
doi:10.1145/1810891.1810916

september 2010   | vol. 53 | no. 9 | communications of the acm 89

Privacy Integrated Queries:
An Extensible Platform for Privacy-Preserving Data Analysis
By Frank McSherry

Abstract
Privacy Integrated Queries (PINQ) is an extensible data
analysis platform designed to provide unconditional privacy
guarantees for the records of the underlying data sets. PINQ
provides analysts with access to records through an SQL-
like declarative language (LINQ) amidst otherwise arbitrary
C# code. At the same time, the design of PINQ’s analysis
language and its careful implementation provide formal
guarantees of differential privacy for any and all uses of the
platform. PINQ’s guarantees require no trust placed in the
expertise or diligence of the analysts, broadening the scope
for design and deployment of privacy-preserving data analy-
ses, especially by privacy nonexperts.

1. INTRODUCTION
Vast quantities of individual information are currently col-
lected and analyzed by a broad spectrum of organizations.
While these data clearly hold great potential for analysis,
they are commonly collected under the premise of privacy.
Careless disclosures can cause harm to the data’s subjects
and jeopardize future access to such sensitive information.

This has led to substantial interest in data analysis
techniques with guarantees of privacy for the underly-
ing records. Despite significant progress in the design of
such algorithms, privacy results are subtle, numerous, and
largely disparate. Myriad definitions, assumptions, and
guarantees challenge even privacy experts to assess and
adapt new techniques. Careful and diligent collaborations
between nonexpert data analysts and data providers are all
but impossible.

In an attempt to put much of the successful privacy
research in the hands of privacy nonexperts, we designed
 the Privacy Integrated Queries (PINQ) language and run-
time, in which all analyses are guaranteed to have one of
the strongest unconditional privacy guarantees: differen-
tial privacy.5, 8 Differential privacy requires that computa-
tions be formally indistinguishable when run with and
without any one record, almost as if each participant had
opted out of the data set. PINQ comprises a declarative
programming language in which all written statements
provide differential privacy, and an execution environment
whose implementation respects the formal requirements
of differential privacy.

Importantly, the privacy guarantees are provided by the
platform itself; they require no privacy sophistication on the
part of the platform’s users. This is unlike much prior pri-
vacy research which often relies heavily on expert design and
analysis to create analyses, and expert evaluation to vet pro-
posed approaches. In such a mode, nonexpert analysts are
unable to express themselves clearly or convincingly, and

nonexpert providers are unable to verify or interpret their
privacy guarantees. Here the platform itself serves as a com-
mon basis for trust, even for analysts and providers with no
privacy expertise.

The advantage our approach has over prior platforms lies
in differential privacy: its robust guarantees are compatible
with many declarative operations and permit end-to-end
analysis of arbitrary programs containing these operations.
Its guarantees hold in the presence of arbitrary prior knowl-
edge and for arbitrary subsequent behavior, simplifying the
attack model and allowing realistic, incremental deploy-
ment. Its formal nature also enables unexpected new
functionality, including grouping and joining records on
sensitive attributes, the analysis of text and unstructured
binary data, modular algorithm design (i.e., without whole-
program knowledge), and analyses which integrate multiple
data sources from distinct and mutually distrustful data
providers.

The main restriction of this approach is that analysts
can only operate on the data from a distance: the opera-
tions are restricted to declarative transformations and
aggregations; no source or derived records are returned to
the analysts. This restriction is not entirely unfamiliar to
many analysts, who are unable to personally inspect large
volumes of data. Instead, they write computer programs to
distill the data to manageable aggregates, on which they
base further analyses. While the proposed platform intro-
duces a stricter boundary between analyst and data, it is
not an entirely new one.

1.1. An overview of PINQ
We start by sketching the different aspects of PINQ that
come together to provide a data analysis platform with dif-
ferential privacy guarantees. Each of these sections are then
developed further in the remaining sections of the note, but
the high level descriptions here should give a taste for the
different facets of the project.
Mathematics of PINQ: The mathematical basis of PINQ, dif-
ferential privacy, requires any outcome of a computation
over a set of records be almost as likely with and without any
one of those records. Computations with this guarantee be-
have, from the point of view of each participant, as if their
data were never used. It is currently one of the strongest of
privacy guarantees. The simplest example of a differentially
private computation is noisy counting: releasing of the num-
ber of records in a data set perturbed by symmetric exponen-

The original version of this paper is entitled “Privacy
Integrated Queries” and was published in the Proceedings
of SIGMOD 2009.

