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ABSTRACT
In this paper, we are concerned with the problem of au-
tomatically extracting web data records that contain user-
generated content (UGC). In previous work, web data records
are usually assumed to be well-formed with a limited amount
of UGC, and thus can be extracted by testing repetitive
structure similarity. However, when a web data record in-
cludes a large portion of free-format UGC, the similarity
test between records may fail, which in turn results in lower
performance. In our work, we find that certain domain con-
straints (e.g., post-date) can be used to design better similar-
ity measures capable of circumventing the influence of UGC.
In addition, we also use anchor points provided by the do-
main constraints to improve the extraction process, which
ends in an algorithm called MiBAT (Mining data records
Based on Anchor Trees). We conduct extensive experiments
on a dataset consisting of forum thread pages which are col-
lected from 307 sites that cover 219 different forum software
packages. Our approach achieves a precision of 98.9% and
a recall of 97.3% with respect to post record extraction. On
page level, it perfectly handles 91.7% of pages without ex-
tracting any wrong posts or missing any golden posts. We
also apply our approach to comment extraction and achieve
good results as well.

Categories and Subject Descriptors
H.3.m [Information Storage and Retrieval]: Miscella-
neous - Data Extraction; Web

General Terms
Algorithms, Performance, Experimentation

Keywords
User-generated content, information extraction, structured
data
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1. INTRODUCTION
Web 2.0, web applications that encourage user participa-

tion, is a well known concept nowadays and is becoming
more and more popular. Along with its popularity, enor-
mous valuable knowledge and information, which we call
user-generated content (UGC), has been accumulated over
years and still keeps growing. Extracting this valuable web
data in an automatic and scalable manner can benefit a lot
of applications like question answering [22], blog or review
mining [10], and expert search on web communities.

Typically, web pages generated by Web 2.0 applications
contain a large amount of UGC, such as forum posts, blogs,
reviews, comments, etc. According to Wikipedia, UGC refers
to “various kinds of media content, publicly available, that
are produced by end-users”, and thus has high diversity in
both content and format. In this paper we focus on tackling
the complexity of extracting web data records containing
UGC. Hereafter, for the ease of presentation, we will use
as our primary example the application of extracting posts
from web forums (as shown in Fig. 1) although our approach
can be applied to other types of applications as well.

Figure 1: A typical web forum thread page, showing
two posts and one embedded advertisement bar

Web data extraction has been a hot research topic [4] in
recent years. Recent work mainly follows two categories
of approaches: semi-automatic and fully automatic. Semi-
automatic approaches require manually labeled data for ei-
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ther learning extraction rules [11], inducing wrappers based
on a tree-structured template [6, 8, 25, 26], or training su-
pervised statistical models on a specific domain [20, 27]. Due
to the laborious nature of labeling, such semi-automatic ap-
proaches are not scalable for web scale data extraction.

In contrast, fully automatic approaches do not require
any labeled data. Such approaches mainly study two sub-
categories of problems: (1) extracting a list of data objects
(records) from a single page and (2) learning a template
from multiple pages of the same type [2, 7]. The prob-
lem we study in this paper falls into the first sub-category.
One of the representative approaches is MDR (Mining Data
Records in Web pages) [12, 13] (including its extension work
[14, 17, 23]). On the basis of MDR we are to develop our
own approach. MDR identifies a list of records by conduct-
ing a similarity test against a pre-defined threshold for two
sub-trees in the DOM tree of a web page. Such a method
is referred to as the similarity-based approach [15], because
the underlying assumption is that data records belonging to
the same list usually have similar DOM tree structures.

Web data records containing UGC usually consist of two
parts: well-formatted structured data (e.g., author, publica-
tion date, etc.), referred to as the template part, and free-
format unstructured UGC. Due to the existence of UGC, the
values of similarity between data records may vary greatly,
which makes it less practical to set a good and robust simi-
larity threshold and thus results in failure of the similarity-
based approach. Fig. 2 shows the tree alignment for the
two posts in Fig. 1. We can see that the two records look
dissimilar due to the existence of the large portion of UGC.

Intuitively the problem can be solved if we are able to dif-
ferentiate the structured template from unstructured UGC
on DOM trees and use the template part to perform the
similarity test. However, it is not easy to make such differ-
entiation in an accurate and robust way.

Figure 2: Tree match of two posts (gray triangles
denote UGC while gray rectangles denote post-date)

Inspired by domain dependent work [20, 27], we find that
some domain dependent constraints help detect the appro-
priate part of the tree for the similarity test. For example,
for extracting posts from web forums, a good and intuitive
constraint will be the post-date (publication date of a post)
because it is a part of the structured data of posts occur-
ring in every post and also can be easily identified (Fig. 2).
Motivated by this intuition, we propose two similarity mea-
sures to solve the difficulty caused by UGC. Note that, in
addition to forums, almost all types of web data records con-
taining UGC have post-date, such as blogs, user comments
(e.g. Twitter, Flickr, YouTube, Digg) or reviews (e.g. Ama-

zon), etc. Therefore, our proposal is not restricted to forum
sites.

Domain constraints also provide strong anchor point infor-
mation for data record detection. For example, each forum
post must contain exactly one sub-tree containing post-date.
We proposed a novel data record extraction algorithm in-
spired by this intuition.

In summary, in this paper we aim to solve the problem of
extracting from a single page a list of web data records that
contain UGC in a fully automatic way. Previous work in this
topic usually focuses on data objects containing no UGC, for
example product lists [13, 23], search engine results [5, 17,
24] or DBLP literature reference records [15]. None of them
explicitly claim to take care of the UGC part. Yang et al.
[20] work on forum data extraction but in a semi-automatic
way. Our contributions are as follows:

• We formulate similarity measures and propose to in-
corporate domain constraints to help design good sim-
ilarity measures, on the basis of which an MDR-like
similarity-based approach can overcome the similarity
test issue caused by UGC (Sec. 4).

