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Privacy Integrated Queries:
An Extensible Platform for Privacy-Preserving Data Analysis
By Frank McSherry

Abstract
Privacy Integrated Queries (PINQ) is an extensible data 
analysis platform designed to provide unconditional privacy 
guarantees for the records of the underlying data sets. PINQ 
provides analysts with access to records through an SQL-
like declarative language (LINQ) amidst otherwise arbitrary 
C# code. At the same time, the design of PINQ’s analysis 
language and its careful implementation provide formal 
guarantees of differential privacy for any and all uses of the 
platform. PINQ’s guarantees require no trust placed in the 
expertise or diligence of the analysts, broadening the scope 
for design and deployment of privacy-preserving data analy-
ses, especially by privacy nonexperts.

1. INTRODUCTION
Vast quantities of individual information are currently col-
lected and analyzed by a broad spectrum of organizations. 
While these data clearly hold great potential for analysis, 
they are commonly collected under the premise of privacy. 
Careless disclosures can cause harm to the data’s subjects 
and jeopardize future access to such sensitive information.

This has led to substantial interest in data analysis 
techniques with guarantees of privacy for the underly-
ing records. Despite significant progress in the design of 
such algorithms, privacy results are subtle, numerous, and 
largely disparate. Myriad definitions, assumptions, and 
guarantees challenge even privacy experts to assess and 
adapt new techniques. Careful and diligent collaborations 
between nonexpert data analysts and data providers are all 
but impossible.

In an attempt to put much of the successful privacy 
research in the hands of privacy nonexperts, we designed 
 the Privacy Integrated Queries (PINQ) language and run-
time, in which all analyses are guaranteed to have one of 
the strongest unconditional privacy guarantees: differen-
tial privacy.5, 8 Differential privacy requires that computa-
tions be formally indistinguishable when run with and 
without any one record, almost as if each participant had 
opted out of the data set. PINQ comprises a declarative 
programming language in which all written statements 
provide differential privacy, and an execution environment 
whose implementation respects the formal requirements 
of differential privacy.

Importantly, the privacy guarantees are provided by the 
platform itself; they require no privacy sophistication on the 
part of the platform’s users. This is unlike much prior pri-
vacy research which often relies heavily on expert design and 
analysis to create analyses, and expert evaluation to vet pro-
posed approaches. In such a mode, nonexpert analysts are 
unable to express themselves clearly or convincingly, and 

nonexpert providers are unable to verify or interpret their 
privacy guarantees. Here the platform itself serves as a com-
mon basis for trust, even for analysts and providers with no 
privacy expertise.

The advantage our approach has over prior platforms lies 
in differential privacy: its robust guarantees are compatible 
with many declarative operations and permit end-to-end 
analysis of arbitrary programs containing these operations. 
Its guarantees hold in the presence of arbitrary prior knowl-
edge and for arbitrary subsequent behavior, simplifying the 
attack model and allowing realistic, incremental deploy-
ment. Its formal nature also enables unexpected new 
functionality, including grouping and joining records on 
sensitive attributes, the analysis of text and unstructured 
binary data, modular algorithm design (i.e., without whole-
program knowledge), and analyses which integrate multiple 
data sources from distinct and mutually distrustful data 
providers.

The main restriction of this approach is that analysts 
can only operate on the data from a distance: the opera-
tions are restricted to declarative transformations and 
aggregations; no source or derived records are returned to 
the analysts. This restriction is not entirely unfamiliar to 
many analysts, who are unable to personally inspect large 
volumes of data. Instead, they write computer programs to 
distill the data to manageable aggregates, on which they 
base further analyses. While the proposed platform intro-
duces a stricter boundary between analyst and data, it is 
not an entirely new one.

1.1. An overview of PINQ
We start by sketching the different aspects of PINQ that 
come together to provide a data analysis platform with dif-
ferential privacy guarantees. Each of these sections are then 
developed further in the remaining sections of the note, but 
the high level descriptions here should give a taste for the 
different facets of the project.
Mathematics of PINQ: The mathematical basis of PINQ, dif-
ferential privacy, requires any outcome of a computation 
over a set of records be almost as likely with and without any 
one of those records. Computations with this guarantee be-
have, from the point of view of each participant, as if their 
data were never used. It is currently one of the strongest of 
privacy guarantees. The simplest example of a differentially 
private computation is noisy counting: releasing of the num-
ber of records in a data set perturbed by symmetric exponen-

The original version of this paper is entitled “Privacy 
Integrated Queries” and was published in the Proceedings 
of SIGMOD 2009.
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performant LINQ providers.
We stress that PINQ represents a very modest code base; 

in its current implementation it is only 613 lines of C# code. 
The assessment logic, following the math, is uncomplicated. 
The aggregations must be carefully implemented to provide 
differential privacy, but these are most often only a matter 
of postprocessing the correct aggregate (e.g., adding noise). 
PINQ must also ensure that the submitted queries con-
form to our mathematical model for them. LINQ achieves 
substantial power by allowing general C# computations in 
predicates of Where, functions of Select, and other opera-
tions. PINQ must restrict and shepherd these computations 
to mitigate the potential for exploitation of side channels.
Applications of PINQ: Programming with PINQ is done 
through the declarative LINQ language, in an otherwise 
unconstrained C# program. The analyst is not given direct 
access to the underlying data; instead, information is ex-
tracted via PINQ’s aggregation methods. In exchange for 
this indirection, the analyst’s code is allowed to operate on 
unmasked, unaltered, live records.

