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Abstract 
Client + cloud computing is a disruptive, new computing 

platform, combining diverse client devices – PCs, smartphones, 

sensors, and single-function and embedded devices – with the 

unlimited, on-demand computation and data storage offered by 

cloud computing services such as Amazon’s AWS or Microsoft’s 

Windows Azure. As with every advance in computing, 

programming is a fundamental challenge as client + cloud 

computing combines many difficult aspects of software 

development. 

Orleans is a software framework for building client + cloud 

applications. Orleans encourages use of simple concurrency 

patterns that are easy to understand and implement correctly, 

building on an actor-like model with declarative specification of 

persistence, replication, and consistency and using lightweight 

transactions to support the development of reliable and scalable 

client + cloud software. 

1. Introduction 
Client + cloud computing is a disruptive, new computing 

platform, combining diverse client devices – PCs, smartphones, 

sensors, and single-function and embedded devices – with the 

unlimited, on-demand computation and data storage offered by 

cloud computing services such as Amazon’s AWS or Microsoft’s 

Windows Azure. Advances in semiconductors again are driving a 

radical change, reducing the cost of computing and 

communications and enabling inexpensive, compact, personal, 

and mobile devices with powerful processors, wireless 

connectivity with good bandwidth and reach, and low power 

consumption. In the data center, low-cost, efficient, virtualized 

servers created a new business of selling inexpensive computation 

on demand. Together these advances make possible the vision of 

ubiquitous computing articulated by Mark Weiser two decades 

ago [1], where data and computation are no longer tied to a 

physical location or computing device, but instead become the 

fabric of our environment and part of all devices we interact with. 

As with every advance in computing, programming is a 

fundamental challenge. Client + cloud computing combines many 

of the most difficult aspects of programming. These systems are 

inherently parallel and distributed, running computations across a 

large number of servers in multiple data centers and diverse 

clients. Individual computers and communication links are 

commodity components, with non-negligible failure rates and 

complex failure modes. Cloud computing runs as a service, 

offering economies of scale and efficiency by concurrently 

processing requests from many clients, but also facing challenging 

demands in handling varying and unpredictable loads and offering 

a highly available and reliable service in the face of hardware and 

software failures and evolution. These problems, of course, come 

in addition to the familiar challenges of constructing secure, 

reliable, and efficient software. 

Orleans is a software framework for building cloud 

applications. It offers a simple programming model built around 

grains, logical units of computation with private state that 

communicate exclusively by sending messages. At any time, a 

grain may have zero, one, or multiple activations, the physical 

instantiation of a grain on a server. To simplify programming and 

reduce the opportunity for errors, the programming model 

imposes restrictions on concurrency. A grain activation processes 

an external request to completion before turning to the subsequent 

request. The system as a whole can process multiple requests 

concurrently in distinct grain activations, but these computations 

are isolated, except at the clearly identified points where grains 

commit state changes to persistent storage and make them 

globally visible. This is far more restrictive than most shared 

memory or message-passing models, but still flexible enough to 

build general-purpose applications. 

A key challenge in building these applications is scale. A 

successful and popular application must handle demand that 

grows orders of magnitude in a very short time. Software, like the 

cloud hardware platform, should be elastic and capable of 

expanding to meet demand. Growth not only increases the number 

of servers and network connections, and consequently the 

likelihood of failures, but it also increases the size of data 

structures and the cost of algorithms. Techniques suitable for 

small websites, such as centralized databases, become bottlenecks 

as systems grow and must be replaced by more scalable solutions, 

such as sharded databases [2], often requiring architectural 

changes and rewrites of a system [3]. Orleans’s grain model 

addresses these concerns. Grains encourage a sharded style of 

computation, with small, independent computations distributed 

across servers to closely match the semantics of scalable, sharded 

databases. Grains can be inexpensively migrated or replicated 

among computers, even while a service is running, to balance load 

and to reduce communication cost by moving computation to data 

or co-locating communicating entities. 

In addition, a shared service must be both available and 

reliable. The more popular a service, the higher the demand for 

availability, although greater scale increases the difficulty of 

achieving this goal. Distributed systems research has produced 

many techniques for building reliable systems from unreliable 

building blocks. The general approach is to replicate a 

computation or datum, and if one copy fails, the others will 

service requests while the failed copy is restarted or reconstructed. 

Multiple, concurrently updated copies introduce the need to 

ensure that distinct computations provide a single, consistent 

result, regardless of which copy is accessed. Orleans grains 

separate the application’s logic from its replication and 

consistency mechanisms. The Orleans runtime can replicate a 

grain’s state and offers predictable consistency guarantees for the 

copies. 

This paper makes the following contributions: 

 Identifies the challenges in building client + cloud software. 
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 Describes a solution to these problems based on concurrent, 

replicated, asynchronous units of computation. 

 Extends the basic solution with light-weight transactions that 

ensure isolation, consistency, and error recovery. 

 Integrates persistence, replication, and consistency into the 

programming model and supports it in the language runtime. 

 Shows how a runtime can improve an application’s 

performance by transparently distributing computations 

among servers. 

The rest of the paper is organized as follows. Section 2 

provides an overview of Orleans while section 3 describes the 

programming model in more detail. Section 4 briefly discusses the 

implementation. Section 5 describes sample applications. Section 

6 presents performance measurements, and section 7 surveys 

related work. 

2. Orleans Overview 
Orleans supports the development of cloud application 

software. It targets a specific category of software, embodying 

best practices for building scalable cloud applications. This 

section provides an overview of Orleans, elaborated in later 

sections, and explains the rationale for the design choices. 

2.1 Grains 
In Orleans, grains are atomic units of isolation, distribution, 

and durability. A service is constructed from grains running on 

servers in a data center. An external request, from a client of the 

service, is sent to a grain for processing. A grain can concurrently 

invoke the operations of other grains through asynchronous 

messages. Grains internally are not parallel; they process a request 

fully before handling the next one. 

Multiple instantiations of a grain, known as activations, 

process multiple independent requests to a service in parallel. 

