doe contact with its high-
fidelity representation.

Ideally, we would like the server to discern that the cell
phone has only updated Jon Doe’s phone number and
hence, the reintegrated contact should contain the updated
phone number while retaining all the other fields (such as,
name, e-mail address, etc.) as is. Similarly, when the server
next synchronizes with the laptop, we would like the server
to retain Jon Doe’s updated phone number (the cell phone’s
update) while replacing Jon Doe’s e-mail address with the
laptop’s version. Finally, the server should push Jon Doe’s
complete contact, with both the updated phone number and
e-mail address to the laptop so all devices have a consistent
view over Jon Doe’s contact.

3.5 Fidelity-Aware Replication in Polyjuz

We introduce fidelity awareness to weakly consistent
replication through the novel use of fidelity tags. A fidelity
tag is a short label for a fidelity level. We define a partial
order over fidelity tags. The full-fidelity level is the root of
this partial order and dominates every other fidelity level.
Tags of other fidelity levels may just be a flat tier under this
root or might define a more intricate partial order relation-
ship with multiple tiers. A simple way to define tags for
fidelity levels that are subsets of the fields in the full-fidelity
data is through a bit vector, where a bit is set for each field

present in a representation. An alternative way is to define a
short label for each fidelity level and specify the ordering
relationships explicitly as a separate map.

We extend the traditional definition of a version number
to a tagged version number consisting of the replica identifier,
update count, and a fidelity tag. This tagged version
number defines the fidelity level at which the item is
represented. Similarly, we also extend the definition of the
traditional version vector to a tagged version vector, which is
a vector of tagged version numbers, one per replica.

We can now define two kinds of partial orders on the
tagged version vector: the tagged partial order, �t , defines
supersession over tagged version vectors: that is, a tagged
version vector v1 supersedes another tagged version vector
v2 if and only if (v1½r� > v2½r�) or (v1½r� ¼ v2½r� and v1½r�:tag �
v2½r�:tag) for each replica r. Here, v½r� is the update count of
the version vector element for replica r, and v½r�:tag is the
corresponding fidelity tag.

The second partial order, untagged partial order, is the
traditional partial order over version vectors, which does
not take into account fidelity tags. That is, v1 � v2, if and
only if, v1½r� � v2½r� for each replica r.

Polyjuz implements fidelity-aware replication using a
tagged version number and a tagged version vector as
fidelity metadata for each version. Polyjuz encapsulates this
fidelity-aware metadata and hides it from the underlying
replication protocol, which replicates the Polyjuz metadata
along with the rest of the item.

Polyjuz performs the traditional operations of weakly
consistent replication systems except synchronization,
which happens through the underlying replication plat-
form. To handle an update, Polyjuz assigns to it a new
version number tagged with that replica’s fidelity level and
updates the tagged version vector to include the new
tagged version number. It also allows applications to
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register automated conflict resolvers and notifies an
application about concurrent updates.

3.6 Fidelity Transformations

The central fidelity-aware operation in Polyjuz is the
transformation of items between different fidelity worlds.
Polyjuz copies items between fidelity worlds on replicas
that support multiple fidelity levels. This transformation
can be triggered in multiple ways. The underlying replica-
tion platform could notify Polyjuz of new updates, invoking
the necessary transformations. Or, Polyjuz could periodi-
cally inspect the state of the collections and perform
transformations in the background.

3.6.1 High-to-Low Transformation

The fidelity metadata on an item indicates when a
transformation is required from a higher fidelity to a lower
fidelity world (and vice versa). Polyjuz copies an item i
from the higher fidelity collection to the lower fidelity
collection, performing a fidelity reduction, under one of the
following three conditions:

1. A version of i is present in the higher fidelity
collection but no versions of i are in the lower
fidelity collection. This is the case of first appearance
of an item in the lower fidelity world.

2. The version in the higher fidelity collection, vh, has a
different version number than the version vl in the
lower fidelity collection, and the version vector of vl
does not supersede the version vector of vh under
the tagged-partial-order relationship. This is analo-
gous to the condition for a remote replica to send an
update to its synchronization partner.

3. The version in the higher fidelity collection, vh, has
the same version number as the version vl in the
lower fidelity collection but a higher fidelity tag.
This condition specifies a supersession for the
tagged version number.

Polyjuz performs the following operations to copy the
item i from a higher fidelity collection to a lower fidelity
collection. If the version of the item in the higher fidelity
collection, vh, is already at a fidelity level lesser than or equal
to the fidelity level of the lower fidelity collection, Polyjuz
simply copies the item over. Otherwise, the transformation
happens in three steps: 1) Polyjuz creates a new representa-
tion of the item matching the fidelity level of the lower
fidelity collection with the help of some application-specific
procedure to parse the data format. 2) It sets the item’s
fidelity tag to the minimum of the fidelity level of the lower
fidelity collection and the original fidelity tag of the item. The
same change is also made to the fidelity tag of every element
of the item’s version vector. And, 3) it copies the fidelity-
reduced representation to the lower fidelity collection.

Fig. 5 illustrates the above fidelity-reduction operation for
the contact management scenario depicted in Fig. 4. In step 1,
the server S first creates Jon Doe’s contact, henceforth
referred to as item i, with version number S1 and version
vector<S1> in the high-fidelity collection. The laptopL then
receives this version from the server in its high-fidelity
collection during a synchronization that happened in the
underlying replication platform. In step 2, the laptop L
updates Jon Doe’s e-mail address, changing the item’s
metadata to i:L1:<L1S1>.

