
Submitted for publication. Contact larus@microsoft.com for citation information.

Orleans: A Framework for Cloud Computing

Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, Jorgen Thelin

eXtreme Computing Group, Microsoft Research

Abstract
Client + cloud computing is a disruptive, new computing

platform, combining diverse client devices – PCs, smartphones,

sensors, and single-function and embedded devices – with the

unlimited, on-demand computation and data storage offered by

cloud computing services such as Amazon’s AWS or Microsoft’s

Windows Azure. As with every advance in computing,

programming is a fundamental challenge as client + cloud

computing combines many difficult aspects of software

development.

Orleans is a software framework for building client + cloud

applications. Orleans encourages use of simple concurrency

patterns that are easy to understand and implement correctly,

building on an actor-like model with declarative specification of

persistence, replication, and consistency and using lightweight

transactions to support the development of reliable and scalable

client + cloud software.

1. Introduction
Client + cloud computing is a disruptive, new computing

platform, combining diverse client devices – PCs, smartphones,

sensors, and single-function and embedded devices – with the

unlimited, on-demand computation and data storage offered by

cloud computing services such as Amazon’s AWS or Microsoft’s

Windows Azure. Advances in semiconductors again are driving a

radical change, reducing the cost of computing and

communications and enabling inexpensive, compact, personal,

and mobile devices with powerful processors, wireless

connectivity with good bandwidth and reach, and low power

consumption. In the data center, low-cost, efficient, virtualized

servers created a new business of selling inexpensive computation

on demand. Together these advances make possible the vision of

ubiquitous computing articulated by Mark Weiser two decades

ago [1], where data and computation are no longer tied to a

physical location or computing device, but instead become the

fabric of our environment and part of all devices we interact with.

As with every advance in computing, programming is a

fundamental challenge. Client + cloud computing combines many

of the most difficult aspects of programming. These systems are

inherently parallel and distributed, running computations across a

large number of servers in multiple data centers and diverse

clients. Individual computers and communication links are

commodity components, with non-negligible failure rates and

complex failure modes. Cloud computing runs as a service,

offering economies of scale and efficiency by concurrently

processing requests from many clients, but also facing challenging

demands in handling varying and unpredictable loads and offering

a highly available and reliable service in the face of hardware and

software failures and evolution. These problems, of course, come

in addition to the familiar challenges of constructing secure,

reliable, and efficient software.

Orleans is a software framework for building cloud

applications. It offers a simple programming model built around

grains, logical units of computation with private state that

communicate exclusively by sending messages. At any time, a

grain may have zero, one, or multiple activations, the physical

instantiation of a grain on a server. To simplify programming and

reduce the opportunity for errors, the programming model

imposes restrictions on concurrency. A grain activation processes

an external request to completion before turning to the subsequent

request. The system as a whole can process multiple requests

concurrently in distinct grain activations, but these computations

are isolated, except at the clearly identified points where grains

commit state changes to persistent storage and make them

globally visible. This is far more restrictive than most shared

memory or message-passing models, but still flexible enough to

build general-purpose applications.

A key challenge in building these applications is scale. A

successful and popular application must handle demand that

grows orders of magnitude in a very short time. Software, like the

cloud hardware platform, should be elastic and capable of

expanding to meet demand. Growth not only increases the number

of servers and network connections, and consequently the

likelihood of failures, but it also increases the size of data

structures and the cost of algorithms. Techniques suitable for

small websites, such as centralized databases, become bottlenecks

as systems grow and must be replaced by more scalable solutions,

such as sharded databases [2], often requiring architectural

changes and rewrites of a system [3]. Orleans’s grain model

addresses these concerns. Grains encourage a sharded style of

computation, with small, independent computations distributed

across servers to closely match the semantics of scalable, sharded

databases. Grains can be inexpensively migrated or replicated

among computers, even while a service is running, to balance load

and to reduce communication cost by moving computation to data

or co-locating communicating entities.

In addition, a shared service must be both available and

reliable. The more popular a service, the higher the demand for

availability, although greater scale increases the difficulty of

achieving this goal. Distributed systems research has produced

many techniques for building reliable systems from unreliable

building blocks. The general approach is to replicate a

computation or datum, and if one copy fails, the others will

service requests while the failed copy is restarted or reconstructed.

Multiple, concurrently updated copies introduce the need to

ensure that distinct computations provide a single, consistent

result, regardless of which copy is accessed. Orleans grains

separate the application’s logic from its replication and

consistency mechanisms. The Orleans runtime can replicate a

grain’s state and offers predictable consistency guarantees for the

copies.

This paper makes the following contributions:

 Identifies the challenges in building client + cloud software.

2

 Describes a solution to these problems based on concurrent,

replicated, asynchronous units of computation.

 Extends the basic solution with light-weight transactions that

ensure isolation, consistency, and error recovery.

 Integrates persistence, replication, and consistency into the

programming model and supports it in the language runtime.

 Shows how a runtime can improve an application’s

performance by transparently distributing computations

among servers.

The rest of the paper is organized as follows. Section 2

provides an overview of Orleans while section 3 describes the

programming model in more detail. Section 4 briefly discusses the

implementation. Section 5 describes sample applications. Section

6 presents performance measurements, and section 7 surveys

related work.

2. Orleans Overview
Orleans supports the development of cloud application

software. It targets a specific category of software, embodying

best practices for building scalable cloud applications. This

section provides an overview of Orleans, elaborated in later

sections, and explains the rationale for the design choices.

2.1 Grains
In Orleans, grains are atomic units of isolation, distribution,

and durability. A service is constructed from grains running on

servers in a data center. An external request, from a client of the

service, is sent to a grain for processing. A grain can concurrently

invoke the operations of other grains through asynchronous

messages. Grains internally are not parallel; they process a request

fully before handling the next one.

Multiple instantiations of a grain, known as activations,

process multiple independent requests to a service in parallel.

Orleans creates multiple activations of a grain to handle

simultaneous requests, increasing system throughput, reducing

queuing latency, and improving system scalability. An activation

is completely isolated from other activations of the same grain and

only interacts with different grains’ activations by exchanging

messages. Activations cannot share memory or invoke each

other’s methods directly.