Orleans creates multiple activations of a grain to handle 

simultaneous requests, increasing system throughput, reducing 

queuing latency, and improving system scalability. An activation 

is completely isolated from other activations of the same grain and 

only interacts with different grains’ activations by exchanging 

messages. Activations cannot share memory or invoke each 

other’s methods directly. 

The state of a grain is persistent by default, so Orleans 

transfers modified grain state from server memory to durable 

storage, and vice-versa, without explicit application code (Section 

4.2). A grain may exist only in the persistent store – i.e., the grain 

is not active on any server – when no requests for the grain are 

pending. When a request arrives, the Orleans runtime activates the 

grain by choosing a server, instantiating an activation that 

implements the behavior of the grain, and initializing it with the 

grain’s persistent state. If the grain modifies its persistent state, 

the runtime updates persistent storage with the in-memory version 

at the completion of the application’s transaction. 

Multiple activations may concurrently modify a grain’s 

state, requiring a mechanism to reconcile changes to their shared, 

persistent state. Orleans uses a multi-master, branch-and-merge 

update model, similar to Burckhard’s revision-based model [4]. 

Orleans allows grain activations to be placed independently 

on any server in a system and to be migrated between servers in 

order to balance load, increase failure tolerance, or reduce 

communication overhead. As a consequence, Orleans tracks the 

location of each activation in a distributed directory, which 

provides the flexibility to place and migrate grains dynamically. 

The directory may grow to millions or billions of entries. We use 

a distributed directory service based on the Pastry distributed hash 

table [5], supplemented with active caching as in Beehive [6]. 

Grains, despite obvious similarities, are not identical to 

objects. The key difference is that grains cannot share memory 

and can only communicate by asynchronous messages. Orleans 

does not prescribe the size of grains. Granularity is a tradeoff 

between the level of parallelism and state locality needed for 

efficient computations. Small grains typically hold entities that are 

logically isolated and independent. A user account grain or a 

catalog item grain is a typical entity that is not data dependent on 

other grains of the same type. At the other end of the spectrum, a 

complex data structure such as a search index may be more 

efficient contained in a grain and accessed as a service.  

2.1.1 Security 
A grain can only communicate with another grain through a 

reference to it, which provides an object-capability-like security 

model [7]. Each grain in Orleans is created within a logically 

isolated workspace, a grain domain, which delimits the set of 

grains it can directly access. A newly created grain is initialized 

with explicit references to other grains and to its containing 

domain, which can be queried to acquire references to grains in 

the domain. A grain can only send messages through these grain 

references, or to grain references it received in a message. 

References to grains in other domains must be passed at 

initialization or in a message from a grain that already has access. 

Grain domains are hierarchical and nested, and they can be 

used to isolate parts of an application. For example, a Orleans 

application may create a grain domain per customer, so code 

executing on behalf of a customer has limited and controlled 

access to grains from other customers and global application state. 

The application can further limit access by controlling the lookup 

mechanisms the customer-specific grain uses to find other grains. 

2.2 Transactions 
Orleans offers transactions for three reasons. The first, 

similar to a primary motivation for transactional memory, is to 

isolate concurrent computations, eliminating the need for explicit 

synchronization to coordinate shared data access. In Orleans, 

multiple activations can modify grain state, which requires a 

mechanism to resolve conflicts and ensure a consistent data view. 

The second reason arises from the replication of data and 

computation, a fundamental requirement on large-scale computing 

on commodity hardware. Modifying the copies of a replicated 

datum can introduce inconsistencies. Many cloud systems trade 

efficiency for convenience by providing an eventual consistency 

data model [3, 8], which offers no guarantees beyond that an 

update will eventually propagate to all servers. This model 

complicates software development by requiring a programmer to 

distinguish data consistency requirements and to develop storage 

solutions for data that requires stronger guarantees.  

Orleans instead offers a single data model based on 

lightweight, optimistic transactions (Sec. 4.3). Orleans 

transactions are isolated from other concurrently executing 

transactions and prevent access to data that has been modified by 

a transaction that has not yet completed. Transactions atomically 

succeed or fail and their changes become visible atomically when 
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the transaction completes execution. The Orleans runtime durably 

and atomically persists completed transactions. 

The Orleans consistency model is similar to, but slightly 

weaker than, snapshot isolation (SI). Under SI, a transaction sees 

a consistent snapshot of committed updates as of the time the 

transaction starts. In Orleans, a transaction sees an atomically 

consistent subset of completed transactions. These snapshots are 

either the persistent stored state of a committed grain or an 

activation from a completed but as yet uncommitted transaction. 

The snapshot of a completed transaction includes all grain 

activations changed during the transaction and the transactions 

they transitively depended upon [9]. The changes made by a 

completed transaction become visible to future transactions 

atomically. However, since a transaction can become visible 

before committing, aborting a transaction can force aborting other, 

dependent transactions that have completed but not yet 

committed. Moreover, with multiple completed but uncommitted 

activations of a grain, concurrent transactions may see different 

combinations of atomically consistent states. This design, 

although weaker than serializability or snapshot isolation, 

maximizes responsiveness and system throughput and does not 

require global coordination.  

The third reason for transactions is to reduce the need for 

explicit error handling code. Error handling is particularly 

difficult in an asynchronous distributed system, as many 

operations execute concurrently, and recovering from an error and 

restoring state can be very complex. Moreover, error recovery is 

often the least-tested and most error-prone code in an application 

[10]. With the Orleans transactional model, an error during a 

transaction causes it to abort. The runtime will either replay the 

operation until it succeeds or fail the transaction atomically.  

2.2.1 Discussion 
In large-scale systems with hundreds or thousands of 

servers, failure is a constant. An essential aspect of any distributed 

framework is its model and mechanisms for handling failures. At 

the level of a single user request, Orleans relies on transactions to 

ensure that requests are processed completely and correctly. If any 

participant in the transaction fails, due to hardware or software 

problems, the transaction rolls back and can be replayed. 

Optimistic transactions ensure a quick user response in the 

common case, while preserving consistent and correct system 

state in failure case. 

