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Abstract

In recent years, there has been an explosion of inter-
est in computing using clusters of commodity, shared
nothing computers. In this paper, we describe the
design of TidyFS, a simple and small distributed
file system that provides the abstractions necessary
for data parallel computations on clusters. Similar
to other large-scale distributed file systems such as
the Google File System (GFS) and the Hadoop Dis-
tributed File System (HDF'S), the prototypical work-
load for this file system is high-throughput, write-
once, sequential I/O. The primary user visible unit
of storage in this system is the stream, which is a
sequence of partitions distributed across the local
storage of machines in the cluster. The mapping of
streams to sequences of partitions is performed by the
TidyFS metadata server, which also tracks the loca-
tions of each of the partition replicas in the system,
the state of each storage machine in the cluster, and
per-stream and per-partition attributes. The meta-
data server is implemented as a state machine and
replicated for scalability and fault tolerance. In addi-
tion to the metadata server, the system is comprised
of a graphical user interface which enables users and
administrators to view the state of the system and
a small service installed on each cluster machine re-
sponsible for replication, validation, and garbage col-
lection. Clients read and write partitions directly to
get the best possible I/O performance.

1 Introduction

For more than the last decade, there has been sub-
stantial interest in building compute clusters out of
commodity components. Programs to utilize these
clusters are often written using a data-parallel frame-
work such as map-reduce [8], Dryad [12], or one of the
higher level abstractions layered on top of them such
as PIG [15], HIVE [1], or DryadLINQ [17]. Programs
written using these data-parallel frameworks typi-
cally have I/O access patterns that differ from tra-
ditional High Performance Computing (HPC) frame-
works such as MPI [2]. As an example of the work-
load for these file systems, consider the load gener-
ated when running TeraSort [3] on a cluster of 240
compute nodes, each containing 4 SATA hard drives.
When reading the input stream, each of the compute
nodes will read from its local disks at 240 MB/s for a
aggregate read rate of 56 GB/s. And once the input
has been distributed and sorted, those 240 machines
each writing at 160 MB/s will have an aggregate write
rate of 37 GB/s.

The I/O subsystem in River [4], the Google File
System (GFS) [9], and the Hadoop Distributed File
System (HDFS) [6, 16] are distributed file systems
that are designed for use in these commodity com-
puting clusters with a prototypical workload consist-
ing of write-once, high-throughput, sequential I1/0.
These systems typically store the metadata separate
from the actual data. The storage component of the
River system grouped single disk collections into par-



allel collections which could be mirrored onto multi-
ple machines. The metadata describing these group-
ings is stored in NFS, and access to this metadata is
serialized though a single instance of the application.
Both GFS and HDFS store the file system metadata
in a single node and the data in machines that are
part of the cluster.

In this paper, we present the design of TidyF'S,
which is a simple distributed file system designed
specifically for these prototypical workloads. Clients
of this file system primarily operate on streams of
data, typically by having multiple computations each
independently process partitions of the stream data
in parallel.

2 System Design

TidyFS stores data in streams, which are defined as
a sequence of partitions. Partitions are stored as files
on storage machines in the cluster. The sequence of
partitions can be modified, and partitions can be re-
moved from or added to a stream as necessary. These
operations are just operations on metadata, and do
not require modification of the underlying data. Par-
titions can be members of multiple streams. This,
combined with the ability to modify the partition se-
quence for a stream, lends itself nicely to performing
computations on sliding windows of data, e.g. the
last seven days of log files.

A client may access data contained in a TidyFS
stream by fetching the sequence of partition ids that
comprise a particular stream, and then requesting a
path to directly access the data associated with a
particular partition id. In the case of writing the
partition data, when writing is completed and the
client is prepared to declare the partition immutable,
the client will close the file and provide the size and
fingerprint to the system. This design choice requires
a trusted writer, since the writer provides checksum.
However, since corrupt data will be discarded by the
system, it is in the writers interest to provide a valid
checksum.