90 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

performant LINQ providers.
We stress that PINQ represents a very modest code base;

in its current implementation it is only 613 lines of C# code.
The assessment logic, following the math, is uncomplicated.
The aggregations must be carefully implemented to provide
differential privacy, but these are most often only a matter
of postprocessing the correct aggregate (e.g., adding noise).
PINQ must also ensure that the submitted queries con-
form to our mathematical model for them. LINQ achieves
substantial power by allowing general C# computations in
predicates of Where, functions of Select, and other opera-
tions. PINQ must restrict and shepherd these computations
to mitigate the potential for exploitation of side channels.
Applications of PINQ: Programming with PINQ is done
through the declarative LINQ language, in an otherwise
unconstrained C# program. The analyst is not given direct
access to the underlying data; instead, information is ex-
tracted via PINQ’s aggregation methods. In exchange for
this indirection, the analyst’s code is allowed to operate on
unmasked, unaltered, live records.

With a few important exceptions, programs written with
PINQ look almost identical to their counterparts in LINQ.
The analysts assemble an arbitrary query from permit-
ted transformations, and specify the accuracy for aggrega-
tions. Example 1 contains a C# PINQ fragment for counting
distinct IP addresses issuing searches for an input query
phrase.

Example 1. Counting searches from distinct users in
PINQ.

We will develop this example into a more complex search
log visualization application showcasing several of PINQ’s

advantages over other approaches: rich data types, complex
transformations, and integration into higher level applica-
tions, among many others. The full application is under 100
lines of code and took less than a day to write.

We have written several other examples of data analy-
ses in PINQ, including k-means clustering, perceptron

tial (Laplace) noise. Many other simple aggregations (e.g.,
Sum, Average, Median, among others) have similarly accu-
rate randomized analogs.

To allow nonexpert analysts to produce new differen-
tially private computations, we introduce the use of trans-
formations, applied to data before differentially private
aggregations, without weakening the differential pri-
vacy guarantees. For several relational transformations,
a changed record in the input data set always results in
relatively few changes in the output data set. A differen-
tially private analysis applied to transformed data masks
changes in the transformation’s output, and consequently
masks changes in its input as well. The composed trans-
formation and analysis will provide differential privacy,
with a formal guarantee depending on the quantitative
form of “relatively few,” which we must determine for each
transformation. Such transformations can be composed
arbitrarily, by nonexpert analysts, and combined with
differentially private aggregations will serve as our query
language.

Finally, any sequence of differentially private compu-
tations also provides differential privacy; the quantitative
privacy depletions are at worst additive (and occasionally
better), and can be tracked online. Consequently, we can
embed the query language above into any general purpose
programming language, allowing arbitrary use of the results
that return from the queries, as long as we monitor and con-
strain the total privacy depletion.
Implementation of PINQ: We have implemented a proto-
type of PINQ based on C#’s Language Integrated Queries
(LINQ), an SQL-like declarative query language extension
to .NET languages. Data providers use PINQ to wrap arbi-
trary LINQ data sources with a specified differential priva-
cy allotment for each analyst. Analysts then write arbitrary
C# programs, writing queries over PINQ data sources al-
most as if they were using unprotected LINQ data sources.
PINQ’s restricted language and run-time checks ensure
that the provider’s differential privacy requirements are
respected, no matter how an analyst uses these protected
data sets.

At a high level, PINQ allows the analyst to compose arbi-
trary queries over the source data, whose quantitative dif-
ferential privacy guarantees are evaluated before the query
is executed. If the analyst has framed a query whose privacy
cost falls within the bounds prescribed by the data provid-
ers, the query is executed and the privacy cost subtracted
from the amount available to the analyst for the associated
data sets. If the cost falls outside the bounds, PINQ does not
execute the query.

PINQ is designed as a thin layer in front of an exist-
ing query engine (Figure 1); it does not manage data or
execute queries. Instead, it supplies differentially private
implementations of common transformations and aggre-
gations, themselves written in LINQ and executed by the
LINQ providers of the underlying data sets. This approach
substantially simplifies our implementation, but also allows
a large degree of flexibility in its deployment. A data source
only needs a LINQ interface to support PINQ, and we can
take advantage of any investment and engineering put in to

 var data = new PINQueryable<SearchRecord>(...  ...);

 var users = from record in data
	 where record.Query == argv[0]

	 groupby record.IPAddress;

 Console.WriteLine(argv[0] + “:” + users.Count(0.1) );

?

?
?

Figure 1. PINQ provides a thin protective layer in front of existing
data sources, presenting an interface that appears to be that of the
raw data itself.

september 2010 | vol. 53 | no. 9 | communications of the acm 91

classification, and contingency table measurement. These
examples have all been relatively easy adaptations of exist-
ing approaches.2, 4

2. MATHEMATICAL FOUNDATIONS
We now develop some supporting mathematics for PINQ.
We review the privacy definition we use, differential pri-
vacy, and develop several properties necessary to design
a programming language supporting its guarantees.
Specifically, we discuss the data types we can support, com-
mon differentially private aggregations, how transformations
of the data sets impact privacy, and how privacy guarantees of
multiple analyses compose. All of our conclusions are imme-
diate consequences of differential privacy, rather than addi-
tional assumptions or implementation details. The proofs
are available in the full version of the paper.10

2.1. Differential privacy
Differential privacy is a relatively new privacy definition,
building upon the work of Dwork et al.8 and publicly articu-
lated in Dwork.5 It differs from most previous definitions in
that it does not attempt to guarantee the prevention of data
disclosures, privacy violations, or other bad events; instead,
it guarantees that participation in the data set is not their
cause.