With a few important exceptions, programs written with 
PINQ look almost identical to their counterparts in LINQ. 
The analysts assemble an arbitrary query from permit-
ted transformations, and specify the accuracy for aggrega-
tions. Example 1 contains a C# PINQ fragment for counting 
distinct IP addresses issuing searches for an input query 
phrase.

Example 1. Counting searches from distinct users in 
PINQ.

We will develop this example into a more complex search 
log visualization application showcasing several of PINQ’s 

advantages over other approaches: rich data types, complex 
transformations, and integration into higher level applica-
tions, among many others. The full application is under 100 
lines of code and took less than a day to write.

We have written several other examples of data analy-
ses in PINQ, including k-means clustering, perceptron 

tial (Laplace) noise. Many other simple aggregations (e.g., 
Sum, Average, Median, among others) have similarly accu-
rate randomized analogs.

To allow nonexpert analysts to produce new differen-
tially private computations, we introduce the use of trans-
formations, applied to data before differentially private 
aggregations, without weakening the differential pri-
vacy guarantees. For several relational transformations, 
a changed record in the input data set always results in 
relatively few changes in the output data set. A differen-
tially private analysis applied to transformed data masks 
changes in the transformation’s output, and consequently 
masks changes in its input as well. The composed trans-
formation and analysis will provide differential privacy, 
with a formal guarantee depending on the quantitative 
form of “relatively few,” which we must determine for each 
transformation. Such transformations can be composed 
arbitrarily, by nonexpert analysts, and combined with 
differentially private aggregations will serve as our query 
language.

Finally, any sequence of differentially private compu-
tations also provides differential privacy; the quantitative 
privacy depletions are at worst additive (and occasionally 
better), and can be tracked online. Consequently, we can 
embed the query language above into any general purpose 
programming language, allowing arbitrary use of the results 
that return from the queries, as long as we monitor and con-
strain the total privacy depletion.
Implementation of PINQ: We have implemented a proto-
type of PINQ based on C#’s Language Integrated Queries 
(LINQ), an SQL-like declarative query language extension 
to .NET languages. Data providers use PINQ to wrap arbi-
trary LINQ data sources with a specified differential priva-
cy allotment for each analyst. Analysts then write arbitrary 
C# programs, writing queries over PINQ data sources al-
most as if they were using unprotected LINQ data sources. 
PINQ’s restricted language and run-time checks ensure 
that the provider’s differential privacy requirements are 
respected, no matter how an analyst uses these protected 
data sets.

At a high level, PINQ allows the analyst to compose arbi-
trary queries over the source data, whose quantitative dif-
ferential privacy guarantees are evaluated before the query 
is executed. If the analyst has framed a query whose privacy 
cost falls within the bounds prescribed by the data provid-
ers, the query is executed and the privacy cost subtracted 
from the amount available to the analyst for the associated 
data sets. If the cost falls outside the bounds, PINQ does not 
execute the query.

PINQ is designed as a thin layer in front of an exist-
ing query engine (Figure 1); it does not manage data or 
execute queries. Instead, it supplies differentially private 
implementations of common transformations and aggre-
gations, themselves written in LINQ and executed by the 
LINQ providers of the underlying data sets. This approach 
substantially simplifies our implementation, but also allows 
a large degree of flexibility in its deployment. A data source 
only needs a LINQ interface to support PINQ, and we can 
take advantage of any investment and engineering put in to 

 var data = new PINQueryable<SearchRecord>(...  ...);

 var users = from record in data
	 where record.Query == argv[0]

	 groupby record.IPAddress;

 Console.WriteLine(argv[0] + “:” + users.Count(0.1) );

?

?
?

Figure 1. PINQ provides a thin protective layer in front of existing 
data sources, presenting an interface that appears to be that of the 
raw data itself.
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classification, and contingency table measurement. These 
examples have all been relatively easy adaptations of exist-
ing approaches.2, 4

2. MATHEMATICAL FOUNDATIONS
We now develop some supporting mathematics for PINQ. 
We review the privacy definition we use, differential pri-
vacy, and develop several properties necessary to design 
a programming language supporting its guarantees. 
Specifically, we discuss the data types we can support, com-
mon differentially private aggregations, how transformations 
of the data sets impact privacy, and how privacy guarantees of 
multiple analyses compose. All of our conclusions are imme-
diate consequences of differential privacy, rather than addi-
tional assumptions or implementation details. The proofs 
are available in the full version of the paper.10

2.1. Differential privacy
Differential privacy is a relatively new privacy definition, 
building upon the work of Dwork et al.8 and publicly articu-
lated in Dwork.5 It differs from most previous definitions in 
that it does not attempt to guarantee the prevention of data 
disclosures, privacy violations, or other bad events; instead, 
it guarantees that participation in the data set is not their 
cause.