The state of a grain is persistent by default, so Orleans

transfers modified grain state from server memory to durable

storage, and vice-versa, without explicit application code (Section

4.2). A grain may exist only in the persistent store – i.e., the grain

is not active on any server – when no requests for the grain are

pending. When a request arrives, the Orleans runtime activates the

grain by choosing a server, instantiating an activation that

implements the behavior of the grain, and initializing it with the

grain’s persistent state. If the grain modifies its persistent state,

the runtime updates persistent storage with the in-memory version

at the completion of the application’s transaction.

Multiple activations may concurrently modify a grain’s

state, requiring a mechanism to reconcile changes to their shared,

persistent state. Orleans uses a multi-master, branch-and-merge

update model, similar to Burckhard’s revision-based model [4].

Orleans allows grain activations to be placed independently

on any server in a system and to be migrated between servers in

order to balance load, increase failure tolerance, or reduce

communication overhead. As a consequence, Orleans tracks the

location of each activation in a distributed directory, which

provides the flexibility to place and migrate grains dynamically.

The directory may grow to millions or billions of entries. We use

a distributed directory service based on the Pastry distributed hash

table [5], supplemented with active caching as in Beehive [6].

Grains, despite obvious similarities, are not identical to

objects. The key difference is that grains cannot share memory

and can only communicate by asynchronous messages. Orleans

does not prescribe the size of grains. Granularity is a tradeoff

between the level of parallelism and state locality needed for

efficient computations. Small grains typically hold entities that are

logically isolated and independent. A user account grain or a

catalog item grain is a typical entity that is not data dependent on

other grains of the same type. At the other end of the spectrum, a

complex data structure such as a search index may be more

efficient contained in a grain and accessed as a service.

2.1.1 Security
A grain can only communicate with another grain through a

reference to it, which provides an object-capability-like security

model [7]. Each grain in Orleans is created within a logically

isolated workspace, a grain domain, which delimits the set of

grains it can directly access. A newly created grain is initialized

with explicit references to other grains and to its containing

domain, which can be queried to acquire references to grains in

the domain. A grain can only send messages through these grain

references, or to grain references it received in a message.

References to grains in other domains must be passed at

initialization or in a message from a grain that already has access.

Grain domains are hierarchical and nested, and they can be

used to isolate parts of an application. For example, a Orleans

application may create a grain domain per customer, so code

executing on behalf of a customer has limited and controlled

access to grains from other customers and global application state.

The application can further limit access by controlling the lookup

mechanisms the customer-specific grain uses to find other grains.

2.2 Transactions
Orleans offers transactions for three reasons. The first,

similar to a primary motivation for transactional memory, is to

isolate concurrent computations, eliminating the need for explicit

synchronization to coordinate shared data access. In Orleans,

multiple activations can modify grain state, which requires a

mechanism to resolve conflicts and ensure a consistent data view.

The second reason arises from the replication of data and

computation, a fundamental requirement on large-scale computing

on commodity hardware. Modifying the copies of a replicated

datum can introduce inconsistencies. Many cloud systems trade

efficiency for convenience by providing an eventual consistency

data model [3, 8], which offers no guarantees beyond that an

update will eventually propagate to all servers. This model

complicates software development by requiring a programmer to

distinguish data consistency requirements and to develop storage

solutions for data that requires stronger guarantees.

Orleans instead offers a single data model based on

lightweight, optimistic transactions (Sec. 4.3). Orleans

transactions are isolated from other concurrently executing

transactions and prevent access to data that has been modified by

a transaction that has not yet completed. Transactions atomically

succeed or fail and their changes become visible atomically when

3

the transaction completes execution. The Orleans runtime durably

and atomically persists completed transactions.

The Orleans consistency model is similar to, but slightly

weaker than, snapshot isolation (SI). Under SI, a transaction sees

a consistent snapshot of committed updates as of the time the

transaction starts. In Orleans, a transaction sees an atomically

consistent subset of completed transactions. These snapshots are

either the persistent stored state of a committed grain or an

activation from a completed but as yet uncommitted transaction.

The snapshot of a completed transaction includes all grain

activations changed during the transaction and the transactions

they transitively depended upon [9]. The changes made by a

completed transaction become visible to future transactions

atomically. However, since a transaction can become visible

before committing, aborting a transaction can force aborting other,

dependent transactions that have completed but not yet

committed. Moreover, with multiple completed but uncommitted

activations of a grain, concurrent transactions may see different

combinations of atomically consistent states. This design,

although weaker than serializability or snapshot isolation,

maximizes responsiveness and system throughput and does not

require global coordination.

The third reason for transactions is to reduce the need for

explicit error handling code. Error handling is particularly

difficult in an asynchronous distributed system, as many

operations execute concurrently, and recovering from an error and

restoring state can be very complex. Moreover, error recovery is

often the least-tested and most error-prone code in an application

[10]. With the Orleans transactional model, an error during a

transaction causes it to abort. The runtime will either replay the

operation until it succeeds or fail the transaction atomically.

2.2.1 Discussion
In large-scale systems with hundreds or thousands of

servers, failure is a constant. An essential aspect of any distributed

framework is its model and mechanisms for handling failures. At

the level of a single user request, Orleans relies on transactions to

ensure that requests are processed completely and correctly. If any

participant in the transaction fails, due to hardware or software

problems, the transaction rolls back and can be replayed.

Optimistic transactions ensure a quick user response in the

common case, while preserving consistent and correct system

state in failure case.

Orleans transactions try to avoid global coordination or

locking, which could adversely affect scalability, throughput, and

distributed operation. An executing transaction sees a state

produced by completed transactions and the transactions they

transitively depend upon [9]. Orleans does not ensure full

serializability, as that would require global locking or a potentially

high rate of conflicting aborts. A programmer, however, can

achieve stronger guarantees by constraining some grains to a

single activation, at the cost of reduced scalability and fault-

tolerance.

2.3 Communications
In Orleans, all communications occurs through

asynchronous message exchanges between grains. Most messages

follow a request/reply pattern. Grains may designate certain

messages as event notifications, sent as one-way messages, and in

the future we anticipating using a single-request, multiple-reply

pattern for data streaming.

As with most programming models, messages are exposed

as method calls. Unlike traditional RPC models, however, these

calls return immediately with a promise (Section 3.1) for a future

result, rather than blocking until the result is complete. Promises

resolve the impedance mismatch between synchronous method

calls and asynchronous message passing [11, 12].