The definition of differential privacy requires that a ran-
domized computation yield nearly identical distributions
over outcomes when executed on nearly identical input data
sets. Treating the input data sets as multisets of records over
an arbitrary domain and using  for symmetric difference
(i.e., A  B is the set of records in A or B, but not both):

Definition 1. A randomized computation M provides -
differential privacy if for any two input data sets A and B, and
any set of possible outputs S of M,

For values of x much less than one, exp(x) is approximately
1 + x. Differential privacy relies only on the assumption that
the data sets are comprised of records, of any data type, and
is most meaningful when there are few records for each par-
ticipant, relative to 1/.

The definition is not difficult to motivate to nonexperts.
A potential participant can choose between two inputs to
the computation M: a data set containing their records (A)
and the equivalent data set with their records removed (B).
Their privacy concerns stem from the belief that these two
inputs may lead to noticeably different outcomes for them.
However, differential privacy requires that any output event
(S) is almost as likely to occur with these records as without.
From the point of view of any participant, computations
which provide differential privacy behave almost as if their
records had not been included in the analysis.

Taking a concrete example, consider the sensible con-
cern of most Web search users that their name and search
history might appear on the front page of the New York
Times.3 For each participant, there is some set S of outputs
of M that would prompt the New York Times to this publica-
tion; we do not necessarily know what this set S of outputs is,

but we need not define S for the privacy guarantees to hold.
For all users, differential privacy ensures that the probability
the New York Times publishes their name and search history
is barely more than had it not been included as input to M.
Unless the user has made the queries public in some other
way, we imagine that this is improbable indeed.

2.2. Basic aggregations
The simplest differentially private aggregation (from Dwork
et al.8) releases the number of records in a data set, after the
addition of symmetric exponential (Laplace) noise, scaled
by  (Figure 2). The Laplace distribution is chosen because
it has the property that the probability of any outcome
decrease by a factor of exp() with each unit step away from
its mean. Translating its mean (shifting the true value) by
one unit scales the probability of any output by a multiplica-
tive factor of at most exp(). Changing an input data set from
A to B can shift the true count by at most |A  B|, and conse-
quently a multiplicative change of at most exp( × |A  B|) in
the probability of any outcome.

Theorem 1. The mechanism M(X) = |X| + Laplace (1/)
provides -differential privacy.

The Laplace distribution has exponential tails in both
directions, and the probability that the error exceeds t/ in
either direction is exponentially small in t. Consequently,
the released counts are likely to be close to the true counts.
Other Primitive Aggregations: There are many other mecha-
nisms that provide differential privacy; papers on the sub-
ject typically contain several. To date each has privacy es-
tablished as above, by written mathematical proof based on
intended behavior. While this is clearly an important step in
developing such a computation, the guarantees are only as
convincing as the proof is accessible and the implementa-
tion is correct.

Our goal is to enable the creation of as many differentially
private computations as possible using only a few primitive
components, whose mathematical properties and imple-
mentations can be publicly scrutinized and possibly verified.
While we shouldn’t preclude the introduction of novel primi-
tives, they should be the exceptional, rather than default,
approach to designing new differentially private algorithms.

2.3. Stable transformations
Rather than restrict programmers to a fixed set of aggre-
gations, we intend to supply analysts with a programming
language they can use to describe new and unforeseen com-
putations. Most of the power of PINQ lies in arming the

107 108 109 110 111 112 113106105104103102

Figure 2. Adding symmetric exponential noise to counts causes the
probability of any output (or set of outputs) to increase or decrease
by at most a multiplicative factor when the counts are translated.

92 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

result in a set of pairs of records, one from each input, of
records whose keys match. A single record in either set could
match an unbounded number of records in the other set.
Consequently, this important transformation has no sta-
bility bound. As we discuss later, there are restricted forms
of Join that do have bounded stability (stability one, with
respect to both inputs), but their semantics deviate from the
unrestricted Join present in LINQ.

2.4. Composition
Any sequence of differentially private computations also
provides differential privacy. Importantly, this is true even
when subsequent computations can depend arbitrarily on
the outcomes of the preceding computations.

Theorem 3. Let Mi each provide i-differential privacy. The
sequence of Mi(X) provides (Si  i) -differential privacy.

This simple theorem indicates that to track the cumu-
lative privacy implications of several analyses, we need
not do anything more complicated than add the privacy
depletions.

If the queries are applied to disjoint subsets of the input
domain we can improve the bound to the worst of the pri-
vacy guarantees, rather than the sum.

Theorem 4. Let Mi each provide -differential privacy.
Let Di be arbitrary disjoint subsets of the input domain D. The
sequence of Mi (X Ç Di ) provides -differential privacy.