• We propose a novel mining algorithm called MiBAT
which makes use of domain constraints to acquire an-
chor point information. Compared to MDR, MiBAT
can not only extract non-consecutive data records, but
also overcomes MDR’s greedy deficiency [15] (Sec. 5).

• We develop a dataset collected from 307 forum sites
formatted in 219 different forum software packages,
on which our method achieves a satisfactory result of
98.9% in precision and 97.3% in recall (Sec. 6.1). To
the best of our knowledge, this is the most comprehen-
sive evaluation on forum post extraction.

2. RELATED WORK
Web data extraction has been an extensively studied re-

search topic in recent years, resulting in a rich variety of
approaches. We discuss highly relevant work here and refer
the readers to a survey [4] for further study.

Early work on automatically extracting data records from
a single page employs a set of heuristic rules to identify
data record boundaries, including [9] and OMINI [3]. Later
work is based on repetitive pattern mining from HTML tag
sequences, such as IEPAD [5] and Dela [19]. Recent work
is based on similar sub-tree mining on the DOM tree of the
web page, represented by MDR [13]. It is reported in [13]
that MDR outperforms both OMINI and IEPAD.

Due to its simplicity and effectiveness, MDR has attracted
wide research interests and been extended in many studies.
One improvement direction is incorporating visual layout
information [17, 23, 24]. However, visual features usually
require proper rendering with additional resources (such as
CSS files), thus not being always available and generally
helpful. Our work in this paper is purely based on the DOM
tree structure without incorporating any visual features. We
will show by experimental results that such a pure tag-tree
based approach achieves satisfactory performance as well.

Web data can be a relation of k-tuple (where each record
has k attributes), or a complex object with a hierarchical
structure like nested lists [4]. The former is called flat and
the latter nested. In this paper we mainly focus on flat data,
for web data records containing UGC are usually displayed
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in a flat fashion. Nested objects can also be naturally han-
dled by an extention of using a post-order traversal along
the DOM tree as shown in [14].

Though working with different motivations, Miao et al.
[15] also address similar issues of MDR, i.e. the similarity
test issue and the greedy manner (Sec. 3.1), but in a dif-
ferent way. They transform the input page from a DOM
tree into tag path occurrence patterns (called visual signals)
and identify the set of tag paths that represent a list of ob-
jects by applying spectral clustering. However, visual signals
are easily affected by not only the number of data records
present on the page but also the noisy tree nodes sharing
the same tag paths. Therefore it is hard to guarantee the
performance of the clustering on the visual signal set.

Our key idea is employing domain constraints to give
strong clues to extract data records accurately. The pro-
posed post-date is just one kind of domain constraint, which
we will explain in Sec. 4.2. Interestingly we have noticed
some related work that utilizes this idea either implicitly or
in different scenarios. Embley et al. [9] utilize an ontology
heuristic that one or more fields appear once and only once
in each record; this resembles the concept of domain con-
straints in our work. However, their motivation is to get an
estimation of the number of records on the page, which is
combined with other heuristics like identifiable “separator”
tags to discover the record boundary. In contrast, in our
work we leverage domain constraints to inspect the structure
of the template part of records, based on which the similar-
ity test can be conducted and records can be determined.
Zheng et al. [25] detect record boundary by the annotation
evidence available from labeled data, however, such labeling
evidence is not generally available in a large scale.

Zhu et al. [27] and Yang et al. [20], though employing
different statistical models, both resort to the same idea:
integrating data record extraction, attribute extraction and
labeling into one phase, so that the data record extraction
can benefit from the availability of the semantics of attribute
labeling. This can be seen as utilizing more domain con-
straints in our view. However, their work follows essen-
tially a semi-automatic approach. To fulfill the need of the
statistical model, their work requires heavy domain-specific
knowledge, including various pre-defined (attribute) labeling
spaces [27], manually-crafted rich features for identifying at-
tribute content and capturing the sophisticated relationships
between attributes and records [20]. The performance will
be highly dependent on the quality of the labeled data as well
as the richness of the feature set designed. In the case of up-
dating the attribute sets or applying such models from one
domain (e.g. forums) to other types of data (e.g. blogs and
reviews), we probably would have to re-design the feature
set and re-train the model. Therefore we refer to such work
as highly domain dependent. In our case, as will be shown
in Sec. 6, by incorporating only a small amount of general
domain constraints in a fully automatic fashion, our work is
accurate across a wide variety of domains/applications.

To summarize the relation with previous work, our ap-
proach (1) utilizes the domain constraints not incorporated
by previous fully-automatic approaches [13], which results
in a more robust performance; (2) resorts to only a bit of
general domain knowledge compared to the highly domain
dependent approach [20, 27] (that relies on rich domain spe-
cific knowledge and features), which makes it applicable to
varieties of domains/applications.

3. MDR AND OUR PROPOSAL
In this section, we introduce our proposal for extracting

web data records containing UGC by reviewing MDR [13]
and discussing its limitations.

3.1 MDR and its Limitations
To extract data records, MDR is based on two basic ob-

servations [13]:

1. A group of similar objects, which forms a data region,
is usually presented in a contiguous region and format-
ted using similar HTML tags.

2. Every record in a data region is formed by the same
number of adjacent child sub-trees under the same par-
ent node.

Based on these assumptions, MDR employs a fairly straight-
forward greedy approach to identify data records, by enu-
merating the start offset and length of every combination of
sub-trees under each parent and checking if the pair of two
adjacent sub-tree combinations is similar in HTML tags or
structure against a predefined threshold.

The main issue that we find regarding MDR is the similar-
ity measure, which judges whether two sub-trees are similar
or not. In the original work [13], MDR compares only the
tag strings of the roots of two trees. We refer to this kind
of similarity measure as Top Level (TL). We can expect
that, due to the lack of inspection on lower level structure,
this similarity measure would bring errors. In Liu’s later
work [12], they mention the use of the tree similarity by
comparing two trees, as illustrated in Fig. 3. We refer to it
as Tree Similarity (TS). However, as discussed in Sec. 1,
two data records of the same type may still be quite dissim-
ilar when they contain a large portion of UGC. Sec. 4.1 will
formally define similarity measures.