2.3.1 Discussion
Promises are well suited to coordinating concurrent

computations [12]. In Orleans, their primary use is to allow a

grain to start one or more computations in other grains and to

overlap their executions. Since computations produce results in

unpredictable orders, it is convenient to associate a handler with a

result, to processes it when it is produced. Unpredictability in

timing introduces non-determinacy into a computation, but in a

limited form that is clearly delimited and easily understood. When

even this non-determinacy is problematic, promises can also be

used like futures, with a blocking operation to retrieve their result.

2.4 Scalability and Resource Management
A service is scalable if increased load does not degrade its

quality. Constructing a scalable service is a challenge. It must be

designed and constructed to avoid bottlenecks, such as a

centralized resource, that cannot grow or expand to handle

increased load. Scalable solutions generally are partitioned and

replicated, so they can expand by adding more hardware and

redistributing their load among N+1 systems.

The two primary mechanisms in Orleans that support

scalability are the grain model itself and grain activations. The

grain model encourages partitioning of state and services into

fine-grained, replicatable services. Those fine-grained services

operate concurrently and their progress depends only on the other

grains they explicitly communicate with. There are no system-

wide bottlenecks that limit scalability. The programmer still must

partition a service into units with appropriate granularity. In

addition, Orleans improves performance by automatically

growing or shrinking the number of activations depending on the

demand on a grain. Activations can be placed on different servers

and migrated between servers to balance the load. Finally, grains

efficiently support a finer granularity of resource management

than other distributed frameworks, particularly service-oriented

architectures in which the unit of granularity is a process or a

virtual machine. Small grains offer the Orleans runtime more

flexibility in adaptively responding to changes in load by

acquiring (or releasing) servers.

The initial version of the Orleans system uses a simple load-

balancing policy in which requests are randomly distributed to

running activations. We are currently experimenting with different

resource allocation policies. In particular, we are incorporating

server load in distributing requests and placing new activations, as

well as the data location (similar to [13]). Effectively, our runtime

will dynamically decide between transferring functions and data,

based on a cost model. We also plan to make use of the network

topology and the failure domain structure to minimize the latency

of each transaction while ensuring the availability of the

application and maximizing the overall throughput.

2.4.1 Discussion
A design goal for grains was to provide the Orleans system

with the mechanisms sufficient to achieve a high degree of

automatic scalability. A grain is a homogeneous computation,

identifiable by its type, allowing the system to use the past

4

behavior of grains of a particular type to inform future

performance tuning decisions. Grains also encapsulate the

minimum application state necessary to perform a computation,

which makes them less costly to move between servers than other

encapsulation mechanisms, such as virtual machines.

2.5 Maintainability and Versioning
Rapid software evolution is a key differentiator of cloud

services, as compared to conventional software, and consequently

cloud applications are in a constant state of flux. Components are

developed by different teams and updated on independent

schedules. New components are typically introduced gradually,

starting with deployment to a single server and evolving to being

the production version. Unfortunately, emergency deployments

sometimes must fix critical bugs and it can be necessary to roll

back a deployed component. All this results in an environment

where different versions of component run concurrently and

components interact with multiple versions of other components.

Supporting this mix-and-match environment is a major area

for future work in Orleans. Some key elements are:

 Management controls that allow programmers to control the

introduction of new versions of grain classes into a running

system.

 A flexible serialization format that allows interface evolution.

To the extent possible, adding an optional parameter to or

removing an inessential parameter from a method signature

should not cause requests from older clients to fail.

 A flexible persistence format that allows forward and

backward schema evolution; i.e., the state saved by a newer

grain version may need to be restored to an older version, or

vice versa.

3. Programming Model
This section describes key aspects of Orleans programming

model, as seen by a programmer. A client is code that consumes

services of a grain – either another grain, or non-grain code that

interoperates with a Orleans system.

3.1 Asynchrony and Promises
Orleans uses promises as its asynchrony primitives. An

instance of these types represents a promise for future completion

(AsyncCompletion) or for a future result value (AsyncValue<T>)

from an operation. Promises are fully integrated with the .NET

async models.

AsyncValue<int> intPromise = GetA();
try {
 // synchronously waits for resolution of promise
 int a = intPromise.GetValue();
}
catch(Exception exc) {
 // if promise is broken, GetValue throws exception
 Console.WriteLine("Error: " + exc.Message);
}

Figure 1. Synchronous wait.

Promises have a simple lifecycle. Initially, a promise is

unresolved – it represents the expectation of receiving a result at

some unspecified future time. When the result is received, the

promise becomes fulfilled and the result becomes the value of the

promise. If an error occurs, either in the calculation of the result or

in the communications between the requesting and responding

grains, the promise becomes broken and has no value. A promise

that has been fulfilled or broken is considered resolved.

AsyncValue<int> intPromise = GetA();
//anonymous method runs when promise is resolved
intPromise.ContinueWith((int a) => {
 // success block
 Console.WriteLine("Result: " + a.ToString());
},
(Exception exc) => {
 // exception block
 Console.WriteLine("Error: " + exc.Message);
}).Ignore();

Figure 2. Asynchronous continuation.

A caller that invokes an asynchronous operation

immediately receives a promise and can do one or more of the

following:

 Synchronously wait for the promise to resolve with the

Wait() or GetValue() method. Both methods optionally take

a timeout.

 Schedule a continuation action with the ContinueWith()

method. It will be run when the promise becomes resolved.

ContinueWith() takes two function delegates: one for the

case when the promise is fulfilled (success closure) and the

other for when it is broken (optional exception closure).

 Return the promise, if the caller itself is an asynchronous

method with a compatible return type.

 Join the promise with other promises, producing another

promise that will be resolved when all the joined promises

resolve, and broken if any of the joined promises are broken.

 Explicitly ignore the outcome of promise resolution with the

Ignore() method. This instructs the runtime not to propagate

an error, should the operation fail. Otherwise, the caller must

handle the promise with one of the other methods.

If a promise with a scheduled continuation is broken, the

success closure will not be called and the exception closure, if

provided, will be. The exception closure has a chance to recover

from the error condition or re-throw the exception. An exception

closure is analogous to a catch block for asynchronous structured

exception handling.