A subsequent synchronization from the low-fidelity cell
phone C triggers a fidelity reduction in L. The version
i:L1:<L1S1> in the high-fidelity collection at L gets
transformed to the version i:L1:<L1S1> in the low-fidelity
collection. In our examples, we use a line below the replica
identifier to indicate a version tagged as low-fidelity—no
line denotes a full-fidelity version. Ultimately, the cell
phone C receives the low-fidelity version i:L1:<L1S1>.

3.6.2 Low-to-High Transformation

Polyjuz copies an item i from a lower fidelity collection to a
higher fidelity collection when one of the following
conditions is satisfied:
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fidelity replicas and one low-fidelity replica. An underline of a replica identifier indicates low-fidelity version. The system converges to a consistent
state at the end of these interactions.



1. A version of the item is present in the lower fidelity
collection, but no versions of the item are in the
higher fidelity collection. This is the case of first
appearance of an item in the higher fidelity world. It
occurs when the item is created on a lower fidelity
replica or when a fidelity-reduced version is
received from a lower fidelity replica first.

2. The version vl in the lower fidelity collection has a
different tagged version number than the version vh
in the higher fidelity collection, and the version
vector of vh does not supersede the version vector of
vl under the tagged partial order relationship.

Polyjuz simply copies the selected items to the higher
fidelity collection without making any changes to data or
metadata. This might result in multiple versions—a higher
fidelity version and an updated lower fidelity version—of
an item in the high-fidelity collection. For example, in Fig. 5,
in step 3, the cell phone C makes a low-fidelity update to
item i (updated phone number) resulting in the version
i:C1:<C1L1S1>. This version then gets replicated to the
low-fidelity collection on the server S. The Polyjuz frame-
work on the server detects this updated version in the low-
fidelity collection and copies it over to the high-fidelity
collection, resulting in two versions as shown in step 3a of
Fig. 6. The actual update reintegration happens in a
separate process described next.

3.7 Update Reintegration

The underlying replication platform sees the multiple
versions as concurrent updates to the same item in the
higher fidelity collection. Polyjuz registers an automated
conflict resolver with the underlying replication platform to
handle these conflicts. It performs the following actions for
two conflicting versions v1 and v2 reported by the under-
lying platform depending upon the relationship between
their tagged version vectors.

Case 1 (v1 ¼t v2). This indicates a spurious conflict. It
occurs when different replicas perform an idempotent
fidelity reduction or update integration independently.
The resulting versions have the same data and fidelity
metadata but still appear as concurrent updates to the
underlying platform. Polyjuz resolves the spurious conflict
trivially by keeping one of the versions.

Case 2 (v1 <> v2). A genuine concurrent update has
occurred. The conflicting versions are retained and the
application is notified of the conflicting versions. Note
that the comparison here is with respect to the untagged
partial order.

Case 3 (v1 >t v2 or v2 >t v1). A simple supersession
happens. Polyjuz resolves this in favor of the superseding
version—the older version disappears from the collection.
Note that the common update reintegration scenario, where
a lower fidelity replica takes an item from a higher fidelity
replica, makes an update, and passes it back to the higher
fidelity replica, does not actually produce this case but the
following one (see Fig. 5).

Case 4 (v1 <>t v2). This case occurs when an updated
version is present with a mismatched fidelity level,
indicating an opportunity for update reintegration. If v1 >

v2 (vice versa for v2 > v1), that is the version with vector v1

is more recent, then Polyjuz creates a new, update-
integrated version v of the item as follows: 1) It copies v2

and updates only those fields defined by the fidelity tag of
v1 with the values in v1, 2) sets the new item’s tagged
version number to be the same as v1, and 3) sets the new
item’s tagged version vector to be a combination of the
tagged version vectors v1 and v2. The version vectors are
combined element by element, for each element the result of
the merge is the superior tagged version number, that is,
v½r� ¼ maxðv1½r�; v2½r�Þ and v½r�:tag ¼ v1½r�:tag if v1½r� > v2½r�
or v2½r�:tag if v2½r� > v1½r� or v1½r�:tag j v2½r�:tag otherwise (j is
a bitwise OR operation).

Continuing the illustrative example in Fig. 6, the under-
lying replication platform on the server notices the two
concurrent updates to item i and notifies the Polyjuz layer.
Polyjuz performs a reintegration according to Case 4 above.
The resulting reintegrated version in step 3b (also the end of
step 3 in Fig. 5) has the fidelity metadata i:C1:<C1L1S1>.
Note that the element for replica S in the version vector now
has the high-fidelity tag. This correctly identifies that the
reintegrated version includes the initial high-fidelity create
S1, the fidelity-reduced version L1 of L’s update, and the
low-fidelity update C1 made on the cell phone C.

Subsequently, in step 4a (Fig. 6), the server synchro-
nizes with the laptop L and receives the version i:L1,
which the server only knew in the low-fidelity form before
the synchronization. This results in another update
integration (also Case 4) in step 4b, leading to the version
i:C1:<C1L1S1> for item i. Finally, in step 5 of Fig. 5, the
laptop synchronizes with the server and receives this most
recent version. Note that the system has converged to a
consistent state at this point.

3.7.1 Atomic Updates

Polyjuz can ensure that updates are reintegrated atomically
by maintaining additional state. Each replica keeps track of
the native fidelity level of other replicas. It suppresses the
update reintegration of two versions v1 and v2 (in Case 4) if
an intermediate update by some replica r is not available at
r’s native fidelity level. This condition can be verified by
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Fig. 6. Update reintegrations on server S split into two substeps each. In
step 3a, the updated version is copied from the low-fidelity collection to
the high-fidelity collection. In step 3b, the update is reintegrated with the
older version through an automated conflict resolution process invoked
by the underlying replication platform. Subsequently, the older, high-
fidelity version fetched from the laptop, in step 4a, is reintegrated with
the latest, low-fidelity version, in step 4b, in a similar manner.



computing the tagged version vector of the reintegrated
version and checking if the fidelity tag for some replica r is
lower than the native fidelity level of r. If this condition is
met, the replica keeps separate versions of this item until it
receives the intermediate version containing the update at
the appropriate fidelity level.