Figure 3: Alignment of two trees

Another issue, as denoted in [15], is that MDR works in a
greedy manner: any mistakes made in earlier steps, by noise,
will affect the mining procedure and thus corrupt the final
result. In addition, MDR cannot identify non-consecutive
data records.

3.2 Our Proposal
Our main proposal for enhancing MDR is to refine the

similarity test between two (data) records to alleviate the
effects caused by the irregular UGC part. More specifically,
we propose better similarity measures by focusing the cal-
culation of similarity on appropriate tree fragments, after
conducting the tree matching procedure on the two trees.
The key challenge is how to select the appropriate tree frag-
ments that the similarity calculation should focus on.

As discussed in Sec. 1, ideally the best way is to differ-
entiate the regular template part from the irregular UGC
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part and compute the similarity on the template part to
serve as the similarity measure. We refer to this measure as
Template Tree (TT). For example in Fig. 3, we treat all
sub-trees beneath Node D as UGC, and use the remaining
trees to measure similarity.

However, it is not easy to differentiate UGC from the tem-
plate due to the flexible and complicated usage of HTML
tags. We have to resort to finding an approximate tree frag-
ment that works as close to the template part as possible.
One simple way to do the approximation might be comput-
ing similarity using the top N levels of nodes only. We refer
to it as Top N Level (TnL). However, TnL may still work
poorly due to a lack of deeper structural information.

Inspired by domain dependent work [20, 27], we find that
domain constraints help detect the appropriate tree frag-
ments for the similarity test. For example, for the applica-
tion of extracting posts from web forums, a good constraint
will be the post-date (publication date of a post) because
it is a part of structured data occurring in every post and
also can be easily identified (Fig. 2). We will discuss the do-
main constraints in more detail and show how to use those
to design better similarity measures in Sec. 4.2.

Domain constraints also provide strong anchor point in-
formation for data record detection. For example, for ex-
tracting forum posts, each post (data record) must contain
exactly one sub-tree containing post-date. Inspired by this
intuition, we propose a novel algorithm called MiBAT (Min-
ing data records Based on Anchor Trees) that detects the
position and boundary of each record by utilizing such an-
chor points. The proposed MiBAT does not have the greedy
deficiency of MDR and it can also identify and extract non-
consecutive data records in a natural and uniform manner.
We will introduce more details about MiBAT in Sec. 5.

4. SIMILARITY MEASURES
In this section we will formulate similarity measures and

propose measures guided by domain constraints.

4.1 Formulation
The structure of a web page can be described by the DOM

tree [1]. A tree is an ordered pair T = (V, E) comprising a
set V of nodes together with a set E of edges. Hereafter, for
ease of presentation, we denote the node sets of two trees T1

and T2 to be V1 and V2 respectively.
Two trees can be compared and matched by finding an

optimal mapping between them, based on which the simi-
larity score can be computed. The concept of tree mapping
[18] is formally defined as follows:

Definition 1. A mapping M from tree T1 to T2 is a set of
ordered pairs of nodes (u, v), u ∈ V1, v ∈ V2, satisfying the
following conditions that for all (u1, v1), (u2, v2) ∈ M :

• u1 = u2 iff v1 = v2,

• u1 is on the left of u2 iff v1 is on the left of v2, and

• u1 is an ancestor of u2 iff v1 is an ancestor of v2.

In our work we adopt a restricted version of tree mapping
called top-down mapping [16] defined below, which has been
successfully applied to many web related applications [8]:

Definition 2. A mapping M from tree T1 to T2 is top-
down if it satisfies the condition: for all non-root nodes u ∈
V1, v ∈ V2 , if (u, v) ∈ M , then (parent(u), parent(v)) ∈ M ,
where parent(v) is the parent of v.

The tree matching shown in Fig. 3 is actually a top-down
mapping. As in [12, 23], we will use a top-down mapping
algorithm given by [21] in O(n2) time.

Generally, the similarity of two trees is computed as [12]:

Definition 3. Given the tree mapping result M , the sim-
ilarity score of two trees T1 and T2 is computed as

TreeSim(T1, T2) =
|M |

(|V1| + |V2|)/2
(1)

where |M | is the number of match pairs in M , which also
equals to the number of matched nodes in T1 or in T2.

We can see that Equ. (1) takes all tree nodes into account.
As discussed before, given two trees and the mapping result,
multiple similarity scores, referred to as similarity measures,
can be calculated based on different sub-sets of tree nodes.
We refer to sub-sets of tree nodes as tree fragments1.

Definition 4. A tree fragment selection function is map-
ping f : V → V, which maps the node set V of T to a sub-set
of nodes f(V ), i.e. f(V ) ⊆ V .

Definition 5. Given two trees T1, T2 and their mapping
result M , a similarity measure associated with a tree frag-
ment selection function f is computed as

TreeSimf (T1, T2) =
|M ∩ (f(V1) × f(V2))|
(|f(V1)| + |f(V2)|)/2

(2)

where f(V1) × f(V2) = {(u, v)|u ∈ f(V1), v ∈ f(V2)}, which
filters out irrelevant match pairs from M with respect to the
relevant tree fragments f(V1) and f(V2).

Each similarity measure is uniquely determined by the
associated tree fragment selection function f . Particularly,
the four similarity measures discussed in Sec. 3 are formally
defined as:

Top Level (TL) is by fTL(V ) = {root(T )}, where root(T )
is the root of T .

Tree Similarity (TS) is by fTS(V ) = V .

Template Tree (TT) is by fTT(V ) = template(T ), where
template(T ) is the node set of the template part of T .

Top N Level (TnL) is by fTnL(V ) = {v|v ∈ V, depth(v) ≤
n} where depth(v) is the depth of v. Note that TL is
a special case of TnL when n = 1.

4.2 Similarity Measures by Domain Constraints
We next show how to use domain constraints to derive

similarity measures. Particularly, for the ease of presenta-
tion, we will use post-date (publication date of a post) as
the example constraint although other constraints can be
utilized in a similar manner.