Whereas sequential composition is critical for any
functional privacy platform, parallel composition is a very
important part of extracting good performance from a pri-
vacy platform. Although such operations could be analyzed
as sequential composition, the privacy guarantee would
scale with the number of subsets analyzed, often quite
large.

2.5. A privacy calculus
The mathematics of this section allows us to quantitatively
bound the privacy implications of arbitrary sequences of
rich transformations and aggregations. This simplicity
allows us to avoid burdening the analyst with the responsi-
bility of correctly or completely describing the mathemati-
cal features of their query. Even for researchers familiar with
the mathematics (e.g., the author), the reasoning process
can be quite subtle and error-prone. Fortunately, it can be
automated, the subject of Section 3.

3. IMPLEMENTING PINQ
PINQ is built atop C#’s LINQ. LINQ is a recent language
extension to the .NET framework integrating declarative
access to data streams (using a language very much like
SQL) into arbitrary C# programs. Central to LINQ is the
IQueryable<T> type, a generic sequence of records
of type T. An IQueryable admits transformations
such as Where, GroupBy, Union, Join, and more,
returning new IQueryable objects over possibly new
types. Only once an aggregation or enumeration is

analyst with a rich set of transformations to apply to the data
set before differentially private aggregations.

Definition 2. We say a transformation T is c-stable if for any
two input data sets A and B,

Transformations with bounded stability propagate dif-
ferential privacy guarantees made of their outputs back to
their inputs, scaled by their stability constant.

Theorem 2. Let M provide -differential privacy, and let T
be an arbitrary c-stable transformation. The composite compu-
tation M ° T provides ( × c)-differential privacy.

Once stability bounds are established for a set of trans-
formations, a nonexpert analyst can combine any number
of them as they see fit. Differential privacy bounds result
from repeated application of Theorem 2, compounding the
stability constants of the applied transformations with the 
value of the final aggregation.
Example Transformations: To give a sense for the types of
stability bounds to expect, we consider a few representative
transformations from LINQ.

The Where transformation takes an arbitrary predicate
over records, and results in the subset of records satisfying
the predicate. Any records in difference between A and B will
result in at most those records in difference between their
restrictions, resulting in a stability of one. Importantly, this
is true independent of the supplied predicate; the predi-
cate’s logic can use arbitrarily sensitive information in the
records and will still have stability one.

The GroupBy transformation takes a key selection func-
tion, mapping records to some key type, and results in a set
of groups, one for each observed key, where each group con-
tains the records mapped to the associated key value. For
every record in difference between A and B, a group in the
output can change. A change corresponds to symmetric dif-
ference two, not one; despite the apparent similarities in the
groups, subsequent logic (e.g., a Where) can treat the two
groups as arbitrarily different. As with Where, the stability
of two holds for any key selection function, including those
based on very sensitive fields or functions thereof.

The Union transformation takes a second data set, and
results in the set of elements in either the first or the second
data set. A record in difference between A and B results in no
more than one record in difference in the output, yielding
stability one. This is also true for records in difference in the
second data set, giving us an example of a binary transforma-
tion. A differentially private analysis of the result of a binary
transformation reflects information about both sources.
This is uncomplicated unless the inputs derive from com-
mon data. Even so, a single change to a data set in common
induces a bounded change in each of the transformation’s
inputs, and a bounded change in its output (i.e., the stability
constants add).

The Join transformation takes a second data set, and
key selection functions for both data sets. It intends to

september 2010 | vol. 53 | no. 9 | communications of the acm 93

aggregation only if the eventual response is positive.
Count is implemented as per Theorem 1, returning

the accurate count of the underlying data plus Laplace
noise whose magnitude is specified by the analyst, if large
enough. Example 2 depicts the implementation of Count.

Example 2. [Abbreviated] Implementation of Count.

PINQ includes other aggregations—including Sum,
Average, and Median among others—each of which takes
epsilon and a function converting each record to a double.
To provide differential privacy, the resulting values are first

clamped to the interval [−1, +1] before they are aggregated.
This is important to ensure that a single record has only a
limited impact on the aggregate, allowing a relatively small
perturbation to provide differential privacy.

The implementations of these methods and the proofs
of their privacy guarantees are largely prior work. Sum, like
Count, is implemented via the addition of Laplace noise
and is discussed in Dwork et al.8 Average and Median
are implemented using the exponential mechanism
of McSherry and Talwar,11 and output values in the range
[−1, +1] with probabilities

Each downweights the probability of a possible output x by
(the exponentiation of) the fewest modifications to the input
A needed to make x the correct answer.

The accuracy of Average is roughly 2/ divided by the
number of records in the data set. Median results in a value
which partitions the input records into two sets whose sizes
differ by roughly an additive 2/; it need not be numerically
close to the actual median.

3.2. Transformation operators
PINQ’s flexibility derives from its transformation operators,
each of which results in a new PINQueryable wrapped
around an updated data source. The associated PINQAgent
is wired to forward requests on to the participating source
data sets before accepting, scaling epsilon by the transfor-
mation’s stability constant.