Orleans transactions try to avoid global coordination or 

locking, which could adversely affect scalability, throughput, and 

distributed operation. An executing transaction sees a state 

produced by completed transactions and the transactions they 

transitively depend upon [9]. Orleans does not ensure full 

serializability, as that would require global locking or a potentially 

high rate of conflicting aborts. A programmer, however, can 

achieve stronger guarantees by constraining some grains to a 

single activation, at the cost of reduced scalability and fault-

tolerance. 

2.3 Communications 
In Orleans, all communications occurs through 

asynchronous message exchanges between grains. Most messages 

follow a request/reply pattern. Grains may designate certain 

messages as event notifications, sent as one-way messages, and in 

the future we anticipating using a single-request, multiple-reply 

pattern for data streaming. 

As with most programming models, messages are exposed 

as method calls. Unlike traditional RPC models, however, these 

calls return immediately with a promise (Section 3.1) for a future 

result, rather than blocking until the result is complete. Promises 

resolve the impedance mismatch between synchronous method 

calls and asynchronous message passing [11, 12]. 

2.3.1 Discussion 
Promises are well suited to coordinating concurrent 

computations [12]. In Orleans, their primary use is to allow a 

grain to start one or more computations in other grains and to 

overlap their executions. Since computations produce results in 

unpredictable orders, it is convenient to associate a handler with a 

result, to processes it when it is produced. Unpredictability in 

timing introduces non-determinacy into a computation, but in a 

limited form that is clearly delimited and easily understood. When 

even this non-determinacy is problematic, promises can also be 

used like futures, with a blocking operation to retrieve their result. 

2.4 Scalability and Resource Management 
A service is scalable if increased load does not degrade its 

quality. Constructing a scalable service is a challenge. It must be 

designed and constructed to avoid bottlenecks, such as a 

centralized resource, that cannot grow or expand to handle 

increased load. Scalable solutions generally are partitioned and 

replicated, so they can expand by adding more hardware and 

redistributing their load among N+1 systems. 

The two primary mechanisms in Orleans that support 

scalability are the grain model itself and grain activations. The 

grain model encourages partitioning of state and services into 

fine-grained, replicatable services. Those fine-grained services 

operate concurrently and their progress depends only on the other 

grains they explicitly communicate with. There are no system-

wide bottlenecks that limit scalability. The programmer still must 

partition a service into units with appropriate granularity. In 

addition, Orleans improves performance by automatically 

growing or shrinking the number of activations depending on the 

demand on a grain. Activations can be placed on different servers 

and migrated between servers to balance the load. Finally, grains 

efficiently support a finer granularity of resource management 

than other distributed frameworks, particularly service-oriented 

architectures in which the unit of granularity is a process or a 

virtual machine. Small grains offer the Orleans runtime more 

flexibility in adaptively responding to changes in load by 

acquiring (or releasing) servers.  

The initial version of the Orleans system uses a simple load-

balancing policy in which requests are randomly distributed to 

running activations. We are currently experimenting with different 

resource allocation policies. In particular, we are incorporating 

server load in distributing requests and placing new activations, as 

well as the data location (similar to [13]). Effectively, our runtime 

will dynamically decide between transferring functions and data, 

based on a cost model. We also plan to make use of the network 

topology and the failure domain structure to minimize the latency 

of each transaction while ensuring the availability of the 

application and maximizing the overall throughput. 

2.4.1 Discussion 
A design goal for grains was to provide the Orleans system 

with the mechanisms sufficient to achieve a high degree of 

automatic scalability. A grain is a homogeneous computation, 

identifiable by its type, allowing the system to use the past 
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behavior of grains of a particular type to inform future 

performance tuning decisions. Grains also encapsulate the 

minimum application state necessary to perform a computation, 

which makes them less costly to move between servers than other 

encapsulation mechanisms, such as virtual machines. 

2.5 Maintainability and Versioning 
Rapid software evolution is a key differentiator of cloud 

services, as compared to conventional software, and consequently 

cloud applications are in a constant state of flux. Components are 

developed by different teams and updated on independent  

schedules. New components are typically introduced gradually, 

starting with deployment to a single server and evolving to being 

the production version. Unfortunately, emergency deployments 

sometimes must fix critical bugs and it can be necessary to roll 

back a deployed component. All this results in an environment 

where different versions of component run concurrently and 

components interact with multiple versions of other components. 

Supporting this mix-and-match environment is a major area 

for future work in Orleans. Some key elements are: 

 Management controls that allow programmers to control the 

introduction of new versions of grain classes into a running 

system. 

 A flexible serialization format that allows interface evolution. 

To the extent possible, adding an optional parameter to or 

removing an inessential parameter from a method signature 

should not cause requests from older clients to fail. 

 A flexible persistence format that allows forward and 

backward schema evolution; i.e., the state saved by a newer 

grain version may need to be restored to an older version, or 

vice versa. 

3. Programming Model 
This section describes key aspects of Orleans programming 

model, as seen by a programmer. A client is code that consumes 

services of a grain – either another grain, or non-grain code that 

interoperates with a Orleans system. 

3.1 Asynchrony and Promises 
Orleans uses promises as its asynchrony primitives. An 

instance of these types represents a promise for future completion 

(AsyncCompletion) or for a future result value (AsyncValue<T>) 

from an operation. Promises are fully integrated with the .NET 

async models. 

AsyncValue<int> intPromise = GetA();  
try { 
   // synchronously waits for resolution of promise  
   int a = intPromise.GetValue(); 
} 
catch(Exception exc) { 
   // if promise is broken, GetValue throws exception 
   Console.WriteLine("Error: " + exc.Message); 
} 

Figure 1. Synchronous wait. 

Promises have a simple lifecycle. Initially, a promise is 

unresolved – it represents the expectation of receiving a result at 

some unspecified future time. When the result is received, the 

promise becomes fulfilled and the result becomes the value of the 

promise. If an error occurs, either in the calculation of the result or 

in the communications between the requesting and responding 

grains, the promise becomes broken and has no value. A promise 

that has been fulfilled or broken is considered resolved. 