The definition of differential privacy requires that a ran-
domized computation yield nearly identical distributions 
over outcomes when executed on nearly identical input data 
sets. Treating the input data sets as multisets of records over 
an arbitrary domain and using  for symmetric difference 
(i.e., A  B is the set of records in A or B, but not both):

Definition 1. A randomized computation M provides -
differential privacy if for any two input data sets A and B, and 
any set of possible outputs S of M,

For values of x much less than one, exp(x) is approximately 
1 + x. Differential privacy relies only on the assumption that 
the data sets are comprised of records, of any data type, and 
is most meaningful when there are few records for each par-
ticipant, relative to 1/.

The definition is not difficult to motivate to nonexperts. 
A potential participant can choose between two inputs to 
the computation M: a data set containing their records (A) 
and the equivalent data set with their records removed (B). 
Their privacy concerns stem from the belief that these two 
inputs may lead to noticeably different outcomes for them. 
However, differential privacy requires that any output event 
(S) is almost as likely to occur with these records as without. 
From the point of view of any participant, computations 
which provide differential privacy behave almost as if their 
records had not been included in the analysis.

Taking a concrete example, consider the sensible con-
cern of most Web search users that their name and search 
history might appear on the front page of the New York 
Times.3 For each participant, there is some set S of outputs 
of M that would prompt the New York Times to this publica-
tion; we do not necessarily know what this set S of outputs is, 

but we need not define S for the privacy guarantees to hold. 
For all users, differential privacy ensures that the probability 
the New York Times publishes their name and search history 
is barely more than had it not been included as input to M. 
Unless the user has made the queries public in some other 
way, we imagine that this is improbable indeed.

2.2. Basic aggregations
The simplest differentially private aggregation (from Dwork 
et al.8) releases the number of records in a data set, after the 
addition of symmetric exponential (Laplace) noise, scaled 
by  (Figure 2). The Laplace distribution is chosen because 
it has the property that the probability of any outcome 
decrease by a factor of exp() with each unit step away from 
its mean. Translating its mean (shifting the true value) by 
one unit scales the probability of any output by a multiplica-
tive factor of at most exp(). Changing an input data set from 
A to B can shift the true count by at most |A  B|, and conse-
quently a multiplicative change of at most exp( × |A  B|) in 
the probability of any outcome.

Theorem 1. The mechanism M(X) = |X| + Laplace (1/) 
provides -differential privacy.

The Laplace distribution has exponential tails in both 
directions, and the probability that the error exceeds t/ in 
either direction is exponentially small in t. Consequently, 
the released counts are likely to be close to the true counts.
Other Primitive Aggregations: There are many other mecha-
nisms that provide differential privacy; papers on the sub-
ject typically contain several. To date each has privacy es-
tablished as above, by written mathematical proof based on 
intended behavior. While this is clearly an important step in 
developing such a computation, the guarantees are only as 
convincing as the proof is accessible and the implementa-
tion is correct.

Our goal is to enable the creation of as many differentially 
private computations as possible using only a few primitive 
components, whose mathematical properties and imple-
mentations can be publicly scrutinized and possibly verified. 
While we shouldn’t preclude the introduction of novel primi-
tives, they should be the exceptional, rather than default, 
approach to designing new differentially private algorithms.

2.3. Stable transformations
Rather than restrict programmers to a fixed set of aggre-
gations, we intend to supply analysts with a programming 
language they can use to describe new and unforeseen com-
putations. Most of the power of PINQ lies in arming the 

107 108 109 110 111 112 113106105104103102

Figure 2. Adding symmetric exponential noise to counts causes the 
probability of any output (or set of outputs) to increase or decrease 
by at most a multiplicative factor when the counts are translated.
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result in a set of pairs of records, one from each input, of 
records whose keys match. A single record in either set could 
match an unbounded number of records in the other set. 
Consequently, this important transformation has no sta-
bility bound. As we discuss later, there are restricted forms 
of Join that do have bounded stability (stability one, with 
respect to both inputs), but their semantics deviate from the 
unrestricted Join present in LINQ.

2.4. Composition
Any sequence of differentially private computations also 
provides differential privacy. Importantly, this is true even 
when subsequent computations can depend arbitrarily on 
the outcomes of the preceding computations.

Theorem 3. Let Mi each provide i-differential privacy. The 
sequence of Mi(X) provides (Si  i ) -differential privacy.

This simple theorem indicates that to track the cumu-
lative privacy implications of several analyses, we need 
not do anything more complicated than add the privacy 
depletions.

If the queries are applied to disjoint subsets of the input 
domain we can improve the bound to the worst of the pri-
vacy guarantees, rather than the sum.