Our implementations of many transformations are
mostly a matter of constructing new PINQueryable and
PINQAgent objects with the appropriate parameters.
Some care is taken to restrict computations, as discussed in
Section 3.4. Example 3 depicts the implementation of PINQ’s
GroupBy. Most transformations require similarly simple pri-
vacy logic.

invoked is any computation performed; until this point
the IQueryable only records the structure of the query
and its data sources.

PINQ’s implementation centers on a PINQueryable<T>
generic type, wrapped around an underlying
IQueryable<T>. This type supports the same methods
as an IQueryable, but with implementations ensuring
that the appropriate privacy calculations are conducted
before any execution is invoked. Each PINQueryable is
comprised of a private member data set (an IQueryable),
and a second new data type, a PINQAgent, responsible for
accepting or rejecting requested increments to epsilon.
Aggregations test the associated PINQAgent to confirm
that the increment to epsilon is acceptable before they
execute. Transformations result in new PINQueryable
objects with a transformed data source and a new
PINQAgent, containing transformation-appropriate logic
to forward modified epsilon requests to the agents of its
source PINQueryable data sets.

The PINQAgent interface has one method,
Alert(epsilon), invoked before executing any differen-
tially private aggregation with the appropriate value of epsi-
lon, to confirm access. For PINQueryable objects wrapped
around raw data sets, the PINQAgent is implemented by
the data provider based on its privacy requirements, either
from scratch or using one of several defaults (e.g., decre-
menting a per-analyst budget). For objects resulting from
transformations of other PINQueryable data sets, PINQ
constructs a PINQAgent which queries the PINQAgent
objects of the transformation’s inputs with transformation-
appropriate scaled values of epsilon. These queries are be
forwarded recursively, with appropriate values of epsilon,
until all source data have been consulted. The process is
sketched in Figure 3.

3.1. Aggregation operators
Each aggregation in PINQ takes epsilon as a param-
eter and provides -differential privacy with respect to its
immediate data source. The privacy implications may be
far worse for the underlying data sets from which this data
set derives, and it is important to confirm the appropriately
scaled amount of differentially private access. Before execu-
tion, each aggregation invokes the Alert method of their
associated PINQAgent with this epsilon, conducting the

Figure 3. PINQ control/data flow. An analyst initiates a request to
a PINQ object, whose agent (A) confirms, recursively, differentially
private access. Once approved by the providers’ agents, data
(D) flows back through trusted code ensuring the appropriate level
of differential privacy.

??
Policy

Policy

D

A

D

A

D

A

 double Count(double epsilon)

{

	   if (epsilon > 0.0 && myagent.Alert(epsilon))

	      return mysource.Count() + Laplace(1.0/epsilon);
	   else

	      throw new Exception(“Access is denied”);

}

94 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

Partition in PINQ can be seen in the following two
queries:

Q1.  How many ZIP codes contain at least 10 patients?
Q2.  For each ZIP code, how many patients live there?

For Q1, a GroupBy by ZIP, a Where on the number of
patients, and a Count gives an approximate answer to the
exact number of ZIP codes with at least 10 patients. For
Q2, a Partition by ZIP, followed by a Count on each part
returns an approximate count for each ZIP code. As the mea-
surements can be noisy, neither query necessarily provides
a good estimate for the other. However, both are at times
important questions, and PINQ is able to answer either
accurately depending on how the question is posed.

The Partition operator can be followed not only by
aggregation but by further differentially private computa-
tion on each of the parts. It enables a powerful recursive
descent programming paradigm demonstrated in Section 4,
and is very important in most nontrivial data analyses.

3.4. Security issues in implementation
Although the stability mathematics, composition properties,
and definition of differential privacy provide mathematical
guarantees, they do so only when PINQ’s behavior is in line
with our mathematical expectations. There are many impor-
tant but subtle implementation details intended to protect
against clever attackers who might use the implementa-
tion details of PINQ to learn information the mathematics
would conceal. These are largely the result of user-defined
code that may attempt to pass information out through side
channels, either directly through disk or network channels,
or indirectly by throwing exceptions or simply not terminat-
ing. PINQ’s purify function gives the provider the oppor-
tunity to examine incoming methods and rewrite them,
either by restricting the computations to those comprised
of known-safe methods, or by rewriting the methods with
appropriate guards. There are other issues and countermea-
sures in the full paper, and likely more unrecognized issues
to be discovered and addressed.

4. APPLICATIONS AND EVALUATION
In this section, we present data analyses written with
PINQ. Clearly not all analysis tasks can be implemented
in PINQ (indeed, this is the point), but we aim to convince
the reader that the set is sufficiently large as to be broadly
useful.