AsyncValue<int> intPromise = GetA(); 
//anonymous method runs when promise is resolved 
intPromise.ContinueWith((int a) => { 
   // success block 
   Console.WriteLine("Result: " + a.ToString()); 
}, 
(Exception exc) => { 
   // exception block 
   Console.WriteLine("Error: " + exc.Message); 
}).Ignore(); 

Figure 2. Asynchronous continuation. 

A caller that invokes an asynchronous operation 

immediately receives a promise and can do one or more of the 

following: 

 Synchronously wait for the promise to resolve with the 

Wait() or GetValue() method. Both methods optionally take 

a timeout. 

 Schedule a continuation action with the ContinueWith() 

method. It will be run when the promise becomes resolved. 

ContinueWith() takes two function delegates: one for the 

case when the promise is fulfilled (success closure) and the 

other for when it is broken (optional exception closure). 

 Return the promise, if the caller itself is an asynchronous 

method with a compatible return type. 

 Join the promise with other promises, producing another 

promise that will be resolved when all the joined promises 

resolve, and broken if any of the joined promises are broken. 

 Explicitly ignore the outcome of promise resolution with the 

Ignore() method. This instructs the runtime not to propagate 

an error, should the operation fail. Otherwise, the caller must 

handle the promise with one of the other methods. 

If a promise with a scheduled continuation is broken, the 

success closure will not be called and the exception closure, if 

provided, will be. The exception closure has a chance to recover 

from the error condition or re-throw the exception. An exception 

closure is analogous to a catch block for asynchronous structured 

exception handling.  

Promises make asynchrony explicit in code, so a 

programmer can directly express the desired interleaving and 

pipelining of operations and can avoid false assumptions about 

concurrency. Except for the synchronous Wait() and 

GetValue() methods, which should be used rarely, the other 

alternatives do not block a thread while an asynchronous 

operation computes. This leads to better parallelism and more 

efficient usage of resources. 

An activation’s computation and closures execute in a turn-

based model (Section 4.1), that executes at most one thread at a 

time in a cooperative multitasking manner. 

3.2 Grain Interfaces 
A grain class implements one or more public grain 

interfaces that define the grain’s service contracts. A grain 

interface is an interface that adheres to the following rules: 

1. A grain interface must directly or indirectly inherit from the 

IGrain marker interface. 
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2. All methods and property getters must be asynchronous, i.e. 

return AsyncCompletion or AsyncValue. This explicitly 

exposes the asynchronous nature of grain calls, makes client 

and server use the same interface, and allows a grain to 

return an unresolved promise instead of a concrete value. 

3. No property setters and no subscribe/unsubscribe to events 

(they are synchronous in .NET). 

4. Method arguments must be grain interface types or 

serializable types that can be logically passed by value. 

For example, a simple grain interface is: 

public interface ISimpleGrain : IGrain { 
  AsyncValue<int> A { get; } 
  AsyncCompletion SetA(int a); 
  AsyncCompletion SetB(int a); 
  AsyncValue<int> GetAxB(); 
} 

3.3 Grain References 
A grain reference is a proxy object that provides access to a 

grain. It implements the same grain interfaces as the underlying 

grain. A grain reference is the only way that a client, whether 

another grain or a non-grain client, can access a grain. Grain 

references can be passed as arguments to a grain method. Grain 

references share some similarities with promises:  

 A grain reference can be in one of the three possible states: 

unresolved, fulfilled or broken. 

 A caller can schedule and pipeline operations on a grain 

reference before it is resolved, by invoking an asynchronous 

method or using the ContinueWith() method. A grain 

reference also supports the Wait() method that synchronously 

waits for its resolution. 

 Error conditions are propagated to continuation actions (by 

breaking promises associated with the operations) or can be 

handled synchronously though a Wait() call. 

3.4 Creating and Using Grains 
For each grain interface, the Orleans ClientGenerator tool 

generates a public factory class and an internal proxy class that 

convert method calls into messages. Clients use type-specific 

factory classes to create, find, or delete grains. In the simplest 

case, a factory includes methods for creating and deleting a grain 

and for an asynchronous cast operation. Optional annotations on 

grain interface members, such as Lookup and Queryable, cause 

ClientGenerator to add additional methods to the factory class for 

looking up a grain or for searching for grains that satisfy specified 

conditions within a given grain domain. The generated factory 

class for the sample interface above looks like the following: 

public class SimpleGrainFactory { 
   public static ISimpleGrain CreateGrain(); 
   public static void Delete(ISimpleGrain grain); 
   public static ISimpleGrain Cast(IGrain grainRef); 
} 

Below is an example of the code to create a SimpleGrain 

and perform operations on it: 

ISimpleGrain grain = SimpleGrainFactory.CreateGrain(); 
AsyncCompletion setAPromise = grain.SetA(3); 
AsyncCompletion setBPromise = grain.SetB(4); 
 
// join the promises 
AsyncCompletion setPromise = 
  AsyncCompletion.Join(setAPromise, setBPromise); 
 

AsyncValue<int> getPromise = setPromise.ContinueWith( 
    () => { 
          return grain.GetAxB(); 
    }); 
 
// schedule action when GetAxB returns actual result 
AsyncCompletion resultPromise = 
   getPromise.ContinueWith((int x) => { 
        Console.WriteLine("Result: " + x.ToString()); 
     },  
     (Exception exc) => { 
        Console.WriteLine("Error: " + exc.Message); 
        throw exc; // re-throw the exception 
     }); 
// wait for operation to complete 
try { 
    resultPromise.Wait();  
} catch(Exception exc) { 
   // error at any stage will throw exception 
   Console.WriteLine("Error: " + exc.Message); 
} 

CreateGrain immediately returns a reference to the grain, 

allowing pipelining of asynchronous requests to the grain, such as 

SetA and SetB, even before the grain is fully created. The client 

invokes GetAxB on the reference before SetA and SetB fulfill their 

promises. The invocation is queued on the grain and executes 

after SetA and SetB execute. When the getPromise is resolved, a 

success or an error function delegate is invoked. 