For instance, in the example illustrated in Fig. 5, at the
end of step 3, the high-fidelity collection on the server has
two nonintegrated versions S1 and C1 since the update L1
made by the laptop is not available at the required, high-
fidelity level. Fig. 7 illustrates this intermediate state at the
server S for atomic update reintegration. The final update
reintegration happens in step 4b after the server receives the
version L1 from the laptop L in step 4a.

4 IMPLEMENTATION GUIDELINES

The previous section presented the design of the Polyjuz
layer. In this section, we discuss some practical issues that
arise in applying the Polyjuz design to generic replication
platforms and applications. A specific implementation of
Polyjuz for Microsoft Sync Framework and two applications
are outlined in Sections 5 and 6.

4.1 Layering

Polyjuz can be layered transparently atop any weakly
consistent replication platform that supports disconnected
operation and automated conflict resolution. Polyjuz is
transparent to applications as it provides the same interface
as the underlying replication platform. When an application
updates a data item, the intermediary Polyjuz layer
encapsulates the updated data item with its fidelity
metadata to create a composite item. Polyjuz is transparent
to the underlying replication platform as it simply notifies
the platform of the update as the regular application would,
and provides the composite item as the object to synchro-
nize. The underlying replication platform replicates this
composite item to the remote device. The Polyjuz layer on
the remote device extracts the fidelity metadata and returns
the composite item to its original state so the remote
application only sees the raw data item it expects.

Polyjuz offers three options for data encapsulation. First,
Polyjuz can store the encapsulated and raw forms of each
data item separately—the encapsulated form is visible to
the replication platform while the raw form is visible to the

application. Polyjuz keeps the raw and encapsulated
versions synchronized. Second, Polyjuz packs the fidelity
metadata into an unused portion of the data item, such as
the comments field in a JPEG image. While this option
reduces the number of duplicate copies of the data item, it
might inadvertently expose fidelity metadata to a user.
Third, Polyjuz can perform the encapsulation on the fly at
the transport layer, if the replication platform supports a
custom transport mechanism. Our prototype implementa-
tion uses the third option.

Our goal of transparency ensures that applications can
utilize Polyjuz without any modification. However, since
fidelity is an application-specific notion, Polyjuz requires
that each application provide it with a component that can
parse data items and define fidelity levels suitable for the
application’s target devices. Polyjuz invokes this applica-
tion-aware component to perform fidelity reduction and
update integration. Similarly, Polyjuz does not require any
modifications to the replication platform apart from the
ability to register Polyjuz’s custom fidelity-aware conflict
resolver.

4.2 Optimizations

Polyjuz incurs additional storage and bandwidth overhead
in order to support fidelity-aware replication. This section
presents an analysis of these overheads and discusses a few
optimizations to alleviate them.

Storage. The separation of fidelity worlds requires extra
space to store multiple representations of items on replicas
that support more than one fidelity level. We expect that
resource-constrained devices will only support one, low-
fidelity level and not incur this extra overhead. On other
devices, a fidelity-aware storage component can vastly
eliminate the additional storage required to maintain
distinct copies of an item for each fidelity level. The
fidelity-aware storage component need only store a single
copy of the item, at the highest fidelity level supported by
the replica, and generate a reduced-fidelity representation
when required.

Fidelity metadata maintained by Polyjuz also incurs
storage overhead. We expect the size of a fidelity tag to be
small and fixed in a bit-vector representation, one bit per
field in the data type. The per-item fidelity metadata
consumes OðRÞ bytes, where R is the number of replicas
in the system. This results in a per-item storage cost of
OðR� frÞ at replica r, where fr is the number of fidelity
levels the replica supports. We expect fr to be small in
general and almost always one for resource-constrained,
low-fidelity devices.

Bandwidth. The fidelity metadata adds a bandwidth
cost (OðRÞ) every time an item is transferred over the
network. This cost will be modest if the number of replicas
is small. Moreover, the cost of knowledge exchange during
synchronizations (delegated to the underlying replication
layer) remains unaffected.

Spurious conflicts. On the other hand, these are a key
source of bandwidth overhead in Polyjuz. They occur in the
underlying replication platform when two or more replicas
independently perform fidelity reductions or update inte-
grations for the same version of an item. The resulting
versions are identical in content and fidelity metadata, but
appear as distinct versions to the underlying replication
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Fig. 7. Update reintegration on server S with atomicity enforced. There
are two unintegrated versions at the end of step 3 because an
intermediate update is not available at the correct fidelity. The required
high-fidelity version is received from the laptop in step 4a, and
reintegration finally happens in step 4b.



platform. Therefore, the replication platform replicates each
conflicting version separately. Similarly, when Polyjuz
automatically resolves a spurious conflict as presented in
Section 3, the replication platform replicates the resulting
conflict-resolved version as well.