A good domain constraint like post-date usually has two
properties: (1) being easily identified (e.g., a method based
on regular expression matching is sufficient in our experi-
ments) and (2) always occurring as key structured data in
every data record even across different types of media (e.g.,
post-date can be found in reviews and blogs as well).

1Here a tree fragment is actually a set of nodes, instead of a
sub-tree with sets of nodes and edges. We can see that, given
the tree mapping result, a similarity score can be computed
using the sets of nodes only, as shown in Equ. (1).
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We refer to the lowest tree node (usually a leaf node) that
contains post-date as the pivot. Our intuition is that the
pivot usually belongs to the structured part of a data record,
based on which we can sketch (at least part of) the template
part for the similarity test, and thus obtain approximation
similarity measures that work close to the ideal TT.

The simplest sketch of the template will be the pivot it-
self, which corresponds to judging two sub-trees of records
as similar if they match at the pivot. We define the corre-
sponding similarity measure as follows:

Pivot Match (PM) is by fPM(V ) = {p} where p is the
pivot of T .

One may find that all ancestors of a pivot, which forms
a tree path from root to the pivot, should also belong to
the template part and thus be matched. Actually this has
already been captured in PM, due to the top-down tree map-
ping procedure in use which requires that parent nodes must
be matched before child nodes (Sec. 4.1).

Next we try to further improve this similarity measure
by enlarging the involved tree fragment. Our intuition is
that, since the pivot usually belongs to the template part of
the record, its sibling nodes are also likely to belong to the
template part. Therefore we have the following measure:

Pivot and Siblings (PS) is by fPS(V ) = {v|v ∈ V,
parent(v) = parent(p)} where p is the pivot of T ,
parent(v) is the parent of v.

Taking the two trees T1 and T2 in Fig. 3 as an example, if
F is the pivot, then fPS(V1) = {E, F, G}, fPS(V2) = {E, F}.

It is very likely that, compared to PM, PS explores a large
portion of the template, and thus has more discriminative
power. We will show in Sec. 6.1 that PS achieves signifi-
cantly better results than PM.

We conclude this section by summarizing in Fig. 4 the
generalization relationship between similarity measures dis-
cussed so far. Edge linkage means that the more general
measure (the higher) can turn into the more special one (the
lower) by enlarging the tree fragments in similarity compu-
tation. We can see that TT is the ideal similarity measure,
but in general it is hard to obtain. Compared to the ideal
measure, TS is strict while other measures are lenient.

Figure 4: Relationships between similarity measures

5. MINING BASED ON ANCHOR TREES
We have introduced two domain-constraint guided simi-

larity measures, i.e. PM and PS. In this section, we propose
a data record mining algorithm using either PM or PS.

Our intuition is very simple: each record consists of one
or several sub-trees, only one of which contains the pivot
(Sec. 4.2). We call such sub-trees that contain pivots as
anchor trees, since they provide anchor point information
about where data records are located. We simply look for
possible records around those anchor trees.

For example, in Fig. 5, having identified those anchor trees
(triangle nodes in the figure), we can find and extract each
data record composed by a set of adjacent sibling sub-trees
around every anchor tree (gray nodes in the figure).

Figure 5: Mining data records based on anchor trees
(triangle nodes represent anchor trees while every
four consecutive gray nodes shows a data record)

5.1 Algorithm Overview
In our context, we slightly extend the basic assumptions

made by MDR [13] and assume that data records have the
following assumptions:

Same parent A list of data records are formed by child
sub-trees under the same parent node.

Same length Each data record consists of the same num-
ber (maybe more than one) of adjacent child sub-trees.
We refer to this number as the record length.

Non-contiguity The data record list does not have to be
consecutive. There may be irrelevant nodes embedded
in the middle (e.g. the advertisement bar in Fig. 1).

Similarity Data records must be structurally similar with
each other to some extent. More specifically, by this
assumption any two records must satisfy: (1) all pairs
of corresponding sub-trees have the same HTML tag
at root, i.e. the two sub-tree lists have the same tag
sequence at the top level; (2) one pair of correspond-
ing sub-trees, i.e. the anchor trees, must be judged as
similar with respect to the domain-constraint guided
similarity measure in use.

The first two assumptions are due to MDR. MDR also as-
sumes that data record lists are consecutive, which is relaxed
in our work by the third assumption. The forth assumption
is due to our motivation and proposal in previous sections.

One may suspect that these assumptions may be too strong.
However, based on our observations, they indeed reasonably
capture the truth. For example consider the same length
assumption. As pointed out by MDR, this assumption only
requires that records have the same number of nodes at the
top level; it allows records to have fairly diverse structure
at lower levels. Web data records generated from a com-
mon template/schema usually share a similar structure but
may differ in specific data values or fields. Data fields are
usually shown at lower levels while the structure skeleton is
primarily determined by upper level nodes. For this reason
it is very likely that data records, though perhaps having
missing data values in deeper structure, still have the same
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number of nodes at the top level. Therefore, this assumption
not only enables the mining procedure but also captures a
wide variety of regularly structured web data objects.

Given these assumptions, our algorithm can be stated as
follows: along a traversal on the DOM tree, for each parent
node we (1) find the anchor trees and then (2) determine
the record boundary, i.e. start offset and length, and extract
data records around each anchor tree. In Fig. 5, having
identified the anchor trees (denoted by gray triangle nodes),
we know that data records start from the position -2 relative
to each anchor tree and have a length of 4.

Alg. 1 shows the overall algorithm of MiBAT. Note that
under a parent node there may be multiple sets of data ob-
jects, each corresponding to a different set of anchor trees.
MiBAT will find all sets of anchor trees (Line 4), and process
each for record extraction (Lines 5∼7). Line 6 determines
the record boundary and returns data records.