Because every asynchronous operation, such as a call to a 

grain method, a call to ContinueWith() on a promise, or a call to 

Join(), returns a promise, and because promises propagate errors 

through continuations, error handling can be implemented in a 

simple manner. A client can build an entire dataflow graph of 

interconnected asynchronous continuations and defer error 

handling until a later point. In the example above, an error at any 

stage of the program (CreateGrain(), SetA(), SetB(), 

GetAxB(), x.ToString(), etc.) will eventually break 

resultPromise and cause resultPromise.Wait() to throw an 

exception with information about the error to the one error 

handling statement (try/catch) as the top level. All possible 

errors bubble up to that point in the program, even though pieces 

of the computation may run concurrently on different threads. 

This greatly simplifies the error handling code. 

3.5 Grain Classes 
As already mentioned above, a grain class implements one 

or more grain interfaces. Since each method or property within a 

grain interface is asynchronous – returns a promise 

(AsyncCompletion or AsyncValue<T>) – the corresponding 

implementation method of the grain class has to return a promise. 

There are two possible cases: the method can either return a 

concrete value (which gets automatically converted into a 

resolved promise by the runtime) or return a promise that it 

obtains from calling another grain or scheduling a closure. For 

example, the GetAxB() method of ISimpleGrain can return a 

concrete integer: 

AsyncValue<int> GetAxB() { 
   int x = this.a * this.b; 
   return x; 
} 

or return a promise obtained from another method: 

AsyncValue<int> GetAxB() { 
   AsyncValue<int> p = anotherGrain.GetAxB(); 
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   return p; 
} 

3.6 Grain State 
The state of a grain is managed by the Orleans runtime, 

including initialization, persistence, replication, and migration. A 

grain exposes its internal state to the system, and to the 

programmer, through virtual properties. The programmer 

optionally annotates the properties to declaratively specify 

requirements such as persistence, initialization only, etc. Because 

these properties are virtual, Orleans can override them by 

subclassing the grain class and intercept reads and writes. In the 

future, we plan to use this mechanism to implement caching, 

replication, synchronization, and other state management. 

4. Implementation 
Orleans is a library written in C# that runs on the Microsoft 

.NET Framework 4.0. 

4.1 Reentrancy, Interleaving and Scheduling 
Orleans is built on a cooperative multitasking model. A 

grain activation operates in discrete units of work called turns and 

finishes each unit before moving on to the next. A turn executes 

the computation to handle requests from other grains or external 

clients and to run closures at the resolution of a promise. 

While a system may execute many turns belonging to 

different activations in parallel, each activation always executes 

its turns sequentially. Therefore, execution in an activation is 

always logically single threaded. This is achieved without 

dedicating a thread to an activation or request. Instead, the system 

uses a scheduler that fairly multiplexes turns on a pool of threads. 

To a large extent, there is no need for locks or other 

synchronization methods to guard against data races and other 

multithreading hazards. However, promises are resolved 

asynchronously, so the order in which closures for different 

promises execute is unpredictable. This interleaving never results 

in a fine-grained data race, but it does require attention since the 

state of the activation when a closure executes may differ from its 

state when the closure was scheduled. In addition, if code blocks 

on a promise using the Wait method, the current turn ends and a 

new one starts. When the promise is resolved, the blocked code 

resumes in a new turn. Other turns in the same activation may 

have executed while Wait is suspended, and thus the state of the 

activation (including the values of properties and fields) may 

change between the invocation of the Wait method and its return. 

This is also true for continuations bound to a promise, but using 

Wait is more error-prone, since the state changes appear to occur 

in the middle of straight-line code. For this reason (among others), 

the use of Wait is discouraged. 

By default, Orleans requires an activation to completely 

finish processing one request before accepting the next request. 

An activation will not accept a new request until promises created 

(directly or indirectly) in the processing of the current request 

have been fulfilled and all associated closures are executed. Grain 

implementation classes may be marked with the Reentrant 

attribute to indicate that turns belonging to different requests can 

be freely interleaved. Methods that are marked ReadOnly are 

assumed to also be reentrant. 

4.2 State 
To build reliable and scalable cloud applications, the 

application’s state must be stored on persistent media and 

replicated in multiple physical locations. Data stored on persistent 

media such as hard disks can survive server crashes and power 

outages, but is unavailable when its host server is not operating or 

is disconnected from the network. Replicating data on multiple 

servers in physically distinct locations increases data availability 

and reliability, as several independent failures must occur before 

data is unreachable or unrecoverable. Furthermore, data 

replication allows an application to service requests on different 

servers, increasing access bandwidth and decreasing latency. 

Persistence and replication change the semantics of 

application code and hence cannot be applied automatically or 

hidden from a programmer. Persistent data can be visible and 

shared by multiple computations, so it is necessary to clearly 

define the lifetime and visibility of this type of data and provide 

concurrency control to ensure that it is updated consistently. 

Replication also introduces challenges in ensuring that updates to 

distinct copies propagate in a predictable manner. These aspects 

of data semantics could be exposed by defining new classes, but 

in Orleans, we use annotations on data type declarations to specify 

persistence, replication, and consistency. Annotations offer a more 

expressive language for these non-trivial specifications, while 

cleanly separating application requirements from the complex 

algorithms for implementing persistence and replication. 

4.2.1 Persistence 
An individual grain declares the parts of its state that are 

persistent (“hard”) and transient (“soft”) through optional 

annotations. It can also declare methods to be called on grain 

activation to initialize transient state and on deactivation. 

Persistent property types must support serialization, including 

data, grain references, and resolved promises. Transient state can 

be stored in fields, or in properties marked with the Transient 

attribute, and can be of any type. An activation will only be 

activated or deactivated outside of a transaction, so its per-request 

state is typically transient. 

At the level of a single grain, these declarations provide a 

simple model for persistence. The Orleans runtime activates a 

grain with its persistent properties initialized, either from grain 

creation parameters or from the latest version in the persistent 

storage. The grain’s Activate() method is then called to allow it 

to initialize its transient state. The runtime then invokes methods 

to handle requests sent to the activation, which can operate freely 

upon their entire state in memory. To commit an activation, the 

runtime waits for the completion of a request, calls the grain’s 

Deactivate() method, and writes the grain’s state property 

values to persistent storage. The frequency of committing values 

to storage depends on the resource management policy, trading 

efficiency of combining multiple writes against the risk of 

replaying more transactions in the event of failure. Furthermore, 

the runtime coordinates commit operations across multiple grains 

to ensure that only consistent state is committed (Section 4.3.4). 