Promises make asynchrony explicit in code, so a

programmer can directly express the desired interleaving and

pipelining of operations and can avoid false assumptions about

concurrency. Except for the synchronous Wait() and

GetValue() methods, which should be used rarely, the other

alternatives do not block a thread while an asynchronous

operation computes. This leads to better parallelism and more

efficient usage of resources.

An activation’s computation and closures execute in a turn-

based model (Section 4.1), that executes at most one thread at a

time in a cooperative multitasking manner.

3.2 Grain Interfaces
A grain class implements one or more public grain

interfaces that define the grain’s service contracts. A grain

interface is an interface that adheres to the following rules:

1. A grain interface must directly or indirectly inherit from the

IGrain marker interface.

5

2. All methods and property getters must be asynchronous, i.e.

return AsyncCompletion or AsyncValue. This explicitly

exposes the asynchronous nature of grain calls, makes client

and server use the same interface, and allows a grain to

return an unresolved promise instead of a concrete value.

3. No property setters and no subscribe/unsubscribe to events

(they are synchronous in .NET).

4. Method arguments must be grain interface types or

serializable types that can be logically passed by value.

For example, a simple grain interface is:

public interface ISimpleGrain : IGrain {
 AsyncValue<int> A { get; }
 AsyncCompletion SetA(int a);
 AsyncCompletion SetB(int a);
 AsyncValue<int> GetAxB();
}

3.3 Grain References
A grain reference is a proxy object that provides access to a

grain. It implements the same grain interfaces as the underlying

grain. A grain reference is the only way that a client, whether

another grain or a non-grain client, can access a grain. Grain

references can be passed as arguments to a grain method. Grain

references share some similarities with promises:

 A grain reference can be in one of the three possible states:

unresolved, fulfilled or broken.

 A caller can schedule and pipeline operations on a grain

reference before it is resolved, by invoking an asynchronous

method or using the ContinueWith() method. A grain

reference also supports the Wait() method that synchronously

waits for its resolution.

 Error conditions are propagated to continuation actions (by

breaking promises associated with the operations) or can be

handled synchronously though a Wait() call.

3.4 Creating and Using Grains
For each grain interface, the Orleans ClientGenerator tool

generates a public factory class and an internal proxy class that

convert method calls into messages. Clients use type-specific

factory classes to create, find, or delete grains. In the simplest

case, a factory includes methods for creating and deleting a grain

and for an asynchronous cast operation. Optional annotations on

grain interface members, such as Lookup and Queryable, cause

ClientGenerator to add additional methods to the factory class for

looking up a grain or for searching for grains that satisfy specified

conditions within a given grain domain. The generated factory

class for the sample interface above looks like the following:

public class SimpleGrainFactory {
 public static ISimpleGrain CreateGrain();
 public static void Delete(ISimpleGrain grain);
 public static ISimpleGrain Cast(IGrain grainRef);
}

Below is an example of the code to create a SimpleGrain

and perform operations on it:

ISimpleGrain grain = SimpleGrainFactory.CreateGrain();
AsyncCompletion setAPromise = grain.SetA(3);
AsyncCompletion setBPromise = grain.SetB(4);

// join the promises
AsyncCompletion setPromise =
 AsyncCompletion.Join(setAPromise, setBPromise);

AsyncValue<int> getPromise = setPromise.ContinueWith(
 () => {
 return grain.GetAxB();
 });

// schedule action when GetAxB returns actual result
AsyncCompletion resultPromise =
 getPromise.ContinueWith((int x) => {
 Console.WriteLine("Result: " + x.ToString());
 },
 (Exception exc) => {
 Console.WriteLine("Error: " + exc.Message);
 throw exc; // re-throw the exception
 });
// wait for operation to complete
try {
 resultPromise.Wait();
} catch(Exception exc) {
 // error at any stage will throw exception
 Console.WriteLine("Error: " + exc.Message);
}

CreateGrain immediately returns a reference to the grain,

allowing pipelining of asynchronous requests to the grain, such as

SetA and SetB, even before the grain is fully created. The client

invokes GetAxB on the reference before SetA and SetB fulfill their

promises. The invocation is queued on the grain and executes

after SetA and SetB execute. When the getPromise is resolved, a

success or an error function delegate is invoked.

Because every asynchronous operation, such as a call to a

grain method, a call to ContinueWith() on a promise, or a call to

Join(), returns a promise, and because promises propagate errors

through continuations, error handling can be implemented in a

simple manner. A client can build an entire dataflow graph of

interconnected asynchronous continuations and defer error

handling until a later point. In the example above, an error at any

stage of the program (CreateGrain(), SetA(), SetB(),

GetAxB(), x.ToString(), etc.) will eventually break

resultPromise and cause resultPromise.Wait() to throw an

exception with information about the error to the one error

handling statement (try/catch) as the top level. All possible

errors bubble up to that point in the program, even though pieces

of the computation may run concurrently on different threads.

This greatly simplifies the error handling code.

3.5 Grain Classes
As already mentioned above, a grain class implements one

or more grain interfaces. Since each method or property within a

grain interface is asynchronous – returns a promise

(AsyncCompletion or AsyncValue<T>) – the corresponding

implementation method of the grain class has to return a promise.

There are two possible cases: the method can either return a

concrete value (which gets automatically converted into a

resolved promise by the runtime) or return a promise that it

obtains from calling another grain or scheduling a closure. For

example, the GetAxB() method of ISimpleGrain can return a

concrete integer:

AsyncValue<int> GetAxB() {
 int x = this.a * this.b;
 return x;
}

or return a promise obtained from another method:

AsyncValue<int> GetAxB() {
 AsyncValue<int> p = anotherGrain.GetAxB();

6

 return p;
}

3.6 Grain State
The state of a grain is managed by the Orleans runtime,

including initialization, persistence, replication, and migration. A

grain exposes its internal state to the system, and to the

programmer, through virtual properties. The programmer

optionally annotates the properties to declaratively specify

requirements such as persistence, initialization only, etc. Because

these properties are virtual, Orleans can override them by

subclassing the grain class and intercept reads and writes. In the

future, we plan to use this mechanism to implement caching,

replication, synchronization, and other state management.