Allowing applications to directly access the par-
tition data has several advantages. First, it allows
applications to perform I/O using whatever access

pattern (i.e. sequential or random) and data com-
pression technique that best fit their needs, removing
TidyFS components from involvement in the actual
reading or writing of data from disk. Furthermore,
it provides applications the flexibility to operate on
files that exist in a traditional file system. Of course,
there are disadvantages to providing direct access to
partitions in the system as well, such as a lack of
portability gained via a level of indirection, and the
ability of the system to split and merge partitions as
necessary to obtain roughly uniform partition sizes.
For our specific design point of a distributed file sys-
tem optimized for data-parallel distributed comput-
ing, streams that are the result of a Dryad LINQ com-
putation also store metadata describing the schema
of the data in the stream and providing the parti-
tioning and compression information. Given this in-
formation, the system is able to split and merge parti-
tions belonging to these streams as well as change the
type of compression used by the stream. Partitions
can be of multiple types; we have currently imple-
mented partition types for NTFS files as well as SQL
database files. Among other partition types, it would
also be possible to have a partition be an immutable
directory of files, where the directory is replicated as
a unit, yet the files exist as individual entities in the
file system so that they can be processed using legacy
libraries without the entire contents of the directory
being read by the application.

Our general approach is to design the set of systems
(Dryad [12], DryadLINQ [17], and TidyFS) so that
the end to end system is fault tolerant. As a result,
each layered component does not need each service
to be fault tolerant if fault tolerance can be achieved
via a system at another level. To that end, each indi-
vidual write to a TidyFS stream does not need to be
immediately replicated to several machines for fault
tolerance, as long as it is possible to ensure that each
partition is replicated once it has been completely
written. In the case of a TidyF'S stream that is being
written by a Dryad job, the fault tolerance is pro-
vided by the Dryad job manager. Dryad jobs either
fail or complete successfully. In the case of job fail-
ure, no output stream is generated. In the case of
successful completion, each vertex successfully writes
its outputs generating a complete stream. This sim-
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Figure 1: TidyFS System Architecture

plifies the TidyFS design: once the metadata server
is informed that the partition is complete it sched-
ules replication of this partition for fault tolerance.
In order to ensure that data is safe against machine
failure once the stream is written, it is possible for the
Dryad job manager to wait until there are at least k
replicas of each partition in an output stream before
exiting.

The TidyFS storage system is composed of three
components: a metadata server, a node service that
runs on each storage machine in the system to per-
form required housekeeping tasks, and the TidyFS
Explorer, a graphical user interface which allows
users to view the state of the system. Figure 1
presents a diagram of the system architecture, along
with a sample cluster configuration and stream.

2.1 Metadata server

The metadata server is the primary component in
the system and is responsible for storing the mapping
of stream names to sequences of partitions, the per-
stream replication factor, the location of each parti-
tion replica, and the state of each storage machine
in the system, among other information. Due to
its central role, the reliability of the overall system
is closely coupled to the reliability of the metadata
server. As a result, we have implemented the meta-
data server as a replicated component. We leverage
the Autopilot Replicated State Library [11] to repli-
cate the metadata and operations on that metadata
using the Paxos [13] algorithm.  Similar to GFS,

there is no actual directory tree maintained as part
of the file system. The names of the streams in the
system, which are URIs, create an implied directory
tree based on the arcs in their names. When a stream
is created in the system, any missing directory entries
are created. Once the last stream in a directory is re-
moved, that directory is automatically removed.