4.2.2 Migration and Replication 
Given a persistence mechanism, it is straightforward to 

migrate a grain from one server to another. Once an activation 

finishes processing its current request, the runtime calls the 

Deactivate() method, serializes persistent state, and destroys the 

old activation. The runtime then creates a new activation at the 

target server, initializes its state by deserializing the data, and calls 

the Activate() method. Orleans also updates its distributed 

directory by unregistering the old activation and registering the 

new one (with a new ID – activation IDs are never reused). 
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Requests on the destroyed activation will trigger a new directory 

lookup and message redirection to the new activation.  

Replicating a grain is a similar process, except that the old 

activation is not destroyed. If existing activations are busy, the 

runtime can create the replicated activation directly from 

persistent storage instead of cloning another activation. 

4.3 Transactions 
Multiple activations of a grain, while beneficial for 

performance and fault-tolerance, raises the difficult problem of 

distributed consistency. Orleans’s solution is a lightweight, 

optimistic transaction model. As a transaction executes, it 

communicates with activations, which join the transaction and 

remain joined until the transaction commits or aborts. At most one 

activation of a given grain may join a transaction, to ensure that 

computations in the transaction see a consistent view of the grain. 

An activation may join at most one write transaction, or any 

number of read-only transactions, ensuring that the transactions 

are isolated from other one another. When a request from a client 

is completely processed, a response is optimistically returned and 

the joined activations are released. An activation may join a series 

of transactions before its state is committed to persistent storage. 

However, if a subsequent transaction modifies one of these 

activations before writing its state to persistent storage, and the 

transaction aborts, then the earlier transactions also must abort and 

re-execute since their state was not persisted. Re-execution is non-

deterministic and may produce a different result. If this possibility 

is semantically significant, a client may opt to wait until a 

transaction fully commits before consuming its response. In most 

cases, however, the earlier and re-executed transactions are 

semantically equivalent, and the client need not wait until the 

service’s state is fully committed. 

4.3.1 Isolation 
To ensure transaction isolation, Orleans ensures a one-to-

one mapping between activations of a grain and transactions. Each 

server records the transaction to which each activation on the 

server is joined. Every message between activations contains a 

transaction header: a transaction identifier and list of activations 

already joined to the transaction. The list records incremental 

updates, reducing the header to the transaction identifier in the 

common case that both activations are on the same server. 

If a message arrives for an activation already joined to a 

different transaction, it will be either enqueued until the activation 

is released from its current transaction or redirected to a different 

activation (perhaps newly created). The resource management 

policy makes a choice among these alternatives, trading the 

expense of redirecting a message or creating a new activation 

against the wait for completion of the active transaction. 

Furthermore, the Orleans runtime takes advantage of the 

activation/transaction mapping when sending messages. If the 

target grain already has an activation joined to the active 

transaction, the message is sent directly to that activation. 

Moreover, the sending server can avoid activations of the target 

grain that are known to belong to other transactions.  

4.3.2 Consistency 
Joining activations to transactions also ensures a consistent 

view of state since there is only a single instance of an activation 

in a transaction. Maintaining this property is easy for applications 

that execute sequentially across a series of grains. Each request or 

response message contains the entire set of activations joined to 

the transaction so far. This mapping ensures that subsequent 

messages to the grain go to the same activation. When the 

application issues concurrent requests, an additional mechanism, 

described below, is required. 

In Figure 3, activation 1a (activation “a” of grain “1”) sends 

concurrent messages to 2a and 4a, both of which concurrently 

send messages to grain 3. The Orleans runtime tries to ensure that 

2a and 4a send to the same grain activation, without using any 

distributed coordination mechanism which would be expensive 

and non-scalable. Both grains use the hash of the transaction 

identifier to index the list of available activations. If this heuristic 

fails and they choose different activations, say 3a and 3b, the 

inconsistency will be discovered when the responses arrive at 1a. 

The transaction will be aborted and replayed, before any code can 

observe inconsistencies between the state of 3a and 3b. The replay 

is notified of the cause of the failure, and the runtime selects one 

activation of grain 3 to join to the transaction before restarting 

grain 1. This precludes encountering the same inconsistency by 

ensuring that grains 2 and 4 will choose the same activation of 

grain 3. 

 

Figure 3. Consistency failure if the transaction sees two 

different activations (3a and 3b) of a grain. 

4.3.3 Atomicity 
To preserve atomicity, Orleans must ensure that the updates 

that a transaction made to its set of grains are either committed 

together or discarded. The runtime keeps the 

transaction/activation mapping information until transactions are 

committed (Section 4.3.4). Before joining an activation to a 

transaction, it verifies that this action preserves atomicity: for all 

grains that the active transaction shares with a prior, uncommitted 

transaction, it also shares the same activations. 

Figure 4. Potential atomicity violation. Transaction Tz cannot 

use either grain 3a or 3b without violating the consistency of 

Tx or Ty, respectively. 

For example in Figure 4, completed transaction Tx has 

modified activations 1a, 2a, and 3a, and completed transaction Ty 

has modified 4a, 3b, and 5a. Active transaction Tz has modified 

activations 6a and 2a and sends a request to grain 5. If this 

Grain 1 1a Grain 4 4a Grain 6 6a

Grain 2 2a Grain 5 5aGrain 3 3a 3b

Transaction Tx Transaction Ty Transaction Tz

Grain 1 1a

Grain 2 2a Grain 4 4a

Grain 3 3a 3b
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message arrives at activation 5a, the runtime has enough 

information to detect a potential – but not yet actual – violation of 

atomicity if Tz were to send a message to grain 3. It might choose 

to redirect the message to another activation of grain 5. Or, if none 

is available and it is too expensive to create a new one, it may go 

ahead and join activation 5a to Tz. So far, atomicity is preserved. 