Our main example application is a data visualization
based on Web search logs containing IP addresses and query
text. The application demonstrates many features of PINQ
largely absent from other privacy-preserving data analysis
platforms. These include direct access to unmodified data,
user-supplied record-to-record transformations, operations
such as GroupBy and Join on “sensitive” attributes, mul-
tiple independent data sets, and unfettered integration into
higher-level programs.

For our experiments we use the DryadLINQ15 provider.
DryadLINQ is a research LINQ provider implemented on
top of the Dryad9 middleware for data parallel computation,

Example 3. [Abbreviated] Implementation of GroupBy.

PINQueryable<IGrouping<K,T>>
GroupBy<T,K>(Expression<Func<T,K>> keyFunc)
{
	 // Section 3.4 explains this, and why it is needed
	 keyFunc = Purify(keyFunc) as Expression<Func<T,K>>;

	 // new agent with appropriate ancestor and stability
	 var newagent = new PINQAgentUnary(this.agent, 2.0);

	 // new data source reflecting the operation
	 var newsource = this.source.GroupBy(keyFunc);

	 // construct and return a new source and agent pair
	 return new PINQueryable<IGrouping<K,T>>(newsource,
		 newagent);
}

The Join transformation is our main deviation from
LINQ. To ensure stability one with respect to each input,
we only report pairs that are the result of unique key
matches. To ensure these semantics, PINQ’s Join invokes
LINQ’s GroupBy on each input, using their key selection
functions. Groups with more than one element are dis-
carded, and the resulting singleton elements are joined
using LINQ’s Join.

While this clearly (and intentionally) interferes with
standard uses of Join, analysts can reproduce its standard
behavior by first invoking GroupBy on each data set, ensur-
ing that there is at most one record per group, before invok-
ing Join. The difference is that the Join is now required
to reduce pairs of groups, rather than pairs of records.
Each pair of groups yields a single result, rather than the
unbounded cartesian product of the two, constraining the
output but enabling privacy guarantees.

3.3. The partition operator
Theorem 4 tells us that structurally disjoint queries cost
only the maximum privacy differential, and we would like
to expose this functionality to the analyst. To that end, we
introduce a Partition operation, like GroupBy, but in
which the analyst must explicitly provide a set of candidate
keys. The analyst is rewarded with a set of PINQueryable
objects, one for each candidate key, containing the (pos-
sibly empty) subset of records that map to the each of the
associated keys. It is important that PINQ does not reveal
the set of keys present in the actual data, as this would vio-
late differential privacy. For this reason, the analyst must
specify the keys of interest, and PINQ must not correct
them. Some subsets may be empty, and some records may
not be reflected in any subset.

The PINQAgent objects of these new PINQueryable
objects all reference the same source PINQAgent, of the
source data, but following Theorem 4 will alert the agent
only to changes in the maximum value of epsilon. The
agents share a vector of their accumulated epsilon values
since construction, and consult this vector with each update
to see if the maximum has increased. If so, they forward the
change in maximum. If the maximum has not increased,
they accept the request.

The difference between the uses of GroupBy and

september 2010 | vol. 53 | no. 9 | communications of the acm 95

and associated parts, grouping the records in each by IP
address. To further enrich the example, we then parti-
tion each of these data sets by the number of times each
IP address has issued the query, before producing a noisy
count (see Example 5).

Example 5. Measuring many query frequencies in PINQ.

 // prepare data with privacy budget
 var agent = new PINQAgentBudget(1.0);
 var data = new PINQueryable<string>(rawdata, agent);

 // break out fields, but partition rather than filter
 var parts = data.Select(line => line.Split(’,’))
	 .Partition(args, fields =>
fields[20]);

 foreach (var query in args)
 {
	 // use the searches for query, grouped by IP address
	 var users = parts[query].GroupBy(fields => fields[0]);

	 // further partition by the frequency of searches
	 var freqs = users.Partition(new int[] { 1,2,3,4,5 },
	 group => group.Count());

	 // output the counts to the screen, or anywhere else
	 Console.WriteLine(query + “:”);
	 foreach (var count in new int[] { 1,2,3,4,5 })
	 Console.WriteLine(freqs[count].Count(0.1));
 }

Because we use Partition rather than multiple
Where calls, the privacy cost associated with the program
can be seen by PINQ to be only the maximum of the pri-
vacy costs of each of the loops, exactly the same cost as in
Example 4.

Table 1 reports the measurements of a few query strings
taken over our data set. Each reported measurement is
the exact count plus Laplace noise with parameter 10, cor-
responding to standard deviation For most mea-
surements this error is relatively insignificant. For some
measurements it is significant, but nonetheless reveals that
the original value is quite small.

4.3. Data analysis: Stage 3 of 3
We now expand out our example program from simple

and currently scales to at least thousands of compute
nodes. Our test data sets are of limited size, roughly 100GB,
and do not fully exercise the scalability of the DryadLINQ
provider. We do not report on execution times, as PINQ’s
reasoning is an insignificant contribution, but rather the
amount and nature of information we can extract from the
data privately.