4. Implementation
Orleans is a library written in C# that runs on the Microsoft

.NET Framework 4.0.

4.1 Reentrancy, Interleaving and Scheduling
Orleans is built on a cooperative multitasking model. A

grain activation operates in discrete units of work called turns and

finishes each unit before moving on to the next. A turn executes

the computation to handle requests from other grains or external

clients and to run closures at the resolution of a promise.

While a system may execute many turns belonging to

different activations in parallel, each activation always executes

its turns sequentially. Therefore, execution in an activation is

always logically single threaded. This is achieved without

dedicating a thread to an activation or request. Instead, the system

uses a scheduler that fairly multiplexes turns on a pool of threads.

To a large extent, there is no need for locks or other

synchronization methods to guard against data races and other

multithreading hazards. However, promises are resolved

asynchronously, so the order in which closures for different

promises execute is unpredictable. This interleaving never results

in a fine-grained data race, but it does require attention since the

state of the activation when a closure executes may differ from its

state when the closure was scheduled. In addition, if code blocks

on a promise using the Wait method, the current turn ends and a

new one starts. When the promise is resolved, the blocked code

resumes in a new turn. Other turns in the same activation may

have executed while Wait is suspended, and thus the state of the

activation (including the values of properties and fields) may

change between the invocation of the Wait method and its return.

This is also true for continuations bound to a promise, but using

Wait is more error-prone, since the state changes appear to occur

in the middle of straight-line code. For this reason (among others),

the use of Wait is discouraged.

By default, Orleans requires an activation to completely

finish processing one request before accepting the next request.

An activation will not accept a new request until promises created

(directly or indirectly) in the processing of the current request

have been fulfilled and all associated closures are executed. Grain

implementation classes may be marked with the Reentrant

attribute to indicate that turns belonging to different requests can

be freely interleaved. Methods that are marked ReadOnly are

assumed to also be reentrant.

4.2 State
To build reliable and scalable cloud applications, the

application’s state must be stored on persistent media and

replicated in multiple physical locations. Data stored on persistent

media such as hard disks can survive server crashes and power

outages, but is unavailable when its host server is not operating or

is disconnected from the network. Replicating data on multiple

servers in physically distinct locations increases data availability

and reliability, as several independent failures must occur before

data is unreachable or unrecoverable. Furthermore, data

replication allows an application to service requests on different

servers, increasing access bandwidth and decreasing latency.

Persistence and replication change the semantics of

application code and hence cannot be applied automatically or

hidden from a programmer. Persistent data can be visible and

shared by multiple computations, so it is necessary to clearly

define the lifetime and visibility of this type of data and provide

concurrency control to ensure that it is updated consistently.

Replication also introduces challenges in ensuring that updates to

distinct copies propagate in a predictable manner. These aspects

of data semantics could be exposed by defining new classes, but

in Orleans, we use annotations on data type declarations to specify

persistence, replication, and consistency. Annotations offer a more

expressive language for these non-trivial specifications, while

cleanly separating application requirements from the complex

algorithms for implementing persistence and replication.

4.2.1 Persistence
An individual grain declares the parts of its state that are

persistent (“hard”) and transient (“soft”) through optional

annotations. It can also declare methods to be called on grain

activation to initialize transient state and on deactivation.

Persistent property types must support serialization, including

data, grain references, and resolved promises. Transient state can

be stored in fields, or in properties marked with the Transient

attribute, and can be of any type. An activation will only be

activated or deactivated outside of a transaction, so its per-request

state is typically transient.

At the level of a single grain, these declarations provide a

simple model for persistence. The Orleans runtime activates a

grain with its persistent properties initialized, either from grain

creation parameters or from the latest version in the persistent

storage. The grain’s Activate() method is then called to allow it

to initialize its transient state. The runtime then invokes methods

to handle requests sent to the activation, which can operate freely

upon their entire state in memory. To commit an activation, the

runtime waits for the completion of a request, calls the grain’s

Deactivate() method, and writes the grain’s state property

values to persistent storage. The frequency of committing values

to storage depends on the resource management policy, trading

efficiency of combining multiple writes against the risk of

replaying more transactions in the event of failure. Furthermore,

the runtime coordinates commit operations across multiple grains

to ensure that only consistent state is committed (Section 4.3.4).

4.2.2 Migration and Replication
Given a persistence mechanism, it is straightforward to

migrate a grain from one server to another. Once an activation

finishes processing its current request, the runtime calls the

Deactivate() method, serializes persistent state, and destroys the

old activation. The runtime then creates a new activation at the

target server, initializes its state by deserializing the data, and calls

the Activate() method. Orleans also updates its distributed

directory by unregistering the old activation and registering the

new one (with a new ID – activation IDs are never reused).

7

Requests on the destroyed activation will trigger a new directory

lookup and message redirection to the new activation.

Replicating a grain is a similar process, except that the old

activation is not destroyed. If existing activations are busy, the

runtime can create the replicated activation directly from

persistent storage instead of cloning another activation.

4.3 Transactions
Multiple activations of a grain, while beneficial for

performance and fault-tolerance, raises the difficult problem of

distributed consistency. Orleans’s solution is a lightweight,

optimistic transaction model. As a transaction executes, it

communicates with activations, which join the transaction and

remain joined until the transaction commits or aborts. At most one

activation of a given grain may join a transaction, to ensure that

computations in the transaction see a consistent view of the grain.

An activation may join at most one write transaction, or any

number of read-only transactions, ensuring that the transactions

are isolated from other one another. When a request from a client

is completely processed, a response is optimistically returned and

the joined activations are released. An activation may join a series

of transactions before its state is committed to persistent storage.

However, if a subsequent transaction modifies one of these

activations before writing its state to persistent storage, and the

transaction aborts, then the earlier transactions also must abort and

re-execute since their state was not persisted. Re-execution is non-

deterministic and may produce a different result. If this possibility

is semantically significant, a client may opt to wait until a

transaction fully commits before consuming its response. In most

cases, however, the earlier and re-executed transactions are

semantically equivalent, and the client need not wait until the

service’s state is fully committed.