The metadata server tracks the state of all of
the storage machines currently in the system. For
each machine, the metadata server maintains the ma-
chine’s state, the amount of free storage space avail-
able on that machine, the list of partitions stored on
that machine, as well as the list of partitions pend-
ing replication to that machine. Each machine can
be in one of four states: ReadWrite, the common
state, ReadOnly, Distress, or Unavailable. Ma-
chines transition between states as the result of an
administrator’s command. When a machine tran-
sitions between these states, action is taken on ei-
ther the list of pending replicas, the list of parti-
tions stored on that machine, or both. If a machine
transitions from ReadWrite to ReadOnly, the pend-
ing replicas are reassigned to other machines that are
in the ReadWrite state. If a machine transitions to
the Distress state, then all partitions, including any
which are pending, are reassigned to other machines
that are in the ReadWrite state. The Unavailable
state is similar to the Distress state, however in
the Distress state, partitions may be read from the
distressed machine while creating additional replicas,
while in the Unavailable state they cannot.

The metadata server also maintains per-stream



and per-partition attributes, some of which are dis-
tinguished attributes which are present for each
stream or partition. For streams, the distinguished
values are creation time, last use time, content fin-
gerprint, replication factor, lease time, and length.
For partitions, the distinguished values are size and
fingerprint. In addition to these lists, clients of the
file system are able to specify per-stream and per-
partition attributes as key-value pairs, where the key
is a string and the value is a string, integer, or blob.

The fingerprints used for partitions and streams
are 64-bit Rabin fingerprints [7], which have the nice
property that the stream fingerprint can be computed
using the partition fingerprints and lengths, without
needing to consult the actual data. While the par-
tition fingerprints are used by the system to ensure
data integrity, the stream fingerprints are used by
clients of the file system, such as the Nectar query
caching system [10], which uses both the stream and
partition fingerprints.

Stream leases are used to set a future expiration
date for a stream. If the stream’s expiration date is
reached, then the stream is deleted and any partitions
that are no longer referenced by another stream are
removed from the system. The Dryad job manager
utilizes leases to cleanup any partial output that re-
mains after job failure. When users delete streams
via the TidyFS Explorer, the stream is renamed to
add “Recycle Bin” as the first arc in the pathname,
and a lease is set for 6 hours, in order to allow users
to recover streams they have accidentally deleted.

Clients of the file system, including the other
TidyFS components, communicate with the meta-
data server via a client library. This client library
is responsible for determining which metadata server
replica to contact and will failover in case of a server
fault.

2.2 Node service

In any distributed file system, there are a set of main-
tenance tasks that must be carried out on a rou-
tine basis. We implemented the routine maintenance
tasks as a Windows service that runs continuously
on each storage machine in the cluster. Each of the
maintenance tasks is implemented as a function that

is invoked at configurable time intervals. The sim-
plest of these tasks is the periodic reporting of the
amount of free space on the storage machine’s disk
drives. The other tasks are garbage collection, parti-
tion replication, and partition validation, which are
described in the following paragraphs.

Due to the separation of metadata and data in
TidyFS and similar systems, there are many oper-
ations that are initially carried out on the metadata
server that need to be eventually carried out on the
storage machines in the system. The deletion of
streams, via either user action or lease expiration,
is one such operation. Once all of the streams that
reference a particular partition are deleted, that par-
tition can be deleted on each storage machine that
stores a replica.

In order to determine what partitions should be
stored on the local storage machine, each machine
service periodically contacts the metadata service to
get the list of partitions that should be stored on the
local storage machine. There are two purposes to this
task. The first purpose is to delete any partitions that
should no longer be stored on this machine, either
because all streams referencing those partitions have
been deleted or the partitions have been moved to
other machines as part of a load balancing operation,
as described later in this paper. The second purpose
is to ensure that the storage machine actually has all
of the partitions that the metadata server believes
are stored on that machine.

Once this list is obtained, the node service com-
pares it against the partition data files stored in its
data directory. For any partitions that are in the list
obtained from the metadata server where the rele-
vant files are not in the local data directory, which
is an error condition, the system attempts to recover
by calling RemovePartitionReplica to remove this
storage machine from the list of replicas for this par-
tition. This will trigger creation of additional replicas
of this partition, if necessary. In the more common
case where a partition is not in the list of partitions
that should be stored on this machine, but a file is
contained in the local data directory, that partition
id is appended to a list of candidates for deletion.
Once the entire list is processed, the list of deletion
candidates is sent to the metadata server, which vets



the list and returns a list of partition ids approved
for deletion. The node service then deletes the files
corresponding to the vetted list of partition ids.