For clarity, we present examples written as if the data ana-
lyst is also the data provider, charged with assembling the
source PINQueryable objects. In a real deployment, this
assembly should be done on separate trusted infrastructure.

4.1. Data analysis: Stage 1 of 3
We start with a simple application of PINQ, approximating
the number of distinct search users who have searched for
an arbitrary query term. Our approach is just as it would
have been in LINQ: we first transform the search records
(comma-delimited strings) into tuples (string arrays) whose
fields have known meaning, then restrict the data to records
with the input search query, then group by the supplied
IP address to get a proxy for distinct users, then count the
remaining records (groups of string arrays). The program is
reproduced in Example 4.

Example 4. Measuring query frequencies in PINQ.

 // prepare data with privacy budget
 var agent = new PINQAgentBudget(1.0);
 var data = new PINQueryable<string>(rawdata, agent);

 // break out fields, filter by query, group by IP
 var users = data.Select(line => line.Split(’,’))
	 .Where(fields => fields[20] == args[0])
	 .GroupBy(fields => fields[0]);

 // output the count to the screen, or anywhere else
 Console.WriteLine(args[0] + “:” + users.Count(0.1));

This relatively simple example demonstrates sev-
eral important features of PINQ. The input data are text
strings; we happen to know a priori that they are comma
delimited, but this information plays no role in the pri-
vacy guarantees. The filtering is done against an analyst-
supplied query term, and may be frequent or infrequent,
sensitive or insensitive. To get the set of distinct users we
group using the logged IP address, clearly highly sensitive
information. Despite these uncertainties about the analy-
sis, the differential privacy guarantees are immediately
quantifiable.

4.2. Data analysis: Stage 2 of 3
Our program as written gives the count for a single query,
and if the analyst wants additional counts they must run the
program again. This incurs additional privacy cost, and will
be unsuitable for extracting large numbers of query counts.

Instead, we can rewrite the previous program to use
the Partition operator to permit an arbitrary number
of counts at fixed privacy cost. Rather than filter records
with Where, we use the same key selection function and
an input set of query strings to Partition the records.
Having done so, we iterate through each of the queries

Table 1. Numbers of Users Searching for Various Terms, Broken Out
by Number of Times They Searched.

Freq 1 Freq 2 Freq 3 Freq 4 Freq 5

google 356,743 108,336 45,363 25,092 14,347

yahoo 140,966 42,379 17,624 9671 5,707

baidu 300 79 29 26 9

amazon 16,798 3,376 808 378 132

ebay 100,338 26,205 9,564 4,065 2,604

cnn 25,442 7,492 2,899 1,658 919

msnbc 7,828 2,496 849 565 283

96 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

reporting (a not uncommon task) to a richer analysis appli-
cation. Our goal is to visualize the distribution of locations
of searches for various search queries. At a high level, we
will transform the IP addresses into latitude–longitude
pairs, by joining with a second proprietary data set, and
then send the coordinates to a visualization algorithm bor-
rowed from the work of McSherry and Talwar.12 Although we
will describe the visualization algorithm at a high level, it
is fundamental that PINQ provides privacy guarantees even
without the knowledge of what the algorithm plans to do
with the data.

Starting from the prior examples, in which we have
partitioned the data sets by query and grouped the
results by IP address, we now demonstrate a fragment
that will let us transform IP addresses into latitude–
longitude coordinates. We use a second data set iplat-
lon whose entries are IP addresses and corresponding
latitude–longitude coordinates. We join these two data
sets, using the IP addresses in each as keys, resulting
in a lat-lon coordinate pair in place of each group of
searches. Example 6 contains the code for this Join
transformation.

Example 6. Transforming IP addresses to coordinates.

 // ... within the per-query loop, from before ...

 // use the searches for query, group by IP address
 var users = parts[query].GroupBy(fields => fields[0]);

 // extract IP address from each group, and match
 var coords = users.Join(iplatlon,
			       group => group.Key,
		       entry => entry.IP,
		     (group, entry) => entry.LatLon);

Recall that Join in PINQ only reports pairs that result
from unique matches. In this program, we know that each
IP occurs as a key at most once in users, as we have just
performed a GroupBy with this field as the key. In the
second data set, we assume (perhaps wrongly) that there
is one entry per IP address. If this is not the case, or if we
are not sure, we could also group the second data set by IP
address and use the first lat-lon entry in each group. This is
arguably more robust, but results in an additional factor of
two in the privacy cost against the iplatlon data set; we
would like to avoid this cost when we know we can safely
do so.

Finally, our algorithm takes the list of lat-lon coor-
dinates of the IPs searching for the input search query,
and invokes a Visualization subroutine, whose
implementation is not specified here. An example for
the query “cricket” can be seen in Figure 4. Readers who
are not entirely sure how or why this routine works are in
roughly the same situation as most data providers. We
have no intuition as to why the computation should be
preserve privacy, nor is any forthcoming. Nonetheless,
as the routine is only provided access to the data through
a PINQueryable, we are assured of differential privacy
guarantees even without understanding the algorithm’s
intent or implementation.