Theorem 4. Let Mi each provide -differential privacy. 
Let Di be arbitrary disjoint subsets of the input domain D. The 
sequence of Mi (X Ç Di ) provides -differential privacy.

Whereas sequential composition is critical for any 
functional privacy platform, parallel composition is a very 
important part of extracting good performance from a pri-
vacy platform. Although such operations could be analyzed 
as sequential composition, the privacy guarantee would 
scale with the number of subsets analyzed, often quite 
large.

2.5. A privacy calculus
The mathematics of this section allows us to quantitatively 
bound the privacy implications of arbitrary sequences of 
rich transformations and aggregations. This simplicity 
allows us to avoid burdening the analyst with the responsi-
bility of correctly or completely describing the mathemati-
cal features of their query. Even for researchers familiar with 
the mathematics (e.g., the author), the reasoning process 
can be quite subtle and error-prone. Fortunately, it can be 
automated, the subject of Section 3.

3. IMPLEMENTING PINQ
PINQ is built atop C#’s LINQ. LINQ is a recent language 
extension to the .NET framework integrating declarative 
access to data streams (using a language very much like 
SQL) into arbitrary C# programs. Central to LINQ is the 
IQueryable<T> type, a generic sequence of records 
of type T. An IQueryable admits transformations 
such as Where, GroupBy, Union, Join, and more, 
returning new IQueryable objects over possibly new 
types. Only once an aggregation or enumeration is 

analyst with a rich set of transformations to apply to the data 
set before differentially private aggregations.

Definition 2. We say a transformation T is c-stable if for any 
two input data sets A and B,

Transformations with bounded stability propagate dif-
ferential privacy guarantees made of their outputs back to 
their inputs, scaled by their stability constant.

Theorem 2. Let M provide -differential privacy, and let T 
be an arbitrary c-stable transformation. The composite compu-
tation M ° T provides ( × c)-differential privacy.

Once stability bounds are established for a set of trans-
formations, a nonexpert analyst can combine any number 
of them as they see fit. Differential privacy bounds result 
from repeated application of Theorem 2, compounding the 
stability constants of the applied transformations with the  
value of the final aggregation.
Example Transformations: To give a sense for the types of 
stability bounds to expect, we consider a few representative 
transformations from LINQ.

The Where transformation takes an arbitrary predicate 
over records, and results in the subset of records satisfying 
the predicate. Any records in difference between A and B will 
result in at most those records in difference between their 
restrictions, resulting in a stability of one. Importantly, this 
is true independent of the supplied predicate; the predi-
cate’s logic can use arbitrarily sensitive information in the 
records and will still have stability one.

The GroupBy transformation takes a key selection func-
tion, mapping records to some key type, and results in a set 
of groups, one for each observed key, where each group con-
tains the records mapped to the associated key value. For 
every record in difference between A and B, a group in the 
output can change. A change corresponds to symmetric dif-
ference two, not one; despite the apparent similarities in the 
groups, subsequent logic (e.g., a Where) can treat the two 
groups as arbitrarily different. As with Where, the stability 
of two holds for any key selection function, including those 
based on very sensitive fields or functions thereof.

The Union transformation takes a second data set, and 
results in the set of elements in either the first or the second 
data set. A record in difference between A and B results in no 
more than one record in difference in the output, yielding 
stability one. This is also true for records in difference in the 
second data set, giving us an example of a binary transforma-
tion. A differentially private analysis of the result of a binary 
transformation reflects information about both sources. 
This is uncomplicated unless the inputs derive from com-
mon data. Even so, a single change to a data set in common 
induces a bounded change in each of the transformation’s 
inputs, and a bounded change in its output (i.e., the stability 
constants add).

The Join transformation takes a second data set, and 
key selection functions for both data sets. It intends to 
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aggregation only if the eventual response is positive.
Count is implemented as per Theorem 1, returning 

the accurate count of the underlying data plus Laplace 
noise whose magnitude is specified by the analyst, if large 
enough. Example 2 depicts the implementation of Count.

Example 2. [Abbreviated] Implementation of Count.

PINQ includes other aggregations—including Sum, 
Average, and Median among others—each of which takes 
epsilon and a function converting each record to a double. 
To provide differential privacy, the resulting values are first 

clamped to the interval [−1, +1] before they are aggregated. 
This is important to ensure that a single record has only a 
limited impact on the aggregate, allowing a relatively small 
perturbation to provide differential privacy.

The implementations of these methods and the proofs 
of their privacy guarantees are largely prior work. Sum, like 
Count, is implemented via the addition of Laplace noise 
and is discussed in Dwork et al.8 Average and Median 
are implemented using the exponential mechanism  
of McSherry and Talwar,11 and output values in the range 
[−1, +1] with probabilities

Each downweights the probability of a possible output x by 
(the exponentiation of) the fewest modifications to the input 
A needed to make x the correct answer.

The accuracy of Average is roughly 2/ divided by the 
number of records in the data set. Median results in a value 
which partitions the input records into two sets whose sizes 
differ by roughly an additive 2/; it need not be numerically 
close to the actual median.