The reason for this two phase deletion protocol is
to prevent partitions that are in the process of being
written from being deleted. The metadata server is
aware of the partition ids that have been allocated,
but have not been completely written. As a result,
these pending partition ids will not be included in
the list of partition ids stored on any storage ma-
chine. The complete function pseudocode is listed in
Algorithm 1.

Algorithm 1 Garbage collection function

partitionlds = ListPartitionsAtNode();
filenames = ListFilesInDataDir();
List pdList;
for all file in filenames do
id = GetPartitionldFromFileName(file);
if !partitionids.Remove(id) then
pdList.Add(id);
end if
end for
for all partitionld in partitionids do
RemovePartitionReplica(partitionId);
end for
partIdsToDelete = VetPendingDeletionList(pdList);
for all partitionld in partldsToDelete do
DeletePartition(partitionld);
end for

There are a substantial fraction of partitions that
are not frequently read. As demonstrated in [5], la-
tent sector errors are a concern for the designers of
any reliable data storage system. These errors are un-
detected errors where the data in a disk sector gets
corrupted and will be unable to be read. If this un-
detected error were to happen in conjunction with
a machine or multiple machine failure, the system
would experience data loss for that partition. As a
result, the node service periodically reads each parti-
tion replica and validates that its fingerprint matches
the stored fingerprint at the metadata server.

The metadata server is responsible for ensuring
that there are sufficient replicas of each partition, as
calculated from the maximum replication factor of all
streams the partition belongs to. Once the replicas

have been assigned to particular machines, the node
service is responsible for actually replicating the par-
titions. To do so the node service contacts the meta-
data server requesting the list of partition identifiers
that should be replicated to this machine. For each
partition identifier in this list, the node service will
contact the metadata server to obtain the paths to
read from and write to for replicating the partition.
Once the partition has been replicated, the finger-
print of the partition will be validated to ensure it
was correctly replicated, and the node service will
inform the metadata server that it has successfully
replicated the partition.

2.3 TidyFS Explorer

The two TidyFS components that have been previ-
ously described primarily deal with the correct op-
eration of the system. The final component is the
graphical user interface for the distributed file sys-
tem, named the TidyFS Explorer. It is the primary
mechanism for users and administrators to interact
with the system. Like all other TidyFS clients, the
TidyFS Explorer communicates with the metadata
server via the client library. For users, TidyFS Ex-
plorer provides a visualization of the directory hi-
erarchy implied by the streams in the system. In
addition to the directory hierarchy, the TidyFS Ex-
plorer exposes the sequence of partitions that com-
prise a stream, along with relevant information about
those partitions. Users can use the GUI to delete
streams, rename streams, manipulate the sequence
of partitions in a stream, as well as copy partitions
between streams. Cluster administrators can use the
TidyFS Explorer to monitor the state of machines
in the system, including determining what machines
are healthy, what replications are pending, and how
much storage space is available. Administrators can
also manually change the state of machines in the
system and interact with the node service.

2.4 Interactions with Dryad

When a Dryad job’s input is a TidyFS stream, the
Dryad job manager first contacts the TidyFS meta-
data server to determine the partition id, size, and



replica location for each partition in the input stream.
The job manager uses this information to set the lo-
cation affinities for each vertex and then sets the in-
put file URI for the vertex to identify the TidyFS
partition that should be read. When each vertex
starts, it contacts the TidyFS metadata server and
requests a read path for the given partition, provid-
ing the location of the running vertex as a hint. The
metadata server uses its knowledge of the cluster net-
work topology to provide the path to the closest par-
tition replica. The metadata server prioritizes local
replicas, then replicas stored on a machine within the
same rack, and finally replicas stored on a machine
in another rack. Once the vertex receives the read
path for the partition, which identifies the location
of the data file for that partition replica, the vertex
proceeds using the appropriate reader for that par-
tition type, as indicated by the protocol in the read
path URI.