Algorithm 1 Mining based on anchor trees

MiBAT(T )

1: Ω ← {}
2: for parent tree node p in T
3: t1 . . . tn ← the child sub-tree list of p
4: Δ ← FindAnchorTrees(t1 . . . tn)
5: for anchor tree list (a1 . . . am) in Δ
6: R ← DetermineBoundary(t1 . . . tn, a1 . . . am)
7: Ω ← Ω ∪ {R} � a list of data records found
8: return Ω � return all record lists

In the next two sub-sections we will discuss how to find
anchor trees from a child sub-tree list of a parent and how
to determine record boundary, respectively.

5.2 Finding Anchor Trees
Anchor trees are a set of sibling sub-trees under the same

parent, no matter if they are consecutive or non-consecutive,
as long as they all satisfy the domain-constraint guided sim-
ilarity measure, i.e. matching at or around the pivot.

As discussed in Sec. 4.2, the text of a pivot can be easily
identified by a pivot format classifier. For example, a date-
time format classifier can be employed in the case of using
post-date as the domain constraint. However, not all the
nodes containing text in pivot format are real pivots. For
example, in forum posts, UGC may also contain strings in
date format. We refer to the nodes containing text in pivot
format as candidate pivots. From the definition we know
that candidate pivots are real pivots only if they can match
between all data records. In the example shown in Fig. 6,
given gray triangles being anchor trees, we can see that only
Node A is the real pivot.

Figure 6: Finding anchor trees (each triangle de-
notes a tree; each circle denotes a candidate pivot;
the gray node is the real pivot; gray triangles are
anchor trees)

We employ the algorithm shown in Alg. 2 to find anchor
trees and also to obtain the real pivot set on-the-fly as a

byproduct. The basic idea is very simple: once we obtain
candidate pivots, we can use them to identify new anchor
trees (Lines 9∼11); once a new anchor tree is added, we use it
to update the candidate pivot set (Line 12). The covered[i]
(i = 1 . . . n) is used to ensure that a tree belongs to at most
one anchor tree set. It also helps avoid returning redundant
sub-sets of the anchor trees. Function DomainCompare()
compares two trees using one of the domain-guided simi-
larity measures, i.e. either PM or PS. It also returns the
candidate pivots matched in the tree matching.

Algorithm 2 Finding anchor trees

FindAnchorTrees(t1 . . . tn)

1: Δ ← {}
2: covered[i] ← 0 for i = 1 . . . n
3: for i ← 1 to n
4: if covered[i] = 1 then continue
5: a1 ← i, m ← 1 � anchor tree list with counter of m
6: CPSet ← candidate pivots in ti � by classifier
7: for j ← i + 1 to n
8: if covered[j] = 1 then continue
9: matchedCP ← DomainCompare(ti, tj , CPSet)

10: if matchedCP �= ∅ � similarity test succeeds
11: m ← m + 1, am ← j � expand the list
12: CPSet ← CPSet ∩ matchedCP � update
13: covered[j] ← 1
14: if m ≥ 2 � m = 1 means ti is not an anchor tree
15: Δ ← Δ ∪ {(a1 . . . am)}
16: return Δ � return all anchor tree lists

DomainCompare(ti, tj , CPSet)

1: M ← TreeMatching(ti, tj)
2: matchedCP ← {}
3: for u in CPSet � check each in CPSet
4: if exists candidate pivot v in tj that

DomainSimilarity(M, ti, u, tj , v) > τ
� PM or PS, using u as ti’s pivot, v as tj ’s pivot

5: matchedCP ← matchedCP ∪ {u}
6: return matchedCP

Using Fig. 6 as an example, we start from Tree 1 and the
candidate pivot set (denoted as CPSet) being {A, B, C}.
Tree 2 is not an anchor tree because it cannot match Tree 1
at any candidate pivot, thus not being similar by domain
constraints. Tree 3 is identified as an anchor tree and CPSet
is updated to be {A, B}. Tree 4 is skipped since it does not
contain any candidate pivot. Lastly, Tree 5 is added to the
anchor tree list and CPSet is finally updated to be {A}. In
such a procedure we successfully find anchor trees 1, 3 and
5, and the real pivot node A.

Note that since Tree 2 also contains candidate pivots, it
may belong to another anchor tree list and thus a new set of
data records, together with other trees. Alg. 2 will continue
this procedure from Tree 2 (Lines 3∼5), but would not find
any matches and will stop.

5.3 Determining Record Boundary
When anchor trees have been identified, we are ready to

determine the boundary of records, i.e. (1) the start offset
of a record relative to each anchor tree, and (2) the record
length. Once the record boundary is obtained, it will be
straightforward to extract data records.
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In this section we first use the three cases in Fig. 7 as
an example to show the basic idea, then present the general
algorithm and its pseudo-code in Alg. 3.

Figure 7: Boundary determination (triangles denote
anchor trees; dashed boxes denote expansions)

Case 1. Two or more anchor trees are adjacent. In this
case, it is trivial to see that every single anchor tree forms a
data record, as shown in Fig. 7(a).

If it is not Case 1, then the minimal distance between two
anchor trees is greater than 1, and each data record may con-
sist of multiple adjacent sub-trees around the anchor tree,
instead of the single anchor tree only. The intuition here
is that: each data record should consist of as many consis-
tent sub-trees around each anchor tree as possible, as long
as the similarity assumption in Sec. 5.1 is satisfied. Take
Fig. 7(b) as an example. Compared to treating each data
record as consisting of a single anchor tree (the triangular
DIV) only, it would make more sense to treat a record as con-
sisting of a sub-tree triple of TR TR DIV (in dashed boxes),
because all such triples naturally form a data record set in
the figure. Therefore record boundary should result in the
largest sections of adjacent sub-trees that consistently form
a list of data records around all anchor trees.