However, if Tz does send a message to grain 3, the runtime cannot 

choose either activation 3a or 3b without violating atomicity (of 

Ty or Tx, respectively). The runtime will detect this before the 

message to grain 3 can be sent and abort Tz, ensuring that no 

executing code observes an atomicity violation. Transactions Tx 

and Ty will also need to abort and replay because their updates to 

2a and 5a will be lost when Tz aborts. 

The set of transactions and activations linked by atomicity 

constraints can become large, and traversing the history graph can 

be time consuming. Orleans uses a more efficient data structure 

that summarizes dependency relationships and potential atomicity 

conflicts and merges dependency sets when an activation is added 

to a transaction. 

4.3.4 Durability 
Orleans needs to ensure that committed transactions are 

written atomically to persistent storage. The transaction 

persistence mechanism also follows an optimistic path, 

asynchronously writing modified results to storage without 

delaying an executing transaction. When a transaction completes, 

the server that handled the initial request sends a completion 

notification to the system store, listing all activations involved in 

the transaction. Committing a transaction has three phases: 

1. The store collects serialized representations of the persistent 

state of each activation in the transaction. 

2. If more than one version of a grain is to be committed, either 

from a more recent version already committed to the store, or 

from multiple transactions, their state must be reconciled to 

produce a single version before writing it to store. 

3. The grain states are written to persistent storage using two-

phase commit to ensure that all updates become visible 

simultaneously.  

This process runs without blocking executing transactions 

and so can step back to an earlier phase as additional notifications 

arrive. The system store is currently a single point of failure and a 

scalability bottleneck. In the future, a distributed persistence 

mechanism will remove these limitations.  

4.3.5 Reconciliation 
If the persistent state in multiple activations of a grain is 

concurrently modified by different transactions, the changes must 

be reconciled into a single, consistent state before the transactions 

can commit. To handle common cases, the Orleans runtime 

provides synchronizable data structures that track fine-grained 

updates and reconcile conflicting changes. The reconcilable data 

structures include records, lists, and dictionaries. If an application 

requires a different mechanism or more complex data structures, a 

grain can provide a custom synchronization method to reconcile 

changes from two activations.  

Reconciliation occurs as application state is written to 

persistent storage, as described above. The reconciliation model is 

a simple star topology, in which each modified activation is 

successively reconciled with the latest persistent version, and the 

combined version is sent back to individual servers to update each 

modified activation. Figure 5 illustrates the reconciliation process: 

1. Two activations 1a and 1b of grain 1 are initially created 

from persistent storage at time t0 with identical states holding 

the set {A, B, C}. 

2. They participate in separate transactions. Activation 1a adds 

{D, E} to its set, while 1b removes B and adds D. Each 

change has a timestamp that can be used to resolve 

conflicting changes. 

3. When these transactions complete, the activations send their 

deltas for reconciliation. The store reconciles them into a 

single consistent set of changes, writes the reconciled result 

to persistent storage, and sends the resulting changes back to 

the activations. 

4. The store also includes a new baseline timestamp t4, so the 

activations can consolidate previous changes in their baseline 

set and discard individual timestamps. 

5. Applications 
We will describe two applications built on Orleans to 

illustrate the flexibility of its architecture and programming 

model. 

5.1 Instant Messaging 
Instant messaging (IM) is built on small grains. Each user 

has an account grain, holding the user’s name and email address, 

as well as an address book with a set of contacts. The account 

grain exposes a public interface IContact with information about 

user’s presence and an owner-only IAccount interface with 

administrative operations to change a password, add/remove 

contacts, change presence status (online/offline), as well as an 

operation to start a conversation. Each conversation is managed 

by a conversation grain. Once created, a conversation grain allows 

its participants to add or remove participants and post and receive 

messages. A system administration grain exposes an interface to 

1b1a

1b1a t0 A B C t0 A B C

t1 D t2 E t1 B t3 D

t0 A B C t0 A B C

Store

create

Store

1a

t1 D t2 E

1b

t1 B t3 D

1a 1b

t4 B ED t4 B ED

1b1a t4 A C D E t4 A C D E

(1)

(2)

(3)

(4)

Figure 5. Reconciliation of conflicting changes in two 

grains. 
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create user accounts and authenticate a user (omitted, due to 

space). Observers enable clients to receive asynchronous 

notification about friends’ presence changes, invitations to join a 

conversation, or newly posted messages. Figure 6 contains partial 

interfaces for IM. 

IM naturally partitions by user and conversation into many 

independent units of functionality and state, which map well to 

the grain model and help the system scale. The code does not 

depend on a large data structure, such as a table of all user 

accounts, which would be complex and expensive to partition and 

replicate as a single entity. Instead, the programmer provides the 

application logic, and Orleans replicates account and user grains, 

provides a distributed directory to find these grains, and manages 

persistence and dynamically balances load by migrating grains. 

5.2 Large Graph Processing Engine 
A very different kind of Orleans application is our library 

for processing large distributed graphs. Graphs are central to 

social networking and other web applications. Large graphs pose 

many challenges, as they do not fit a single computer and 

distributed algorithms are communications intensive [14]. Our 

graph library provides support for partitioning and distributing 

graph data (nodes, edges, and metadata) across machines and for 

querying graphs. 

Orleans offers two options for implementing graphs: 

encapsulate each node in a separate grain or have a set of nodes 

(called a partition) represented by a grain. We picked the latter 

approach to reduce memory overheads and increase the size of the 

graph we can handle, and to reduce communication cost in this 

communication-intensive application. Every server hosts a small 

number of partition grains, and every partition grain contains a 

large number of nodes (104 – 106). A graph algorithm running in a 

partition directly accesses nodes in its partition. Accesses across 

partitions involve messages, which become more expensive when 

they cross machine boundaries. The graph algorithms are aware of 

this distinction and batch message between servers to reduce 

communication overhead. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Graphs demonstrate the flexibility of Orleans model: it 

imposes no restrictions on the size of a grain. Grains can hold 

potentially large amounts of state, while still offering isolation, 

asynchronous messaging, persistence, and transactional updates. 