4.3.1 Isolation
To ensure transaction isolation, Orleans ensures a one-to-

one mapping between activations of a grain and transactions. Each

server records the transaction to which each activation on the

server is joined. Every message between activations contains a

transaction header: a transaction identifier and list of activations

already joined to the transaction. The list records incremental

updates, reducing the header to the transaction identifier in the

common case that both activations are on the same server.

If a message arrives for an activation already joined to a

different transaction, it will be either enqueued until the activation

is released from its current transaction or redirected to a different

activation (perhaps newly created). The resource management

policy makes a choice among these alternatives, trading the

expense of redirecting a message or creating a new activation

against the wait for completion of the active transaction.

Furthermore, the Orleans runtime takes advantage of the

activation/transaction mapping when sending messages. If the

target grain already has an activation joined to the active

transaction, the message is sent directly to that activation.

Moreover, the sending server can avoid activations of the target

grain that are known to belong to other transactions.

4.3.2 Consistency
Joining activations to transactions also ensures a consistent

view of state since there is only a single instance of an activation

in a transaction. Maintaining this property is easy for applications

that execute sequentially across a series of grains. Each request or

response message contains the entire set of activations joined to

the transaction so far. This mapping ensures that subsequent

messages to the grain go to the same activation. When the

application issues concurrent requests, an additional mechanism,

described below, is required.

In Figure 3, activation 1a (activation “a” of grain “1”) sends

concurrent messages to 2a and 4a, both of which concurrently

send messages to grain 3. The Orleans runtime tries to ensure that

2a and 4a send to the same grain activation, without using any

distributed coordination mechanism which would be expensive

and non-scalable. Both grains use the hash of the transaction

identifier to index the list of available activations. If this heuristic

fails and they choose different activations, say 3a and 3b, the

inconsistency will be discovered when the responses arrive at 1a.

The transaction will be aborted and replayed, before any code can

observe inconsistencies between the state of 3a and 3b. The replay

is notified of the cause of the failure, and the runtime selects one

activation of grain 3 to join to the transaction before restarting

grain 1. This precludes encountering the same inconsistency by

ensuring that grains 2 and 4 will choose the same activation of

grain 3.

Figure 3. Consistency failure if the transaction sees two

different activations (3a and 3b) of a grain.

4.3.3 Atomicity
To preserve atomicity, Orleans must ensure that the updates

that a transaction made to its set of grains are either committed

together or discarded. The runtime keeps the

transaction/activation mapping information until transactions are

committed (Section 4.3.4). Before joining an activation to a

transaction, it verifies that this action preserves atomicity: for all

grains that the active transaction shares with a prior, uncommitted

transaction, it also shares the same activations.

Figure 4. Potential atomicity violation. Transaction Tz cannot

use either grain 3a or 3b without violating the consistency of

Tx or Ty, respectively.

For example in Figure 4, completed transaction Tx has

modified activations 1a, 2a, and 3a, and completed transaction Ty

has modified 4a, 3b, and 5a. Active transaction Tz has modified

activations 6a and 2a and sends a request to grain 5. If this

Grain 1 1a Grain 4 4a Grain 6 6a

Grain 2 2a Grain 5 5aGrain 3 3a 3b

Transaction Tx Transaction Ty Transaction Tz

Grain 1 1a

Grain 2 2a Grain 4 4a

Grain 3 3a 3b

8

message arrives at activation 5a, the runtime has enough

information to detect a potential – but not yet actual – violation of

atomicity if Tz were to send a message to grain 3. It might choose

to redirect the message to another activation of grain 5. Or, if none

is available and it is too expensive to create a new one, it may go

ahead and join activation 5a to Tz. So far, atomicity is preserved.

However, if Tz does send a message to grain 3, the runtime cannot

choose either activation 3a or 3b without violating atomicity (of

Ty or Tx, respectively). The runtime will detect this before the

message to grain 3 can be sent and abort Tz, ensuring that no

executing code observes an atomicity violation. Transactions Tx

and Ty will also need to abort and replay because their updates to

2a and 5a will be lost when Tz aborts.

The set of transactions and activations linked by atomicity

constraints can become large, and traversing the history graph can

be time consuming. Orleans uses a more efficient data structure

that summarizes dependency relationships and potential atomicity

conflicts and merges dependency sets when an activation is added

to a transaction.

4.3.4 Durability
Orleans needs to ensure that committed transactions are

written atomically to persistent storage. The transaction

persistence mechanism also follows an optimistic path,

asynchronously writing modified results to storage without

delaying an executing transaction. When a transaction completes,

the server that handled the initial request sends a completion

notification to the system store, listing all activations involved in

the transaction. Committing a transaction has three phases:

1. The store collects serialized representations of the persistent

state of each activation in the transaction.

2. If more than one version of a grain is to be committed, either

from a more recent version already committed to the store, or

from multiple transactions, their state must be reconciled to

produce a single version before writing it to store.

3. The grain states are written to persistent storage using two-

phase commit to ensure that all updates become visible

simultaneously.

This process runs without blocking executing transactions

and so can step back to an earlier phase as additional notifications

arrive. The system store is currently a single point of failure and a

scalability bottleneck. In the future, a distributed persistence

mechanism will remove these limitations.

4.3.5 Reconciliation
If the persistent state in multiple activations of a grain is

concurrently modified by different transactions, the changes must

be reconciled into a single, consistent state before the transactions

can commit. To handle common cases, the Orleans runtime

provides synchronizable data structures that track fine-grained

updates and reconcile conflicting changes. The reconcilable data

structures include records, lists, and dictionaries. If an application

requires a different mechanism or more complex data structures, a

grain can provide a custom synchronization method to reconcile

changes from two activations.

Reconciliation occurs as application state is written to

persistent storage, as described above. The reconciliation model is

a simple star topology, in which each modified activation is

successively reconciled with the latest persistent version, and the

combined version is sent back to individual servers to update each

modified activation. Figure 5 illustrates the reconciliation process:

1. Two activations 1a and 1b of grain 1 are initially created

from persistent storage at time t0 with identical states holding

the set {A, B, C}.

2. They participate in separate transactions. Activation 1a adds

{D, E} to its set, while 1b removes B and adds D. Each

change has a timestamp that can be used to resolve

conflicting changes.

3. When these transactions complete, the activations send their

deltas for reconciliation. The store reconciles them into a

single consistent set of changes, writes the reconciled result

to persistent storage, and sends the resulting changes back to

the activations.