Starting from the anchor tree, we try to expand the data
record in two directions before (1) we encounter the left
or right boundary of the child list or another anchor tree
(Line 2 and 9 in Alg. 3), or (2) the newly expanded tree
violates the similarity assumption in Sec. 5.1 (Line 4 and
10 in Alg. 3). We say that all valid expanded sub-trees
around each anchor tree form an expansion (illustrated in
dashed boxes in Fig. 7). Then we face either Case 2 or
Case 3 below.
Case 2. The length of each expansion is less than or equal
to the minimal distance between two anchor trees. Take
Fig. 7(b) as an example, where the expansion is TR TR DIV.
In such a case, no two expansion regions around different
anchor trees overlap with each other and it is natural that
the sub-trees within each expansion form a data record.
Case 3. If the length of each expansion is greater than the
minimal distance between two anchor trees, there must be
two expansion regions overlapping on a few sub-trees. Take
Fig. 7(c) as an example, where the expansion around each
anchor tree contains exactly five sub-trees of TR TR DIV TR

TR and two consecutive expansion regions overlap on two

sub-trees of TR TR. In this case, the largest record length
will be determined by the minimal distance of two anchor
trees, i.e. 3 in Fig. 7(c), and there will be ambiguity about
the start offset of the data record. For example in Fig. 7(c)
there are three possible start offsets, i.e. -2, -1 and 0 respec-
tively. In this case, we just need to find the start offset lead-
ing to the maximum similarity among all possible choices.
Note that setting a similarity threshold would not resolve
the ambiguity.

All three cases can be integrated into one procedure, as
illustrated in Alg. 3. The input is the child sub-tree list
t1 . . . tn and indices of anchor trees a1 . . . am. As discussed
above, we first obtain the minimal distance between two an-
chor trees (anchorGap, Line 1), and the expansion (Lines 2∼14).
For Case 1 the length of expansion expanLen is 1. Then the
record length k will be the smaller one between anchorGap
and expanLen (Line 16). Lines 17∼20 enumerate all possi-
ble start offsets and select the best record list that has the
largest similarity score. Given the length of k, for each start

offset of x, the record list is R(x) = R
(x)
1 . . . R

(x)
m (Line 19),

where R
(x)
i = tai+x . . . tai+x+k−1 (1 ≤ i ≤ m) is the sub-tree

list of the ith record (Line 18). The similarity score of R(x)

is defined as

Score(R(x)) =
∑

1<i≤m

∑

0≤j<k

TreeSim(tai+x+j , tai−1+x+j)

(3)
that is, the sum of the tree similarity scores of the cor-
responding sub-trees between every two consecutive data
records.

Note that for Cases 1 and 2, where the record length is
equal to the expansion length, i.e. k = expanLen, there
will be only one offset candidate x = 0 (Line 17), which is
consistent with what we have discussed above. Therefore all
three cases are integrated into Alg. 3.

5.4 Main Region Selection
Both MDR and MiBAT output every data record list iden-

tified. Every data record list is called a data region [13]. In
our scenario we have to determine which region contains the
list of concerned records, i.e. forum posts. We refer to it as
the main region.

Ideally the main region can be identified by building a
classifier using rich domain features (e.g. size or position of
the region). In our work, we instead use two simple heuris-
tics:

1. The list of posts must have post-date in each record
due to the domain constraints in the context.

2. The list of posts should occupy a majority of the page
and each record should be somewhat similar to each
other. These two factors can be combined into one
score as the sum of matched node number in the tree
matching between every two consecutive records.

Therefore, to select the main region we first filter out irrel-
evant data regions by Heuristic 1 and then select one that
has the largest score defined by Heuristic 2. We found in
experiments that this selection procedure is highly effective.

Note that Heuristic 1 is built-in by MiBAT, due to the
similarity test by domain constraints. But for MDR, we
have to explicitly apply Heuristic 1 by filtering out regions
that do not contain a matched node containing text in date-
time format.
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Algorithm 3 Determining record boundary

DetermineBoundary(t1 . . . tn, a1 . . . am)

1: anchorGap ← min1<i≤m(ai − ai−1)
2: left ← 0 � left boundary of expansion
3: for k ← 1 to min{anchorGap, a1} − 1
4: if exists 1 ≤ i, j ≤ m that DiffTag(tai−k, taj−k)
5: break
6: else
7: left ← left − 1
8: right ← 0 � right boundary of expansion
9: for k ← 1 to min{anchorGap − 1, n − am}

10: if exists 1 ≤ i, j ≤ m that DiffTag(tai+k, taj+k)
11: break
12: else
13: right ← right + 1
14: expanLen ← right − left + 1 � length of expansion
15: R∗ = [ ] � intialize the result
16: k ← min{anchorGap, expanLen} � length of record
17: for x ← k − expanLen to 0 � enumerate start offset

18: R
(x)
i ← tai+x . . . tai+x+k−1 for i = 1 . . . m

19: R(x) ← R
(x)
1 . . . R

(x)
m � records of the current offset

20: R∗ = arg max{Score(R∗), Score(R(x))} � Equ. (3)
21: return R∗ � return the best record list

6. EXPERIMENTS
In this section, we evaluate our approach empirically. Par-

ticularly, we (1) test the scalability of our approach by ap-
plying it to forum pages from various types of forum sites
(Sec. 6.1) and review/blog pages (Sec. 6.2) and (2) demon-
strate its effectiveness by comparing it with one state-of-the-
art semi-automatic approach [20] (Sec. 6.3).

6.1 Forum Posts Extraction

6.1.1 Dataset
In this experiment, we are to evaluate the performance

of our method when applying it to forum post extraction.
There are many forum software types on the web for forum
content generation and management. To verify the scalabil-
ity of our approach, we require that the dataset covers as
many software types (and therefore forum sites) as possible.

In order to construct the dataset, we first built a list
of forum software by checking a few well-known web sites
that list, review, or compare forum software packages, i.e.
Big Boards, Forum Matrix, Forum Software Reviews, Hot
Scripts, and Wikipedia. Then, for each software package
within the list, we tried to find at least one sample site by
checking the official site of the software or issuing queries like
“forums powered by XYZ” to search engines like Bing and
Google. For some software packages that have multiple ver-
sions, e.g. vBulletin, we kept one sample site for each version
but treated them as belonging to the same software package,
due to a lack of clear measurements of the structural differ-
ence between multiple versions. We also added a few forum
sites powered by customized software. Finally, we obtained
a dataset consisting of 307 forum sites that cover 171 known
forum software packages and 48 customized types.