Fig. 8 illustrates the bandwidth overhead of spurious
conflicts with an example. In step 1, the server S creates
item i with version number S1 and version vector <S1> in
the high-fidelity collection and synchronizes it with the
laptop L through the underlying replication platform. We
differentiate Polyjuz’s version vector from the underlying
replication platform’s version vector i:sh1 which is illu-
strated within a box. In step 2, both the server S and the
laptop L produce a fidelity-reduced version of item i with
the version number S1 and version vector <S1> and store
this in their low-fidelity collections. To the replication
platform in the low-fidelity world, they appear to be two
concurrently introduced versions of item i with version
vectors i:s1:<s1> and i:l1:<l1>, respectively, on the server
and laptop. In step 3, when the cell phone C synchronizes
with the laptop and the server, it receives both fidelity-
reduced versions. Since their version vectors in the under-
lying replication platform don’t match, a conflict is flagged.
The Polyjuz layer in C resolves this conflict automatically,
resulting in a new version of the item in the underlying
replication platform i:c1:<c1l1s1>. When the cell phone
next synchronizes with the server and the laptop in step 4,
the conflict-resolved version is replicated. Note that the
spurious conflict results in four data transfers involving
the cell phone. Of the four, only one data transfer was
required while the rest duplicated data already present on
the remote devices.

The number of spurious transfers that occur depends on
the number of replicas performing fidelity transformations
of an item and the pattern of synchronization in the system.
Three schemes can alleviate the impact of spurious
transfers:

1. Fidelity transformations can be restricted to a single
replica. Since only one replica performs fidelity
reductions and update integrations, spurious con-
flicts never occur. This option might be undesirable
as this full-fidelity replica could become a bottleneck
in the flow of updates between the high and low-
fidelity worlds.

2. Lower fidelity collections of multifidelity replicas can
be forced to synchronize whenever the high-fidelity
collections synchronize. In the above example, this
means that the low-fidelity collections on the server
and the laptop should also synchronize over the
network subsequent to the synchronization of the
high-fidelity collections. In general, it is superfluous
for the lower fidelity collections of multifidelity
replicas to synchronize because the high-fidelity
synchronization already transfers the necessary data,
which can then be fidelity-reduced locally. However,
this local fidelity reduction leads to a spurious
conflict in the underlying replication framework.
Forcing the lower fidelity collections to synchronize
after the corresponding high-fidelity synchronization
enables them to reconcile the spurious conflict
between themselves. While forced synchronization
does not eliminate spurious transfers, the resulting
overhead is incurred by the well-provisioned multi-
fidelity replicas instead of resource-constrained low-
fidelity replicas.

3. If the underlying replication platform allows custom
transport mechanisms, the duplicate transfer of data
can be suppressed through a two-phase data transfer
protocol. In the first phase, only the fidelity metadata
part of the item is transferred over the network. If
the fidelity metadata indicate that the item is indeed
a genuine update, the second phase subsequently
fetches the data component. While this method does
not eliminate spurious conflicts, it avoids the over-
head of transferring data unnecessarily over the
network.
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Fig. 8. A scenario illustrating how spurious conflicts occur because of Polyjuz’s layered design. The version vectors within the boxes are illustrative of
the underlying replication platform’s metadata.



4.3 Consistency

Polyjuz guarantees that the multifidelity system attains
eventual consistency. This guarantee stems from the
following three properties. First, we assume that the
underlying replication platform ensures eventual consis-
tency within each fidelity-specific collection. That is, the
underlying platform propagates updates to all replicas
within the fidelity world in which the update originated.
Second, the Polyjuz layer maintains strongly consistent
copies of items across collections of different fidelity on a
single host. That is, it ensures that an update for an item,
either generated by the local application or learned via
replication in a fidelity world, is applied to all representa-
tions of the item supported by that replica, with appropriate
fidelity transformations. Third, fidelity transformations are
deterministic as Polyjuz layers on different replicas perform
transformations in the exact same way, resulting in
eventually consistent data and fidelity metadata across
replicas. These three properties ensure that the overall
system converges to a consistent and correct state.

5 IMPLEMENTATION

We have implemented Polyjuz in C# using the Microsoft
Sync Framework [23] as the underlying replication platform.

This section describes how Polyjuz interacts with the Sync
Framework, manages fidelity metadata, and supports
applications. We first describe the software architecture of
the Sync Framework.

The core component of the Microsoft Sync Framework is
called the Sync Provider. The Sync Provider manages
synchronization metadata for replicated items and imple-
ments a synchronization protocol for exchanging updates
with other Sync Providers. An additional component called
the Item Store manages storage of replicated items, which
may reside in the file system, in a database, or in memory.
The Item Store provides a store and retrieve interface to the
Sync Provider, as well as notifying the Sync Provider when
an application makes an update. Applications access and
update items directly (for instance, through the file system).
In addition, the Sync Provider interacts with an application-
specific Conflict Resolver to handle conflicts automatically.
Fig. 9 illustrates the software architecture of the Microsoft
Sync Framework.

In the context of the Microsoft Sync Framework, Polyjuz
acts as a mediator between the Sync Provider and the Item
Store. It appears as an item store to the Sync Provider and as a
sync provider to the Item Store. Fig. 10 illustrates this
software architecture on a dual-fidelity replica. The replica
has two sets of Sync Framework components for the high and
low-fidelity worlds. The respective Sync Providers synchro-
nize with other Sync Providers within their own fidelity
worlds, and the respective Item Stores are rooted at different
file system directories (or database tables). The Polyjuz
component is shared between the two worlds, appearing as a
fidelity-aware Item Store to each of the Sync Providers.