4. The store also includes a new baseline timestamp t4, so the

activations can consolidate previous changes in their baseline

set and discard individual timestamps.

5. Applications
We will describe two applications built on Orleans to

illustrate the flexibility of its architecture and programming

model.

5.1 Instant Messaging
Instant messaging (IM) is built on small grains. Each user

has an account grain, holding the user’s name and email address,

as well as an address book with a set of contacts. The account

grain exposes a public interface IContact with information about

user’s presence and an owner-only IAccount interface with

administrative operations to change a password, add/remove

contacts, change presence status (online/offline), as well as an

operation to start a conversation. Each conversation is managed

by a conversation grain. Once created, a conversation grain allows

its participants to add or remove participants and post and receive

messages. A system administration grain exposes an interface to

1b1a

1b1a t0 A B C t0 A B C

t1 D t2 E t1 B t3 D

t0 A B C t0 A B C

Store

create

Store

1a

t1 D t2 E

1b

t1 B t3 D

1a 1b

t4 B ED t4 B ED

1b1a t4 A C D E t4 A C D E

(1)

(2)

(3)

(4)

Figure 5. Reconciliation of conflicting changes in two

grains.

9

create user accounts and authenticate a user (omitted, due to

space). Observers enable clients to receive asynchronous

notification about friends’ presence changes, invitations to join a

conversation, or newly posted messages. Figure 6 contains partial

interfaces for IM.

IM naturally partitions by user and conversation into many

independent units of functionality and state, which map well to

the grain model and help the system scale. The code does not

depend on a large data structure, such as a table of all user

accounts, which would be complex and expensive to partition and

replicate as a single entity. Instead, the programmer provides the

application logic, and Orleans replicates account and user grains,

provides a distributed directory to find these grains, and manages

persistence and dynamically balances load by migrating grains.

5.2 Large Graph Processing Engine
A very different kind of Orleans application is our library

for processing large distributed graphs. Graphs are central to

social networking and other web applications. Large graphs pose

many challenges, as they do not fit a single computer and

distributed algorithms are communications intensive [14]. Our

graph library provides support for partitioning and distributing

graph data (nodes, edges, and metadata) across machines and for

querying graphs.

Orleans offers two options for implementing graphs:

encapsulate each node in a separate grain or have a set of nodes

(called a partition) represented by a grain. We picked the latter

approach to reduce memory overheads and increase the size of the

graph we can handle, and to reduce communication cost in this

communication-intensive application. Every server hosts a small

number of partition grains, and every partition grain contains a

large number of nodes (104 – 106). A graph algorithm running in a

partition directly accesses nodes in its partition. Accesses across

partitions involve messages, which become more expensive when

they cross machine boundaries. The graph algorithms are aware of

this distinction and batch message between servers to reduce

communication overhead.

Graphs demonstrate the flexibility of Orleans model: it

imposes no restrictions on the size of a grain. Grains can hold

potentially large amounts of state, while still offering isolation,

asynchronous messaging, persistence, and transactional updates.

The graph library is built upon an abstract graph execution

framework that offers functionality similar to Pregel [14], and

similar abstract frameworks could be built in Orleans to support

high-level patterns such as Map/Reduce [13], and Dryad [15].

6. Performance Measurements
We analyze the performance of Orleans through a set of

benchmarks. The measurements are averages over 1000 runs on a

cluster of Intel Core 2 Duo CPUs at 3.16GHz, 4GB of RAM, and

64 bit Windows 7.

Figure 7 depicts the round trip latency of a grain method

invocation, for garins locatd on the same and different servers.

The method invocation had one paramter, a byte buffer of varying

size. The latency for the remote case is around 0.7 millisecond

and half that for the local case. For large messages the latency

increases proportionaly to the message size, due to the cost of

serialization.

Figure 7. Local and remote invocation latency.

We also measured the overhead of promises. The time to

create a promise and join its result in continuation is between 50

to 100 microseconds. This is small compared to the message

latency.

A latency to create a new grain is approximately 5

milliseconds, which includes creation of a first activation for this

grain and registering it in a distributed directory.

Figure 8. Throughput of multiple activations.

Figure 8 shows the throughput of requests to a grain as the

runtime automatically increases the number of activations to

distribute the load. Each request is either read or write, performing

1 ms or 5 ms of work, respectively. The write transactions impose

public interface IContact : IGrain {
 [Queryable][Lookup][InitOnly]
 AsyncValue<string> Username { get; }
 AsyncValue<Presence> Presence { get; }
 AsyncCompletion AddConversation(IConversation c);
 AsyncCompletion RemoveConversation(IConversation c);
}
public interface IAccount : IGrain, IContact {
 AsyncValue<List<IContact>> AddressBook { get; }
 AsyncCompletion AddContact(IContact contact);
 AsyncCompletion RemoveContact(IContact contact);
 AsyncCompletion SetPresence(Presence presence);
 AsyncValue<bool> ValidatePassword(string password);
 //methods to add and remove conversation observers
}
public interface IConversation : IGrain {
 AsyncCompletion AddParticipant(IContact contact);
 AsyncCompletion RemoveParticipant(IContact contact);
 AsyncValue<List<IContact>> Participants { get; }
 AsyncCompletion AddMessage(InstantMessage message);
}

Figure 6. Instant messenger grain interfaces.

10

additional system load for the commit and reconciliation

protocols. While the increase in throughput is sub-linear (a

bottleneck we are investigating), this illustrates a main feature of

Orleans. Significant increases in load can be handled transparently

by adding more activations, without application intervention.

7. Related Work
Orleans borrows many concepts from prior systems.

However, we believe that combination of design choices is unique

and tailored to provide a comprehensive solution to the new

domain of scalable client + cloud applications.

7.1 Actor Models
Actors are a well-known model for concurrent programming

that form the basis for many programming languages [16]

including: Erlang [17], Ptolemy [18], and E [18].

Orleans differs from classic actors in Orleans’s mutability of

grain state, its asynchronous communication and promises, its

message ordering guarantees, its support for replication, and its

transactional model and consistency guarantees.

Orleans differs fundamentally from Erlang in its imperative

language semantics and in its rich, distributed runtime support.