The forum software list shows a great variety, covering
most popular software packages (like vBulletin, phpBB, In-
vision, etc) and various programming languages (like PHP,

ASP.NET, etc). For the 307 forum sites, we didn’t restrict
their topics. Thus, they cover many categories of topics
(including travel, computer, science and mathematics, pho-
tography and also general topics).

From each forum site that we collected, we randomly
crawled a few thread pages. After removing those non-
thread pages and thread pages containing zero or only one
post, we kept 1,200 thread pages (452 pages were discarded
during the process). After manually labeling the dataset (by
identifying the golden posts as demonstrated in Fig. 1), we
used 200 of them as the development set and the remaining
1,000 pages as the test set. We are also careful to make
sure that the test set contains at least one and at most six
thread pages for each forum site. In the test set, the total
number of posts is 11,139. 64.8% of pages contain no more
than 10 posts while 91% of pages contain no more than 20
posts. 12.3% of pages contain only 2 posts while 0.4% of
pages contain more than 100 posts.

6.1.2 Baseline Methods
As our approach is fully-automatic (without the use of

labeled data), we implemented MDR [12, 13] as one of the
baseline methods. Besides, as discussed in Sec. 3.1, MDR
can only extract a consecutive record list. It may miss
those posts from the non-consecutive points, either to the
end, thus missing one or two records, or in the middle,
thus resulting in two separated record lists. As a work-
around, we proposed a two-pass (2Pass) method to help
MDR extract as many data records as possible from a non-
consecutive data region. It is quite straightforward: in the
first pass we employ the basic MDR to explore a set of con-
secutive records, then in the second pass we check those
non-consecutive siblings and put them back to the existing
region if they also meet the comparison criterion, regard-
less of whether they are adjacent to the existing records or
not. We used the 2Pass method as another baseline and
denoted it as MDR2Pass. To make the baselines stronger,
we also extended both baselines with all types of similarity
measures.

We utilized the development set to tune the similarity
threshold for all similarity measures. For TnL, we use n = 3
and denote it as T3L.

6.1.3 Evaluation Measures
We evaluate the result on both post level and page level.

On post level we use the standard precision and recall as
evaluation metrics. On page level, we examine how many
pages a method can handle perfectly without extracting
any wrong, or missing any golden, posts. We also exam-
ine how many pages a method extracts/misses zero or ≤ 2
wrong/golden posts.

A post record is regarded as correctly extracted if it con-
tains exactly the same set of DOM tree nodes with the
golden record after removing blank tag nodes, e.g. <hr />.

6.1.4 Results
Tables 1 and 2 give the results on both post and page

level. We refer to MiBAT using Pivot and Siblings (PS) as
the best method. We conducted the significant test (sign
test) and the result is that the best method outperforms
other methods significantly (p-value=0.01).

For Table 1, we have the following observations:

• Both proposed similarity measures, i.e. PM and PS,
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are effective, since they improve MDR and MDR2Pass
significantly (precision and recall: from around 70% to
over 85%).

• MiBAT is very effective using both proposed similarity
measures, being able to achieve more than 96% in both
precision and recall.

• To compare the similarity measures, PS outperforms
PM in both precision and recall. The performance
increase is due to more accurate constraints, and thus
more accurate anchor tree identification.

Table 1: Post extraction (post level, prec./rec.)
MDR MDR2Pass MiBAT

TL 55.8% / 70.0% 47.0% / 71.1% -/-
TS 80.8% / 73.0% 60.2% / 80.5% -/-
T3L 76.1% / 77.1% 55.2% / 79.8% -/-
PM 90.0% / 85.4% 90.4% / 87.5% 97.5% / 96.2%
PS 90.4% / 86.2% 91.2% / 88.2% 98.9% / 97.3%

On page level, as shown in Table 2, besides similar obser-
vations as those with post level, we discuss new results in
three aspects:

• Percentage of pages that are processed perfectly, i.e.
neither missing any golden posts nor extracting any
wrong posts. We can see that by using stronger sim-
ilarity measures and better mining algorithms, we in-
crease this percentage from around 40% to over 90%.

• Precision related percentage. Our best method won’t
extract any wrong posts in 98.5% of pages, and it won’t
extract more than two wrong posts in 99% of pages.

• Recall related percentage. Our best method won’t miss
any golden posts in 91.7% of pages, and it won’t miss
more than two golden posts in 96.8% of pages.

Table 2: Post extraction (page level)

Model Perfect
Extract wrong posts Miss golden posts

0 ≤ 2 0 ≤ 2
MDR

TL 37.1% 60.7% 80.1% 58.0% 75.9%
TS 46.0% 85.7% 93.2% 46.8% 77.6%
T3L 53.9% 77.6% 90.3% 61.9% 82.8%
PM 66.5% 84.4% 90.9% 66.8% 86.6%
PS 66.5% 84.8% 91.5% 66.8% 87.1%

MDR2Pass
TL 39.4% 50.5% 71.4% 66.9% 76.7%
TS 54.0% 85.0% 92.7% 55.0% 87.3%
T3L 57.7% 70.8% 85.0% 70.8% 86.0%
PM 75.1% 84.7% 90.9% 75.4% 88.8%
PS 74.9% 85.2% 91.6% 75.2% 89.2%

MiBAT
PM 90.7% 97.5% 98.0% 90.7% 96.0%
PS 91.7% 98.5% 99.0% 91.7% 96.8%

6.1.5 Error analysis
Since the best method perfectly processed 91.7% of pages

without errors, we checked all remaining 83 pages and exam-
ined the reasons. We found that two major errors are due to
(1) forums having the first post under a different parent (22
pages, 26.5%) or in a different structure (28 pages, 33.7%)
from the remainings posts, and (2) pivot format classifier er-
ror (10 pages, 12%). The former is beyond the scope of our
method while the latter can be alleviated by using a more
accurate date-time classifier. In addition, we also notice that
6 page errors (7.2%) are due to main region selection error,
which can be solved using more domain features.