3.2. Transformation operators
PINQ’s flexibility derives from its transformation operators, 
each of which results in a new PINQueryable wrapped 
around an updated data source. The associated PINQAgent 
is wired to forward requests on to the participating source 
data sets before accepting, scaling epsilon by the transfor-
mation’s stability constant.

Our implementations of many transformations are 
mostly a matter of constructing new PINQueryable and 
PINQAgent objects with the appropriate parameters. 
Some care is taken to restrict computations, as discussed in 
Section 3.4. Example 3 depicts the implementation of PINQ’s 
GroupBy. Most transformations require similarly simple pri-
vacy logic.

invoked is any computation performed; until this point 
the IQueryable only records the structure of the query 
and its data sources.

PINQ’s implementation centers on a PINQueryable<T> 
generic type, wrapped around an underlying 
IQueryable<T>. This type supports the same methods 
as an IQueryable, but with implementations ensuring 
that the appropriate privacy calculations are conducted 
before any execution is invoked. Each PINQueryable is 
comprised of a private member data set (an IQueryable), 
and a second new data type, a PINQAgent, responsible for 
accepting or rejecting requested increments to epsilon. 
Aggregations test the associated PINQAgent to confirm 
that the increment to epsilon is acceptable before they 
execute. Transformations result in new PINQueryable 
objects with a transformed data source and a new 
PINQAgent, containing transformation-appropriate logic 
to forward modified epsilon requests to the agents of its 
source PINQueryable data sets.

The PINQAgent interface has one method, 
Alert(epsilon), invoked before executing any differen-
tially private aggregation with the appropriate value of epsi-
lon, to confirm access. For PINQueryable objects wrapped 
around raw data sets, the PINQAgent is implemented by 
the data provider based on its privacy requirements, either 
from scratch or using one of several defaults (e.g., decre-
menting a per-analyst budget). For objects resulting from 
transformations of other PINQueryable data sets, PINQ 
constructs a PINQAgent which queries the PINQAgent 
objects of the transformation’s inputs with transformation-
appropriate scaled values of epsilon. These queries are be 
forwarded recursively, with appropriate values of epsilon, 
until all source data have been consulted. The process is 
sketched in Figure 3.

3.1. Aggregation operators
Each aggregation in PINQ takes epsilon as a param-
eter and provides -differential privacy with respect to its 
immediate data source. The privacy implications may be 
far worse for the underlying data sets from which this data 
set derives, and it is important to confirm the appropriately 
scaled amount of differentially private access. Before execu-
tion, each aggregation invokes the Alert method of their 
associated PINQAgent with this epsilon, conducting the 

Figure 3. PINQ control/data flow. An analyst initiates a request to 
a PINQ object, whose agent (A) confirms, recursively, differentially 
private access. Once approved by the providers’ agents, data  
(D) flows back through trusted code ensuring the appropriate level 
of differential privacy.

??
Policy

Policy

D

A

D

A

D

A

 double Count(double epsilon)

{

	   if (epsilon > 0.0 && myagent.Alert(epsilon))

	      return mysource.Count() + Laplace(1.0/epsilon);
	   else

	      throw new Exception(“Access is denied”);

}
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Partition in PINQ can be seen in the following two 
queries:

Q1.  How many ZIP codes contain at least 10 patients?
Q2.  For each ZIP code, how many patients live there?

For Q1, a GroupBy by ZIP, a Where on the number of 
patients, and a Count gives an approximate answer to the 
exact number of ZIP codes with at least 10 patients. For 
Q2, a Partition by ZIP, followed by a Count on each part 
returns an approximate count for each ZIP code. As the mea-
surements can be noisy, neither query necessarily provides 
a good estimate for the other. However, both are at times 
important questions, and PINQ is able to answer either 
accurately depending on how the question is posed.

The Partition operator can be followed not only by 
aggregation but by further differentially private computa-
tion on each of the parts. It enables a powerful recursive 
descent programming paradigm demonstrated in Section 4, 
and is very important in most nontrivial data analyses.

3.4. Security issues in implementation
Although the stability mathematics, composition properties, 
and definition of differential privacy provide mathematical 
guarantees, they do so only when PINQ’s behavior is in line 
with our mathematical expectations. There are many impor-
tant but subtle implementation details intended to protect 
against clever attackers who might use the implementa-
tion details of PINQ to learn information the mathematics 
would conceal. These are largely the result of user-defined 
code that may attempt to pass information out through side 
channels, either directly through disk or network channels, 
or indirectly by throwing exceptions or simply not terminat-
ing. PINQ’s purify function gives the provider the oppor-
tunity to examine incoming methods and rewrite them, 
either by restricting the computations to those comprised 
of known-safe methods, or by rewriting the methods with 
appropriate guards. There are other issues and countermea-
sures in the full paper, and likely more unrecognized issues 
to be discovered and addressed.