Erlang, unlike Orleans, does not provide data migration. Erlang

messaging is exposed via synchronous RPC or direct messaging,

while Orleans provides remote method invocation with higher-

level primitives (promises). Erlang also supports transactions and

failure replication, through libraries, though with less-scalable

semantics than Orleans. Erlang also differs from Orleans in its

distributed error handling mechanism, which requires a

programmer to implement guard processes to handle system

failures, while in Orleans system failures are handled

automatically by the transaction system.

The Ptolemy project studies modeling, simulation, and

design of concurrent, real-time, embedded systems, with the focus

on assembly of concurrent components. Ptolemy does not provide

a distributed runtime.

E is an object-oriented programming language for secure

distributed computing. E has a concurrency model similar to

Orleans, based on event loops and promises, but its unit of

isolation and distribution is much larger: a “vat” containing many

objects that can share state. E also lacks Orleans’s distributed

runtime support for persistence, replication, migration, and

transactions.

7.2 Distributed Object Models
Enterprise Java Beans (EJB), Microsoft’s Component

Object Model (COM), and the Common Object Request Broker

Architecture (CORBA) are all object-oriented frameworks for

building three-tiered applications. While they differ in detail, all

are based on distributed objects, (primarily) synchronous RPCs,

location transparency, declarative transaction processing, and

integrated security. They share Orleans’s goals of offering a

higher-level collection of abstractions that hide some of the

complexity of building distributed systems, but are targeted at

enterprise rather than cloud-scale applications.

Orleans differs from these in its embrace of strongly-typed

asynchronous APIs as the programming model for all application

component access. Orleans’s use of multiple activations of

individual grains executing concurrently and replicated across

multiple nodes for scalability and failure tolerance is a significant

semantic and capability difference. Its approach to consistency

and transactions also makes a different trade-off between

consistency and scale than the strict ACID semantics offered by

the other frameworks.

8. Conclusions
We have described the design and implementation of

Orleans, a software framework for cloud computing. Orleans

defines an actor-like model of isolated grains that communicate

through asynchronous messages and manage asynchronous

computations with promises. The isolated state and constrained

execution model of grains allows the Orleans runtime to persist,

migrate, replicate, and reconcile grain state without programmer

intervention. Orleans also provides lightweight, optimistic,

distributed transactions that provide predictable consistency and

failure handling for distributed operations across multiple grains.

We believe that this framework will significantly simplify the

development of complex cloud applications, by incorporating

fundamental distributed computing functionality and abstractions

into the system and by promoting the use of design patterns that

promote scalability and reliability.

9. References
1. Weiser, M., Some Computer Science Issues in Ubiquitous Computing,

in Communications of the ACM. 1993, ACM. p. 74-84.

2. Chang, F., et al., Bigtable: A Distributed Storage System for

Structured Data. ACM Transactions on Computer Systems, 2008.
26(2): p. 1-26.

3. DeCandia, G., et al., Dynamo: Amazon's Highly Available Key-value

Store, in 21st ACM SIGOPS Symposium on Operating Systems
Principles. 2007, ACM: Stevenson, WA. p. 205-220.

4. Burckhardt, S., A. Baldassin, and D. Leijen, Concurrent

Programming with Revisions and Isolation Types, in ACM
International Conference on Object Oriented Programming Systems

Languages and Applications. 2010, ACM: Reno, NV. p. 691-707.

5. Rowstron, A.I.T. and P. Druschel, Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems,

in IFIP/ACM International Conference on Distributed Systems
Platforms. 2001, Springer-Verlag: Heidelberg, Germany. p. 329-350.

6. Ramasubramanian, V. and E.G. Sirer, Beehive: O(1) Lookup

Performance for Power-Law Query Distributions in Peer-to-Peer
Overlays, in First Symposium on Networked Systems Design and

Implementation. 2004, Usenix: San Francisco, CA. p. 99-112.

7. Miller, M., Robust Composition: Towards a Unified Approach to
Access Control and Concurrency Control 2006, Johns Hopkins:

Baltimore, MD. p. 302.

8. Terry, D.B., et al., Managing Update Conflicts in Bayou, a Weakly
Connected Replicated Storage System, in 15th ACM Symposium on

Operating Systems Principles. 1995, ACM: Copper Mountain Resort,

CO. p. 173-183.
9. Atul, A., L. Barbara, and O.N. Patrick. Generalized Isolation Level

Definitions. in 16th International Conference on Data Engineering.

2000. San Diego, CA: IEEE.
10. Weimer, W. and G.C. Necula, Finding and Preventing Run-time

Error Handling Mistakes, in 19th ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and
Applications. 2004, ACM: Vancouver, BC. p. 419-431.

11. Liskov, B. and L. Shrira, Promises: Linguistic Support for Efficient

Asynchronous Procedure Calls in Distributed Systems, in ACM
SIGPLAN 1988 Conference on Programming Language Design and

Implementation. 1988, ACM: Atlanta, GA. p. 260-267.

12. Miller, M.S., E.D. Tribble, and J. Shapiro, Concurrency Among
Strangers: Programming in E as Plan Coordination, in International

Symposium on Trustworthy Global Computing, R.D. Nicola and D.

Sangiorgi, Editors. 2005, Springer: Edinburgh, UK. p. 195-229.
13. Dean, J. and S. Ghemawat, MapReduce: a Flexible Data Processing

Tool, in Communications of the ACM. 2010, ACM. p. 72-77.

11

14. Malewicz, G., et al., Pregel: A System for Large-scale Graph

Processing, in International Conference on Management of Data.
2010, ACM: Indianapolis, IN. p. 135-146.

15. Isard, M., et al., Dryad: Distributed Data-parallel Programs from

Sequential Building Blocks, in 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007. 2007, ACM: Lisbon,

Portugal. p. 59-72.

16. Karmani, R.K., A. Shali, and G. Agha, Actor Frameworks for the
JVM Platform: A Comparative Analysis in 7th International

Conference on the Principles and Practice of Programming in Java.

2009, ACM: Calgary, Candada. p. 11-20.
17. Armstrong, J., Erlang. Comm. of the ACM, 2010. 53(9): p. 68-75.

18. Eker, J., et al., Taming Heterogeneity - the Ptolemy Approach.

Proceedings of the IEEE, 2003. 91(1): p. 127-144.