When a Dryad job’s output is a TidyF'S stream, the
job manager contacts the TidyFS metadata server
to create a temporary output stream, requesting the
number of partition ids to be the number of output
vertices in the final stage of the Dryad computation.
This temporary stream has a short lease set which
will lead to the deletion of the stream if the job does
not complete. These partition ids are assigned to
vertices as they are scheduled, and the job manager
maintains a map of vertex id to partition id. When
the initial pool of partition ids is exhausted, either
due to vertex failures or duplicate scheduling, the job
manager requests additional partition ids which are
associated with the temporary output stream. When
each vertex starts, it contacts the TidyFS metadata
server and requests a write path for the given parti-
tion id. In most cases, the returned path is on the
local machine. However, if the local machine is not
in the ReadWrite state, then the initial partition will
be written to another machine chosen randomly from
the set of machines in the ReadWrite state. Once the
vertex has finished writing that partition, the vertex
supplies the metadata server with the partition’s id,
size, fingerprint, and location of the initial replica, at
which point the metadata server will schedule addi-
tional replicas. Once all vertices in the output stage
have completed successfully, the job manager creates

1000000

100000

10000

1000

Count

100 *

10

* * o
=5 .
am——ee ¢ o *

1+
0 20000

T - +
40000 60000 80000
Partition Size in MegaBytes

T |
100000 120000

Figure 2: Histogram of partition sizes (in MB)

the final output stream and adds the sequence of par-
tition ids from the successful vertices, at which point
the temporary stream is deleted.

2.5 Replica Placement

When choosing where to place replicas for each par-
tition, the system attempts to optimize two separate
criteria. First, it is desirable for the replicas of the
partitions in a particular stream to be spread across
the available machines as widely as possible, which
allows many different machines to perform local disk
reads when processing that stream. Second, storage
space used should be roughly balanced across ma-
chines. Figure 2 shows a histogram of partition sizes
in a cluster running TidyFS. There are 215,575 par-
titions that are more than 128 MB in size, which is
16% of the partitions and 86% of the storage used in
this cluster. Due to this non-uniform distribution of
partition sizes, assigning partition to replicas is not
as simple as assigning roughly equal numbers of par-
titions to each machine.

The location of the data for a partition is deter-
mined as the result of a call to GetWritePath, where
the client provides both the partition identifier and
the name of the machine that the client is running
on. If that machine is configured as a TidyFS storage
machine, and is in the ReadWrite state, a local path-



name will be returned to the client. Once the client
has completed writing the partition, replicas of the
partitions will be scheduled by the metadata server
as described previously. We have implemented the
policy for replica assignment in two different ways.
Initially, we implemented a policy that would assign
a replica to the machine that had the most free space,
was in the ReadWrite state, and did not already con-
tain a replica of that partition. After implementing
this policy, we observed performance problems due
to many partitions from the same stream residing
on the same machine. This led us to implement a
second policy, similar to the one used in the Kinesis
project [14], which uses the partition identifier to seed
a pseudo-random number generator, which allows de-
terministic execution across all state machine repli-
cas, then chooses three machines in the ReadWrite
state using numbers drawn from this pseudo-random
number generator, and then finally chooses the ma-
chine with the most free space from this set. This pro-
vides an efficient mechanism to choose replicas based
on both stream distribution and available space.

3 Conclusions

This paper has presented the design of the TidyFS
distributed file system, which is designed explicitly
for sequential, read-mostly data parallel workloads.
Of course, while the file system is primarily designed
for use in conjunction with Dryad and DryadLINQ,
it can be used by other clients desiring a read-mostly
distributed storage system. The file system is com-
prised of three components: a replicated metadata
server, a service run on each storage machine in the
cluster, and a graphical user interface.
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