6.2 Blog and Review Comments Extraction
In this section, we are to test the performance of our

method and two baselines when applied to other domains,
i.e. extracting comments from blogs and reviews pages.

We constructed two datasets. One consists of randomly
sampled blog pages that potentially contain comments from
the index repository of Bing. The other consists of ran-
domly crawled pages from a list of manually collected 15
well-known UGC sites, which contain user reviews and com-
ments on products, news, books and pictures, e.g., Amazon,
Flickr, Epions.com. After manually labeling each page and
discarding those with zero or only one comment, the final
datasets consist of 221 pages from 163 blog sites and 246
pages from the 15 UGC sites.

In this experiment, we didn’t tune the threshold, but used
that obtained in Sec. 6.1 directly. However, we introduce
one more heuristic in the main region selection: we filter out
those data regions in which the HTML text is a purely date-
time string. This heuristic is very useful when processing
blog pages since there is usually a long list of links pointing
to older blog archives with text in date-time format.

Table 3 shows the experimental results, where B1 refers
to baseline MDR2Pass+TS, B2 refers to MDR2Pass+PS
and M is our method MiBAT+PS. For blog comments, our
method significantly outperforms the baselines. For review
comments, though having similar a recall to baselines (near
81%), our method achieves a higher precision (94.1%).

Note that the result in Table 3 is not as good as that
in Table 1 and Table 2, especially for the recall of review
comment extraction (81.8%). One main reason is that in
29 pages (out of 246) of the dataset of review pages, not all
comment records are located under the same parents, which
voilates the same parent assumption (Sec. 5.1). Due to
space limitations, we leave the investigation of this issue to
the journal version of this paper.

Table 3: Comment extraction

Precision Recall Perfect
Extract Miss

≤ 2 wrong ≤ 2 golden
Blog comments

B1 52.5% 76.6% 45.7% 74.2% 73.8%
B2 58.5% 79.9% 65.2% 77.8% 81.9%
M 95.8% 91.1% 78.3% 96.4% 89.6%

Review comments
B1 89.3% 80.0% 63.7% 85.8% 79.6%
B2 91.8% 81.4% 72.2% 84.1% 81.2%
M 94.1% 81.8% 73.9% 87.3% 82.4%

6.3 Comparison with a Semi-Automatic Method
In this section, we are to show the effectiveness of our

approach by comparing it with one state-of-the-art semi-
automatic approach (Yang et al., [20]).

We use the same dataset as in Yang et al. Among the 20
forum sites in this dataset, there turn out to be 4 known
forum software packages and 5 customized types (since 12
out of 20 forum sites use vBulletin). Our dataset stated in
Sec. 6.1 contains all the 4 known forum software packages
and overlaps on 8 forum sites with their dataset. In addition,
we do not exclude those single-post pages from their test
corpus, although handling single-post pages is not within
the scope of this paper.

Yang et al.’s work extracts posts from web forum sites by
employing a supervised statistical model equipped with both
page-level and site-level knowledge as features. However,
our method relies only on the single post page and does not
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require any labeled data. Again in this experiment we did
not tune the threshold parameter, but used the parameter
obtained in Sec. 6.1 directly. Pivot and Siblings (PS) is used
as the similarity measure.

Table 4 compares the results on post level. The first three
rows show the performance of Yang et al.’s method incor-
porating features of different levels, i.e. single page features
(denoted as SP), site-level features (SL) and multiple page
features (MP). The next two rows report MiBAT’s result,
corresponding to taking or not taking single-post pages into
account in evaluation respectively.

Table 4: Comparison with Yang et al. (post level)
Model Precision Recall

SP 93.2% 65.6%
Yang et al. [20] SP+SL 93.7% 69.5%

SP+SL+MP 99.6% 94.1%
MiBAT ≥ 2 posts 99.3% 99.2%

all pages 95.6% 98.1%
MiBAT+MP all pages 99.7% 98.5%

We have the following observations, which confirm that
our method is very effective:

• Given the same condition, i.e. extracting from a single
page only, our model (Row 2 in our method) signifi-
cantly outperforms Yang et al.’s work (Row 1 in their
method) with respect to both precision and recall.

• Even given the optimal condition for each method,
our method still achieves a competitive performance
with theirs (Row 2 in our method v.s. Row 3 in their
method). The relatively lower precision in our method
is due to those single-post pages, for which MiBAT re-
turns an irrelevant record list as the main region for it
cannot extract single posts.

So far we have focused on the settings that MiBAT works
in the online mode, that is, it takes one single page as input,
without any additional site-level information. However, it is
fairly straightforward to generate a tree-structured template
(wrapper) from the extracted post records, as demonstrated
by existing research [23], and this template can be used to
extract records from pages of the same type on the site. In
this way, single-post pages can be also handled naturally.

Therefore, we conducted a simple experiment to test Mi-
BAT’s performance when it works in the batch mode. For
each site, we use randomly sampled 20 thread pages to learn
the template, by (1) employing MiBAT to process each page,
(2) selecting the page for which the extracted data region
has the largest score defined by Heuristic 2 in Sec. 5.4 and
(3) generating the template from this page as in [23]. No
human efforts are involved in the process. The last row (Mi-
BAT+MP) in Table 4 shows the performance of this method,
which achieves competitive precision and much better recall
compared with Yang et al.

7. CONCLUSIONS AND FUTURE WORK
In this paper we studied the problem of automatically

extracting from a single page a list of web data records that
contain UGC. We proposed to utilize domain constraints to
design better similarity measures as well as to acquire anchor
point information for data record extraction, resulting in
our novel mining algorithm MiBAT. Extensive experiments
prove the effectiveness of our work.

Future work follows two paths: (1) continue to improve
our approach by relaxing the assumptions and applying to
more domains, and (2) move to extract data attributes [23].
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