The Polyjuz Item Store stores a data item and its fidelity
metadata separately; but presents a compound, encapsu-
lated item to the Sync Provider, performing encapsulation
on the fly. The components of an encapsulated item—the
original item and its fidelity metadata are stored in the Item
Store and a Metadata Store, respectively. Separate per-item
fidelity metadata, namely a tagged version number and
version vector, are maintained for each fidelity level
supported by the device. Polyjuz stores the fidelity
metadata on persistent media but also caches it in memory
for efficient access.
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Fig. 9. The architecture of Microsoft Sync Framework software on each
replica.

Fig. 10. Software architecture of Polyjuz on a dual-fidelity replica.



Two other Polyjuz components are responsible for
fidelity reduction and update integration. The Fidelity
Reducer acts as a bridge between the high and low-fidelity
Item Stores. The high-fidelity Item Store notifies the Fidelity
Reducer of local updates, which reduces the fidelity of the
updated item and stores it in the low-fidelity Item Store.
The Update Integrator, on the other hand, is registered as a
Conflict Resolver to the high-fidelity Sync Provider. It
integrates updates by merging conflicts detected by the
Sync Provider.

Building applications with Polyjuz is easy. An application
developer needs to provide two application-specific compo-
nents to Polyjuz. The first is an Item Store that is capable of
handling the application’s data. This could be a generic item
store, which can read and write files for example, or an
application-specific item store, which marshals and unmar-
shals application data in a special manner. This component is
the same as what the developer would build for any
application that manages replicated data using the Microsoft
Sync Framework.

The Fidelity Reducer and Update Integrator components
can be customized through the use of application-specific
callbacks. These routines help Polyjuz to parse application-
specific data formats, reconstruct correctly formatted data,
and implement application-specific merge semantics. For
example, the Fidelity Reducer can be tailored to produce a
low-fidelity version of a high-fidelity item without requir-
ing Polyjuz to understand the details of the data object
being transformed.

Users interact with a Polyjuz-enabled replication system
just as they would without the Polyjuz enhancements. That
is, they directly insert, update, and delete items through the
file system (or database). We assume that users access
the items at the highest fidelity supported by the replica.
The corresponding lower fidelity representations appear
only to users of lower fidelity replicas.

6 CASE STUDIES

We built two applications to explore how Polyjuz works in
practice. The first application, PolyContacts, replicates
address book entries between devices of different fidelity.
The second, PolyPix, provides fidelity-aware image replica-
tion.

6.1 PolyContacts

PolyContacts is a fidelity-aware contacts management
application that implements a concise representation of an
address book contact to be transferred to the user’s mobile
devices from other high-fidelity devices such as desktops
and laptops. The user is free to update the contact on his
mobile device. When the mobile device synchronizes with
the desktop (or laptop), all updates to the low-fidelity
version from the mobile device are automatically reinte-
grated with the desktop’s high-fidelity version.

PolyContacts builds upon Windows Contacts, an address
book application bundled with the Windows Vista operat-
ing system. Each entry in a Windows Contact address book
is stored persistently in the file system as a unique XML file.
Updating an address book entry is as simple as editing this
XML document. PolyContacts uses a programmatic inter-
face, the Windows Contacts API [22], to maintain a custom
fidelity-aware address book rooted at any directory the user

wishes. The user can create new contacts in this directory
and manipulate it using the Windows Contacts application.
PolyContacts creates a shadow replica of this directory,
hidden from the user, and uses it as the root directory for the
low-fidelity replication subsystem. It presents these direc-
tories to Polyjuz through an application-specific Item Store.
In addition, PolyContacts implements customized fidelity
reduction and integration functions as follows:

Fidelity reduction. PolyContacts’ fidelity reduction
function takes as input a full address book contact entry
and returns a lower fidelity contact that only possesses the
name, phone number, and e-mail address fields of the
original contact. This function allows users to generate low-
fidelity representations of their address book entries that
can be transferred to their constrained cell phone.

In the scenario described in Fig. 1, Bob might meet a
prospective recruit and choose to create a new address book
entry populated with the candidate’s name, phone number,
and e-mail address. Later, when Bob synchronizes his cell
phone with his laptop, PolyContacts reads in the newly
added address book entry and creates a new full-fidelity
contact with the name, phone number, and e-mail address it
just read in. PolyContacts leaves the other fields in the full-
fidelity contact blank. When Bob returns to his office, he can
populate the blank fields in the candidate’s entry with other
information gleaned from the candidate’s resume such as
the candidate’s home and work address.

Update integration. PolyContacts’ reintegration function
takes as input two address book contacts. This function
creates a new reintegrated contact by extracting the low-
fidelity fields from the first contact (i.e., name, phone
number, and e-mail address) while retaining the remaining
fields from the second contact.

In our sample scenario, when Bob meets the candidate
for an interview at a coffee shop, the candidate might
inform Bob of his recent move and updated phone number.
Bob updates his cell phone address book with the new
number. Later, when Bob syncs his cell phone with his
laptop, the PolyContact reintegration function creates a new
contact with the updated phone number from the low-
fidelity cell phone address book while retaining the
candidate’s home and work addresses from the high-
fidelity address book entry on the laptop.

6.2 PolyPix

In addition to PolyContacts, we built PolyPix, a fidelity-
aware image replication system that enables high-fidelity
devices, such as desktops and laptops, to share images with
lower fidelity devices, such as cell phones and photo
sharing Web services.

6.2.1 PolyPix Design

Our primary goal when designing PolyPix was to ensure
that no device wastes storage space or bandwidth storing a
higher resolution image than what it can display. Hence,
PolyPix adapts images to match the resolution supported
by the target device—for instance, a high-fidelity image
from a desktop is scaled to a lower resolution before being
replicated on a low-fidelity cell phone.