4. APPLICATIONS AND EVALUATION
In this section, we present data analyses written with 
PINQ. Clearly not all analysis tasks can be implemented 
in PINQ (indeed, this is the point), but we aim to convince 
the reader that the set is sufficiently large as to be broadly 
useful.

Our main example application is a data visualization 
based on Web search logs containing IP addresses and query 
text. The application demonstrates many features of PINQ 
largely absent from other privacy-preserving data analysis 
platforms. These include direct access to unmodified data, 
user-supplied record-to-record transformations, operations 
such as GroupBy and Join on “sensitive” attributes, mul-
tiple independent data sets, and unfettered integration into 
higher-level programs.

For our experiments we use the DryadLINQ15 provider. 
DryadLINQ is a research LINQ provider implemented on 
top of the Dryad9 middleware for data parallel computation, 

Example 3. [Abbreviated] Implementation of GroupBy.

PINQueryable<IGrouping<K,T>>
GroupBy<T,K>(Expression<Func<T,K>> keyFunc)
{
	 // Section 3.4 explains this, and why it is needed
	 keyFunc = Purify(keyFunc) as Expression<Func<T,K>>;

	 // new agent with appropriate ancestor and stability
	 var newagent = new PINQAgentUnary(this.agent, 2.0);

	 // new data source reflecting the operation
	 var newsource = this.source.GroupBy(keyFunc);

	 // construct and return a new source and agent pair
	 return new PINQueryable<IGrouping<K,T>>(newsource,  
		  newagent);
}

The Join transformation is our main deviation from 
LINQ. To ensure stability one with respect to each input, 
we only report pairs that are the result of unique key 
matches. To ensure these semantics, PINQ’s Join invokes 
LINQ’s GroupBy on each input, using their key selection 
functions. Groups with more than one element are dis-
carded, and the resulting singleton elements are joined 
using LINQ’s Join.

While this clearly (and intentionally) interferes with 
standard uses of Join, analysts can reproduce its standard 
behavior by first invoking GroupBy on each data set, ensur-
ing that there is at most one record per group, before invok-
ing Join. The difference is that the Join is now required 
to reduce pairs of groups, rather than pairs of records. 
Each pair of groups yields a single result, rather than the 
unbounded cartesian product of the two, constraining the 
output but enabling privacy guarantees.

3.3. The partition operator
Theorem 4 tells us that structurally disjoint queries cost 
only the maximum privacy differential, and we would like 
to expose this functionality to the analyst. To that end, we 
introduce a Partition operation, like GroupBy, but in 
which the analyst must explicitly provide a set of candidate 
keys. The analyst is rewarded with a set of PINQueryable 
objects, one for each candidate key, containing the (pos-
sibly empty) subset of records that map to the each of the 
associated keys. It is important that PINQ does not reveal 
the set of keys present in the actual data, as this would vio-
late differential privacy. For this reason, the analyst must 
specify the keys of interest, and PINQ must not correct 
them. Some subsets may be empty, and some records may 
not be reflected in any subset.

The PINQAgent objects of these new PINQueryable 
objects all reference the same source PINQAgent, of the 
source data, but following Theorem 4 will alert the agent 
only to changes in the maximum value of epsilon. The 
agents share a vector of their accumulated epsilon values 
since construction, and consult this vector with each update 
to see if the maximum has increased. If so, they forward the 
change in maximum. If the maximum has not increased, 
they accept the request.

The difference between the uses of GroupBy and 
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and associated parts, grouping the records in each by IP 
address. To further enrich the example, we then parti-
tion each of these data sets by the number of times each 
IP address has issued the query, before producing a noisy 
count (see Example 5).

Example 5. Measuring many query frequencies in PINQ.

 // prepare data with privacy budget
 var agent = new PINQAgentBudget(1.0);
 var data  = new PINQueryable<string>(rawdata, agent);

 // break out fields, but partition rather than filter
 var parts = data.Select(line => line.Split(’,’)) 
	 .Partition(args, fields => 
fields[20]);

 foreach (var query in args)
 {
	 // use the searches for query, grouped by IP address
	 var users = parts[query].GroupBy(fields => fields[0]);

	 // further partition by the frequency of searches
	 var freqs = users.Partition(new int[] { 1,2,3,4,5 },
	 group => group.Count());

	 // output the counts to the screen, or anywhere else
	 Console.WriteLine(query + “:”);
	 foreach (var count in new int[] { 1,2,3,4,5 })
	  Console.WriteLine(freqs[count].Count(0.1));
 }

Because we use Partition rather than multiple 
Where calls, the privacy cost associated with the program 
can be seen by PINQ to be only the maximum of the pri-
vacy costs of each of the loops, exactly the same cost as in 
Example 4.

Table 1 reports the measurements of a few query strings 
taken over our data set. Each reported measurement is 
the exact count plus Laplace noise with parameter 10, cor-
responding to standard deviation  For most mea-
surements this error is relatively insignificant. For some 
measurements it is significant, but nonetheless reveals that 
the original value is quite small.