The graph library is built upon an abstract graph execution 

framework that offers functionality similar to Pregel [14], and 

similar abstract frameworks could be built in Orleans to support 

high-level patterns such as Map/Reduce [13], and Dryad [15].  

6. Performance Measurements 
We analyze the performance of Orleans through a set of 

benchmarks. The measurements are averages over 1000 runs on a 

cluster of Intel Core 2 Duo CPUs at 3.16GHz, 4GB of RAM, and 

64 bit Windows 7.  

Figure 7 depicts the round trip latency of a grain method 

invocation, for garins locatd on the same and different servers. 

The method invocation had one paramter, a byte buffer of varying 

size. The latency for the remote case is around 0.7 millisecond 

and half that for the local case. For large messages the latency 

increases proportionaly to the message size, due to the cost of 

serialization. 

 

Figure 7. Local and remote invocation latency. 

We also measured the overhead of promises. The time to 

create a promise and join its result in continuation is between 50 

to 100 microseconds. This is small compared to the message 

latency.  

A latency to create a new grain is approximately 5 

milliseconds, which includes creation of a first activation for this 

grain and registering it in a distributed directory.  

 

Figure 8. Throughput of multiple activations. 

Figure 8 shows the throughput of requests to a grain as the 

runtime automatically increases the number of activations to 

distribute the load. Each request is either read or write, performing 

1 ms or 5 ms of work, respectively. The write transactions impose 

public interface IContact : IGrain { 
   [Queryable][Lookup][InitOnly] 
   AsyncValue<string> Username { get; } 
   AsyncValue<Presence> Presence { get; } 
   AsyncCompletion AddConversation(IConversation c); 
   AsyncCompletion RemoveConversation(IConversation c); 
} 
public interface IAccount : IGrain, IContact { 
   AsyncValue<List<IContact>> AddressBook { get; } 
   AsyncCompletion AddContact(IContact contact); 
   AsyncCompletion RemoveContact(IContact contact); 
   AsyncCompletion SetPresence(Presence presence); 
   AsyncValue<bool> ValidatePassword(string password); 
   //methods to add and remove conversation observers 
} 
public interface IConversation : IGrain { 
   AsyncCompletion AddParticipant(IContact contact); 
   AsyncCompletion RemoveParticipant(IContact contact); 
   AsyncValue<List<IContact>> Participants { get; }     
   AsyncCompletion AddMessage(InstantMessage message); 
} 

Figure 6. Instant messenger grain interfaces. 
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additional system load for the commit and reconciliation 

protocols. While the increase in throughput is sub-linear (a 

bottleneck we are investigating), this illustrates a main feature of 

Orleans. Significant increases in load can be handled transparently 

by adding more activations, without application intervention.  

7. Related Work 
Orleans borrows many concepts from prior systems. 

However, we believe that combination of design choices is unique 

and tailored to provide a comprehensive solution to the new 

domain of scalable client + cloud applications. 

7.1 Actor Models 
Actors are a well-known model for concurrent programming 

that form the basis for many programming languages [16] 

including: Erlang [17], Ptolemy [18], and E [18]. 

Orleans differs from classic actors in Orleans’s mutability of 

grain state, its asynchronous communication and promises, its 

message ordering guarantees, its support for replication, and its 

transactional model and consistency guarantees. 

Orleans differs fundamentally from Erlang in its imperative 

language semantics and in its rich, distributed runtime support. 

Erlang, unlike Orleans, does not provide data migration. Erlang 

messaging is exposed via synchronous RPC or direct messaging, 

while Orleans provides remote method invocation with higher-

level primitives (promises). Erlang also supports transactions and 

failure replication, through libraries, though with less-scalable 

semantics than Orleans. Erlang also differs from Orleans in its 

distributed error handling mechanism, which requires a 

programmer to implement guard processes to handle system 

failures, while in Orleans system failures are handled 

automatically by the transaction system. 

The Ptolemy project studies modeling, simulation, and 

design of concurrent, real-time, embedded systems, with the focus 

on assembly of concurrent components. Ptolemy does not provide 

a distributed runtime. 

E is an object-oriented programming language for secure 

distributed computing. E has a concurrency model similar to 

Orleans, based on event loops and promises, but its unit of 

isolation and distribution is much larger: a “vat” containing many 

objects that can share state. E also lacks Orleans’s distributed 

runtime support for persistence, replication, migration, and 

transactions. 

7.2 Distributed Object Models 
Enterprise Java Beans (EJB), Microsoft’s Component 

Object Model (COM), and the Common Object Request Broker 

Architecture (CORBA) are all object-oriented frameworks for 

building three-tiered applications. While they differ in detail, all 

are based on distributed objects, (primarily) synchronous RPCs, 

location transparency, declarative transaction processing, and 

integrated security. They share Orleans’s goals of offering a 

higher-level collection of abstractions that hide some of the 

complexity of building distributed systems, but are targeted at 

enterprise rather than cloud-scale applications. 

Orleans differs from these in its embrace of strongly-typed 

asynchronous APIs as the programming model for all application 

component access. Orleans’s use of multiple activations of 

individual grains executing concurrently and replicated across 

multiple nodes for scalability and failure tolerance is a significant 

semantic and capability difference. Its approach to consistency 

and transactions also makes a different trade-off between 

consistency and scale than the strict ACID semantics offered by 

the other frameworks. 

8. Conclusions 
We have described the design and implementation of 

Orleans, a software framework for cloud computing. Orleans 

defines an actor-like model of isolated grains that communicate 

through asynchronous messages and manage asynchronous 

computations with promises. The isolated state and constrained 

execution model of grains allows the Orleans runtime to persist, 

migrate, replicate, and reconcile grain state without programmer 

intervention. Orleans also provides lightweight, optimistic, 

distributed transactions that provide predictable consistency and 

failure handling for distributed operations across multiple grains. 

We believe that this framework will significantly simplify the 

development of complex cloud applications, by incorporating 

fundamental distributed computing functionality and abstractions 

into the system and by promoting the use of design patterns that 

promote scalability and reliability. 
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