PolyPix permits two types of updates to a shared image.
First, any replica can update an image’s metadata (e.g.,
change an image rating, or tag). PolyPix replicates image
metadata consistently across all interested replicas allowing
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an update on a low-fidelity cell phone or a photo sharing
Web service to be reintegrated with the full-fidelity image
on the user’s desktop. Second, only full-fidelity replicas can
perform content-based updates (e.g., red-eye reduction or
crop) on a full-fidelity image. PolyPix treats an image
updated in this manner as a new image that can be
propagated to other full-fidelity devices as is, or trans-
formed to generate a fidelity-reduced representation that
can be pushed out to lower fidelity replicas as a newer
version of an existing image. PolyPix does not currently
support content updates to a reduced-fidelity image. We
have considered retaining updated reduced-fidelity images
in the system and displaying them to the user as a conflict
during reintegration, but dot not currently support this.

6.2.2 PolyPix Implementation

PolyPix performs fidelity-aware image replication by treat-
ing an image as a data structure with multiple components.
Apart from the image content itself, most image file formats
(e.g., JPEG, PNG, and GIF) include an image header that
stores image metadata such as the owner, comment, image
title, creation time, and modification time. If the header is
not present in a given image, it is possible to program-
matically add a header (of a specified size) to the image file.

PolyPix creates a new resolution component for each
fidelity at which an image is replicated. For example, in a
replication system with a desktop, a cell phone, and a photo
sharing Web service, PolyPix might create a medium-
resolution-image component and a low-resolution-image
component in addition to the original full-fidelity image
component. A full-fidelity device (the desktop in our
example system) stores the metadata (i.e., image header)
and all available resolutions of the image. Lower fidelity
devices only store the image metadata and those compo-
nents that they can display. For example, the photo sharing
Web service stores medium fidelity PolyPix items which
consists of the image metadata and the medium-resolution
component, while the cell phone stores low-fidelity PolyPix
items composed of the metadata and the low-resolution
image component. Fig. 11 illustrates this example.

We implemented PolyPix as a new fidelity-aware Item
Store. For image manipulation, we used the image metadata
editing APIs bundled with the .NET Framework Class
Library as well as the command line tools for resolution-
scaling from ImageMagick (version 6.5.6). Like PolyContacts,

PolyPix replicates all the images under a given directory and
creates shadow replicas for any low-fidelity subsystems. In
addition, PolyPix implements the stubs that assist in fidelity
reductions and update integration.

Fidelity reduction. PolyPix’s fidelity reduction function
takes as input a full-fidelity image with a valid header. It
invokes the ImageMagick tool to scale down the image to a
resolution supported by the target device. The function then
copies over the image header from the full-fidelity image to

the newly created reduced-fidelity image.
Update integration. PolyPix’s update integration function

takes as input a full-fidelity image and a fidelity-reduced
image, and returns an image with the header of the fidelity-
reduced image but the content of the full-fidelity image.

7 EVALUATION

Our evaluation answers the following questions:

. Does Polyjuz achieve eventual consistency in the
presence of high-fidelity updates, low-fidelity up-
dates, and high-fidelity followed by low-fidelity
updates to an item?

. How much overhead does Polyjuz entail in the form
of fidelity reductions, update integrations, and
spurious conflicts?

. What optimizations help in reducing the overhead
due to spurious conflicts and updates?

7.1 Methodology

We ran experiments using the C# implementation of
Polyjuz with Microsoft Sync Framework as the underlying

replication platform (see Section 5). Our experimental
evaluation had five replicas representing the scenario in
Fig. 1, but running on a single computer. Bob’s Laptop and
the Exchange server support dual-fidelity (i.e., two worlds

each) while the three other replicas (Bob’s and Chuck’s cell
phones and Bob’s Desktop) support either high or low
fidelity (one world).

Before each experiment, we replicated 100 contacts
among the five replicas. We then randomly selected replicas
to perform updates using the PolyContacts application
followed by synchronizations. We report on their conver-
gence trends and on the number of specific operations they
performed. The experiments provide empirical evidence to
show that Polyjuz is practical, provides eventual consis-
tency, and incurs a modest overhead. The actual overhead
costs and convergence times may vary depending on the
application workload.

In all tables, “bCell” refers to Bob’s cell phone, “cCell”
refers to Chuck’s cell phone, “Desk” refers to Bob’s desktop,

“Lap” refers to Bob’s laptop, and “Srv” refers to the server.

7.2 High-Fidelity Updates

In our first experiment, we randomly select a high-fidelity
replica and have it update one of its contacts. We
intersperse 30 of these update operations with synchroniza-
tions. Fig. 12 shows that the system converges after
approximately 50 synchronizations. Since we perform one
synchronization after every update, the last update happens
around the 30th synchronization.
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Fig. 11. Each device stores the image metadata and the PolyPix
components appropriate for its fidelity level. Full-fidelity devices store all
available components.



Table 1 provides a breakdown of the operations for
30 high-fidelity updates. From the table, we see that the
desktop, laptop, and server each carried out 14, 4, and
12 updates, respectively. We also observe that the laptop
and the server, respectively, performed 29 and 30 fidelity
reductions as they each received an updated high-fidelity
version and performed a fidelity-reduction to generate a
low-fidelity representation that could be synchronized with
Bob’s or Chuck’s cell phone. The laptop did not perform
fidelity reduction for one update as it received it for the first
time from Bob’s cell phone in the fidelity-reduced format
instead of from the server or the desktop in the high-fidelity
format, as it did for all other updates.