4.3. Data analysis: Stage 3 of 3
We now expand out our example program from simple 

and currently scales to at least thousands of compute 
nodes. Our test data sets are of limited size, roughly 100GB, 
and do not fully exercise the scalability of the DryadLINQ 
provider. We do not report on execution times, as PINQ’s 
reasoning is an insignificant contribution, but rather the 
amount and nature of information we can extract from the 
data privately.

For clarity, we present examples written as if the data ana-
lyst is also the data provider, charged with assembling the 
source PINQueryable objects. In a real deployment, this 
assembly should be done on separate trusted infrastructure.

4.1. Data analysis: Stage 1 of 3
We start with a simple application of PINQ, approximating 
the number of distinct search users who have searched for 
an arbitrary query term. Our approach is just as it would 
have been in LINQ: we first transform the search records 
(comma-delimited strings) into tuples (string arrays) whose 
fields have known meaning, then restrict the data to records 
with the input search query, then group by the supplied 
IP address to get a proxy for distinct users, then count the 
remaining records (groups of string arrays). The program is 
reproduced in Example 4.

Example 4. Measuring query frequencies in PINQ.

 // prepare data with privacy budget
 var agent = new PINQAgentBudget(1.0);
 var data  = new PINQueryable<string>(rawdata, agent);

 // break out fields, filter by query, group by IP
 var users = data.Select(line => line.Split(’,’))
	 .Where(fields => fields[20] == args[0])
	 .GroupBy(fields => fields[0]);

 // output the count to the screen, or anywhere else
 Console.WriteLine(args[0] + “:” + users.Count(0.1));

This relatively simple example demonstrates sev-
eral important features of PINQ. The input data are text 
strings; we happen to know a priori that they are comma 
delimited, but this information plays no role in the pri-
vacy guarantees. The filtering is done against an analyst-
supplied query term, and may be frequent or infrequent, 
sensitive or insensitive. To get the set of distinct users we 
group using the logged IP address, clearly highly sensitive 
information. Despite these uncertainties about the analy-
sis, the differential privacy guarantees are immediately 
quantifiable.

4.2. Data analysis: Stage 2 of 3
Our program as written gives the count for a single query, 
and if the analyst wants additional counts they must run the 
program again. This incurs additional privacy cost, and will 
be unsuitable for extracting large numbers of query counts.

Instead, we can rewrite the previous program to use 
the Partition operator to permit an arbitrary number 
of counts at fixed privacy cost. Rather than filter records 
with Where, we use the same key selection function and 
an input set of query strings to Partition the records. 
Having done so, we iterate through each of the queries 

Table 1. Numbers of Users Searching for Various Terms, Broken Out 
by Number of Times They Searched.

Freq 1 Freq 2 Freq 3 Freq 4 Freq 5

google 356,743 108,336 45,363 25,092 14,347

yahoo 140,966 42,379 17,624 9671 5,707

baidu 300 79 29 26 9

amazon 16,798 3,376 808 378 132

ebay 100,338 26,205 9,564 4,065 2,604

cnn 25,442 7,492 2,899 1,658 919

msnbc 7,828 2,496 849 565 283
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reporting (a not uncommon task) to a richer analysis appli-
cation. Our goal is to visualize the distribution of locations 
of searches for various search queries. At a high level, we 
will transform the IP addresses into latitude–longitude 
pairs, by joining with a second proprietary data set, and 
then send the coordinates to a visualization algorithm bor-
rowed from the work of McSherry and Talwar.12 Although we 
will describe the visualization algorithm at a high level, it 
is fundamental that PINQ provides privacy guarantees even 
without the knowledge of what the algorithm plans to do 
with the data.

Starting from the prior examples, in which we have 
partitioned the data sets by query and grouped the 
results by IP address, we now demonstrate a fragment 
that will let us transform IP addresses into latitude–
longitude coordinates. We use a second data set iplat-
lon whose entries are IP addresses and corresponding 
latitude–longitude coordinates. We join these two data 
sets, using the IP addresses in each as keys, resulting 
in a lat-lon coordinate pair in place of each group of 
searches. Example 6 contains the code for this Join 
transformation.

Example 6. Transforming IP addresses to coordinates.

 // ... within the per-query loop, from before ...

 // use the searches for query, group by IP address
 var users = parts[query].GroupBy(fields => fields[0]);

 // extract IP address from each group, and match
 var coords = users.Join(iplatlon,
			             group => group.Key,
		            entry => entry.IP,
		          (group, entry) => entry.LatLon);

Recall that Join in PINQ only reports pairs that result 
from unique matches. In this program, we know that each 
IP occurs as a key at most once in users, as we have just 
performed a GroupBy with this field as the key. In the 
second data set, we assume (perhaps wrongly) that there 
is one entry per IP address. If this is not the case, or if we 
are not sure, we could also group the second data set by IP 
address and use the first lat-lon entry in each group. This is 
arguably more robust, but results in an additional factor of 
two in the privacy cost against the iplatlon data set; we 
would like to avoid this cost when we know we can safely 
do so.

Finally, our algorithm takes the list of lat-lon coor-
dinates of the IPs searching for the input search query, 
and invokes a Visualization subroutine, whose 
implementation is not specified here. An example for 
the query “cricket” can be seen in Figure 4. Readers who 
are not entirely sure how or why this routine works are in 
roughly the same situation as most data providers. We 
have no intuition as to why the computation should be 
preserve privacy, nor is any forthcoming. Nonetheless, 
as the routine is only provided access to the data through 
a PINQueryable, we are assured of differential privacy 
guarantees even without understanding the algorithm’s 
intent or implementation.

Support for such “modular design” of privacy algo-
rithms is an important enabler for research and develop-
ment, removing the need for end-to-end understanding of 
the computation. This is especially important for explor-
atory data analysis, where even the analysts themselves 
may not know the questions they will need answered 
until they start asking them. Removing the requirement 
of whole-program understanding also enables propri-
etary data analyses, in which an analyst may not want 
to divulge the analysis they intend to conduct. While 
the execution platform clearly must be instructed in the 
computations the analyst requires, the data provider 
does not need to be informed of their specifics to have 
privacy assurances.

Our second data set raises an interesting point about 
alternate applications of differential privacy. While the 
operation we perform, mapping IP addresses to latitude–
longitude pairs, is essentially just a complicated Select, 
the data set describing the mapping is proprietary. Each 
record in the data set required some investment of effort 
to produce, from which the owners presumably hope to 
extract value; they may not want to release the records in 
the clear. Using this data set through PINQ prevents the 
dissemination of individual records, preserving the value 
of the data set while still permitting its use in analyses. 
Similarly, many organizations have data retention poli-
cies requiring the deletion of data after a certain amount 
of time. Ensuring that this deletion happens when ana-
lysts are allowed to create their own copies of the data 
is effectively impossible. Again, PINQ allows analysts to 
use such data without compromising the organization’s 
obligations.

Figure 4. Example output, displaying a representative distribution of 
the latitude–longitude coordinates of users searching for “cricket.” 
The computation has differential privacy not because of properties 
of the output itself, a quite complicated artifact, but because of the 
manner in which it was produced.
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5. RELATED WORK
The analysis of sensitive data under the constraints of con-
fidentiality has been the subject of a substantial amount 
of prior research; for an introductory survey we recom-
mend the reader to Adam and Wortmann,1 but stress that 
the field is still very much evolving. For an introduction to 
differential privacy we recommend the reader to Dwork.6

While PINQ is the first platform we are aware of pro-
viding differential privacy guarantees, several other inter-
active data analysis platforms have been proposed as an 
approach to providing privacy guarantees. Such platforms 
are generally built on the principle that aggregate values 
are less sensitive that individual records, but are very aware 
that allowing an analyst to define an arbitrary aggregation 
is very dangerous. Various and varying criteria are used 
to determine which aggregates an analyst should be able 
to conduct. To the best of our knowledge, none of these 
systems have provided quantifiable end-to-end privacy 
guarantees.

Recent interest in differential privacy for interactive 
systems appears to have started with Mirkovic,13 who pro-
posed using differential privacy as a criteria for admit-
ting analyst-defined aggregations. The work defines an 
analysis language (targeted at network trace analysis) but 
does not go so far as to specify semantics that provide 
formal differential privacy guarantees. It seems possible 
that PINQ could support much of the proposed language 
without much additional work, with further trace-specific 
transformations and aggregations added as extensions to 
PINQ.

Airavat14 is a recent analogue of PINQ for Map-Reduce 
computations. The authors invest much more effort in 
hardening the system, securing the computation through 
the use of a mandatory access control operating system 
and an instrumented java virtual machine, as well as PINQ-
style differential privacy mathematics. At the same time, 
it seems that the resulting analysis language (one Map-
Reduce stage) is less expressive than LINQ. It remains to be 
seen to what degree the system level guarantees of Airavat 
can be fruitfully hybridized with the language level restric-
tion used in PINQ.

6. CONCLUSION
We have presented “Privacy Integrated Queries” (PINQ), a 
trustworthy platform for privacy-preserving data analysis. 
PINQ provides private access to arbitrarily sensitive data, 
without requiring privacy expertise of analysts or provid-
ers. The interface and behavior are very much like that 
of Language Intergrated Queries (LINQ), and the privacy 
guarantees are the unconditional guarantees of differen-
tial privacy.

PINQ presents an opportunity to establish a more formal 
and transparent basis for privacy technology and research. 
PINQ’s contribution is not only that one can write private 
programs, but that one can write only private programs. 
Algorithms built out of trusted components inherit privacy 
properties structurally, and do not require expert analysis 
and understanding to safely deploy. This expands the set 
of capable users of sensitive data, increases the portability 

of privacy-preserving algorithms across data sets and 
domains, and broadens the scope of the analysis of sensi-
tive data.

6.1. Availability
The prototype of PINQ used for the experiments in this 
paper, as well as further example programs and a brief 
tutorial, are available at http://research.microsoft.com/
PINQ.
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