We see that Bob’s cell phone received 59 items as sync
transfers, of which about 29 resulted in a spurious conflict
or update. The spurious conflict occurs because Bob’s cell
phone receives a low-fidelity representation authored by
Bob’s laptop, while Chuck’s cell phone receives a low-
fidelity representation authored by the server. Since
Microsoft Sync Framework is unaware of fidelities, it
signals a conflict when Bob’s cell phone synchronizes with
Chuck’s cell phone, as an updated contact on Bob’s cell
phone possesses a different version number than on
Chuck’s. Furthermore, a spurious conflict once resolved
shows up as an update in the Sync Framework and
eventually results in a spurious transfer to the other replica.
Polyjuz examines the fidelity metadata associated with
these spurious versions and ignores the conflict.

Observe that, for each replica, subtracting the number of
spurious transfers from the number of items received gives
the number of updates introduced into the system by other
replicas (except for the laptop, for which it is one higher due
to the additional fidelity-reduced update it received from

Bob’s cell phone for one item). Similarly, adding up all
spurious transfers also corresponds to twice the number of
fidelity reductions performed by the laptop and server. The
two spurious transfers per fidelity reduction corresponds to
a spurious conflict and a subsequent spurious update.

7.3 Low-Fidelity Updates

In our second experiment, we randomly select a low-fidelity

replica, (Bob or Chuck’s cell phone) and have it update a

contact. As before, we intersperse 30 update operations

with synchronizations. Fig. 13 shows that the system again

converges after approximately 50 synchronizations.
Table 2 provides a breakdown of the operations for 30 low-

fidelity updates. Bob’s cell phone makes 11 updates while

Chuck’s makes 19, adding up to 30. We see that Bob’s laptop

and server perform 30 update integrations each as a result of

these updates. These update integrations, in turn, lead to

30 spurious conflict resolutions at the desktop and subse-

quently to 30 spurious updates each at the laptop and server.

7.4 High-Fidelity Updates Followed by Low-Fidelity
Updates

Our third experiment was designed to evaluate the difficult
update reintegration scenario described in Fig. 5. Here, we
select a dual-world replica, i.e., Bob’s laptop or the server to
perform a high-fidelity update on a contact. The dual-world
replica then syncs with another high-fidelity replica to
propagate this updated contact in the high-fidelity world.
The updating replica then performs a fidelity reduction on
the updated contact and synchronizes with a low-fidelity
replica (i.e., Bob or Chuck’s cell phone). The low-fidelity
replica then again updates this low-fidelity contact and
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Fig. 12. This scatter plot shows the number of items transferred by the
Sync Framework when synchronizing 100 contacts with 30 high-fidelity
updates.

TABLE 1
Breakdown of Operations for High-Fidelity Updates

Fig. 13. This scatter plot shows the number of items transferred by the
Sync Framework when synchronizing 100 contacts with 30 low-fidelity
updates.

TABLE 2
Breakdown of Operations for Low-Fidelity Updates



finally propagates the twice-updated contact in the low-
fidelity world.

In this scenario, we performed 30 such dual-updates.
From Fig. 14, we see that the system converges after about
100 synchronizations—our last update occurs around the
60th synchronization.

Table 3 provides a breakdown of the operations for
30 high-followed-by-low-fidelity updates. The dual-world
replicas, Laptop and Server, performed 11 and 19 updates,
respectively, and a corresponding low-fidelity device also
performed the same number of updates. This experiment is
much more complex than the previous two as it generates
two-times more updates and also introduces updated items
simultaneously in both high and low-fidelity worlds,
causing more items to be exchanged in each synchroniza-
tion and also increasing the number of reductions and
reintegrations. We refrain from explaining the other
numbers as they depend on the order in which replicas
are selected to update items and to synchronize.

7.5 Reducing Spurious Transfers

In this section, we evaluate the three optimizations
outlined in Section 4.2 for alleviating the overhead due to
spurious transfers. For each optimization, we perform the
high-followed-by-low-updates experiment described in
Section 7.4.

We demonstrate the effectiveness of each optimization
by measuring four components: metadata transfers show the
total number of fidelity metadata exchanges among the
replicas, contact transfers show the total number of contacts
transferred among the replicas, spurious transfers low
indicate the number of spurious transfers that occur

between replicas in the low-fidelity world, and spurious
transfers high denote the number of spurious transfers
between replicas in the high-fidelity world.

The first optimization we evaluate is the two-phase data
transfer protocol which first transfers the fidelity metadata
of an updated contact to the remote replica. Only if the
remote replica is unaware of the update is the actual contact
transferred. Our results are shown in the leftmost set of bars
of Fig. 15. We see that it takes 336 fidelity metadata transfers
for the replicas to converge following the 60 updates.
Observe that the “Items transferred to” row of Table 3 adds
up to 336. Our two-phase optimization allows the remote
replica to only request genuine updates reducing the
number of contacts transferred to 192. Thus, there are
72 spurious metadata transfers that occur on the low and
the high-fidelity replicas, respectively. Again, observe that
the “Spurious transfers” row of Table 3 adds up to 144.
Clearly, the two-phase protocol is effective in eliminating
spurious transfers of contact data.

The second optimization we evaluate forces the low-
fidelity collections of dual-fidelity replicas to synchronize
whenever their corresponding high-fidelity collections
synchronize. We retain our first optimization, i.e., the two-
phase data transfer so we can see the relative improvement
of the second optimization. The middle (TPþ Frequent) set
of bars of Fig. 15 presents our results. This optimization
decreases the number of spurious transfers on low-fidelity
replicas considerably while increasing the number of
spurious transfers on high-fidelity replicas by an equivalent
measure. As with the previous experiment, the number of
spurious transfers low (39), spurious transfers high (122),
and contact transfers (181) add up to the number of
metadata transfers (342).

The final optimization we evaluate restricts fidelity
operations to a single replica. The rightmost set of bars
(TPþ Single) of Fig. 15 presents our results. As expected, the
number of metadata transfers equal the number of contact
transfers indicating that there were no spurious conflicts or
transfers in this experiment. While this optimization seems
attractive, it comes at the cost of reduced flexibility. The
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Fig. 14. This scatter plot shows the number of items transferred by the
Sync Framework when synchronizing 100 contacts with 30 high-fidelity
updates followed by low-fidelity updates to the same item.

TABLE 3
Breakdown of Operations for

High-Followed-by-Low-Fidelity Updates

Fig. 15. This graph shows how effective our optimizations are in
reducing the overhead of spurious transfers.



nonavailability or nonreachability of the single, fidelity-
transforming replica can considerably delay the flow of
updates between the high and low-fidelity worlds.

8 RELATED WORK

Odyssey [9] and dynamic distillation [5] were among the
first to demonstrate that clients of replicated systems can
save bandwidth, power and improve performance by
incorporating mobile adaptation and fidelity support as a
first-class design principle. Several systems, such as
Puppeteer and PageTailor, have demonstrated content
adaptation for specific applications. Puppeteer [4] adapts
PowerPoint presentations and Web (HTML) pages by
decomposing a document into a hierarchy of components,
each of which maybe reduced in fidelity, say by omitting
subcomponents or degrading images. PageTailor [2] auto-
matically adapts Webpages for viewing on a PDA.

Some recent file systems provide a more generic,
application-independent support for dealing with multiple
representations. EnsemBlue [12] integrates consumer elec-
tronic devices with general-purpose computers through
device-specific plug-ins that deal with custom formats and
interfaces. These plug-ins run on the general-purpose
computers to which the devices connect, perform necessary
format transformations, and store state on the device itself
to enable similar operations on other computers. Another
file system, quFiles [20], maintains multiple representations
of a file internally while presenting a single, context-aware
representation to the applications on the device, accounting
for the device’s screen size, network connectivity, current
battery status, etc.

Polyjuz complements the above systems through fide-
lity-aware peer-to-peer replication. EnsemBlue plug-ins can
use fidelity metadata introduced by Polyjuz for update
reintegration. In turn, Polyjuz could benefit from the
mechanisms introduced by EnsemBlue and quFiles. For
example, plug-ins can help Polyjuz execute its replication
logic on computers serving as proxies for devices that do
not permit custom code.

Few systems have been developed that support updates
to fidelity-reduced content. CoFi [3] takes the approach of
decomposing a document into a hierarchy of components,
similar to Puppeteer, and supports editing of fidelity-
reduced components. It shows how to modify the state
transition diagrams of replication systems to support
updates of fidelity-reduced data. It does not, however, deal
with the methods to consistently merge updates made at
different fidelity levels.

MoxieProxy [14] provides a methodology and middle-
ware architecture for reconciling updates to fidelity-reduced
data. Certain types of operations on transcoded data can be
reintegrated with their full-fidelity counterparts, and appli-
cation-defined transforms can convert an operation on
transcoded data into an equivalent operation on the original
data in a few cases including image, speech-to-text, and pdf-
to-text conversions. Update reintegration enabled by these
transforms then happen at a central server. In contrast,
Polyjuz enables fidelity-aware replication in a serverless
system, where replicas synchronize directly with each other.

Polyjuz is layered on top of systems that replicate items
between intermittently connected clients [18]. Replication
systems, such as Coda [7], Ficus [6], Bayou [13] and WinFS

[10], replicate collections consisting of entire databases or
file volumes. However, each replica may choose to only
cache a subset of the items in the collection due to limited
storage or other constraints. A simple approach to provide
fidelity awareness on top of these systems is to replicate the
collection’s items at full fidelity on all replicas and generate
additional representations at the desired fidelity level on
each replica. This approach has the obvious drawback of
additional storage and network overhead for maintaining
and replicating full-fidelity items on all replicas when lower
fidelity items suffice.

Replication systems, such as Cimbiosys [15], Perspective
[17], and PRACTI [1], enable replicas to select the set of
items they store using queries over the metadata or contents
of items. This feature facilitates an alternative approach to
support fidelity: an item can be broken into subcomponents
(fields), a subset of which is partially replicated onto a
device based on the device’s fidelity level. This scheme has
the following two shortcomings. First, maintaining version-
ing metadata at a fine, component-level granularity multi-
plies the overhead of the synchronization protocol. Second,
complications arise when enforcing additional semantics
such as atomicity of updates to multiple components in an
item and detecting concurrent, conflicting updates made to
different components of the same item.

9 CONCLUSIONS

Polyjuz is a framework for fidelity-aware replication. Data
representations of multiple fidelity are common in mobile
devices, posing problems for conventional, fidelity-unaware
tools that strive to share and synchronize data across a
multitude of devices. The Polyjuz framework forms a
compatibility layer on top of such existing weakly consistent
replication tools and allows them to seamlessly exchange
updates across worlds of different data representations.
Furthermore, it preserves the eventual consistency guarantee
these tools provide and extends the same guarantee to hold
across representational boundaries. This paper presented a
design to support applications with data formats that
separate into multiple fields—address books, calendar
entries, and e-mail—and demonstrated a concrete applica-
tion built on Polyjuz for managing personal contacts. We also
demonstrate that Polyjuz can provide limited support for
fidelity-based adaptation of multimedia data such as updat-
ing comments and tags in a photo header.
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