Support for such “modular design” of privacy algo-
rithms is an important enabler for research and develop-
ment, removing the need for end-to-end understanding of
the computation. This is especially important for explor-
atory data analysis, where even the analysts themselves
may not know the questions they will need answered
until they start asking them. Removing the requirement
of whole-program understanding also enables propri-
etary data analyses, in which an analyst may not want
to divulge the analysis they intend to conduct. While
the execution platform clearly must be instructed in the
computations the analyst requires, the data provider
does not need to be informed of their specifics to have
privacy assurances.

Our second data set raises an interesting point about
alternate applications of differential privacy. While the
operation we perform, mapping IP addresses to latitude–
longitude pairs, is essentially just a complicated Select,
the data set describing the mapping is proprietary. Each
record in the data set required some investment of effort
to produce, from which the owners presumably hope to
extract value; they may not want to release the records in
the clear. Using this data set through PINQ prevents the
dissemination of individual records, preserving the value
of the data set while still permitting its use in analyses.
Similarly, many organizations have data retention poli-
cies requiring the deletion of data after a certain amount
of time. Ensuring that this deletion happens when ana-
lysts are allowed to create their own copies of the data
is effectively impossible. Again, PINQ allows analysts to
use such data without compromising the organization’s
obligations.

Figure 4. Example output, displaying a representative distribution of
the latitude–longitude coordinates of users searching for “cricket.”
The computation has differential privacy not because of properties
of the output itself, a quite complicated artifact, but because of the
manner in which it was produced.

september 2010 | vol. 53 | no. 9 | communications of the acm 97

5. RELATED WORK
The analysis of sensitive data under the constraints of con-
fidentiality has been the subject of a substantial amount
of prior research; for an introductory survey we recom-
mend the reader to Adam and Wortmann,1 but stress that
the field is still very much evolving. For an introduction to
differential privacy we recommend the reader to Dwork.6

While PINQ is the first platform we are aware of pro-
viding differential privacy guarantees, several other inter-
active data analysis platforms have been proposed as an
approach to providing privacy guarantees. Such platforms
are generally built on the principle that aggregate values
are less sensitive that individual records, but are very aware
that allowing an analyst to define an arbitrary aggregation
is very dangerous. Various and varying criteria are used
to determine which aggregates an analyst should be able
to conduct. To the best of our knowledge, none of these
systems have provided quantifiable end-to-end privacy
guarantees.

Recent interest in differential privacy for interactive
systems appears to have started with Mirkovic,13 who pro-
posed using differential privacy as a criteria for admit-
ting analyst-defined aggregations. The work defines an
analysis language (targeted at network trace analysis) but
does not go so far as to specify semantics that provide
formal differential privacy guarantees. It seems possible
that PINQ could support much of the proposed language
without much additional work, with further trace-specific
transformations and aggregations added as extensions to
PINQ.

Airavat14 is a recent analogue of PINQ for Map-Reduce
computations. The authors invest much more effort in
hardening the system, securing the computation through
the use of a mandatory access control operating system
and an instrumented java virtual machine, as well as PINQ-
style differential privacy mathematics. At the same time,
it seems that the resulting analysis language (one Map-
Reduce stage) is less expressive than LINQ. It remains to be
seen to what degree the system level guarantees of Airavat
can be fruitfully hybridized with the language level restric-
tion used in PINQ.

6. CONCLUSION
We have presented “Privacy Integrated Queries” (PINQ), a
trustworthy platform for privacy-preserving data analysis.
PINQ provides private access to arbitrarily sensitive data,
without requiring privacy expertise of analysts or provid-
ers. The interface and behavior are very much like that
of Language Intergrated Queries (LINQ), and the privacy
guarantees are the unconditional guarantees of differen-
tial privacy.

PINQ presents an opportunity to establish a more formal
and transparent basis for privacy technology and research.
PINQ’s contribution is not only that one can write private
programs, but that one can write only private programs.
Algorithms built out of trusted components inherit privacy
properties structurally, and do not require expert analysis
and understanding to safely deploy. This expands the set
of capable users of sensitive data, increases the portability

of privacy-preserving algorithms across data sets and
domains, and broadens the scope of the analysis of sensi-
tive data.

6.1. Availability
The prototype of PINQ used for the experiments in this
paper, as well as further example programs and a brief
tutorial, are available at http://research.microsoft.com/
PINQ.

Acknowledgments
The author gratefully acknowledges the contributions of sev-
eral collaborators. Ilya Mironov, Kobbi Nissim, and Adam
Smith have each expressed substantial interest in and support
for privacy tools and technology usable by nonexperts. Yuan
Yu, Dennis Fetterly, Úlfar Erlingsson, and Mihai Budiu helped
tremendously in educating the author about LINQ, and have
informed the design and implementation of PINQ. Many read-
ers and reviewers have provided comments that have substan-
tially improved the presentation of this paper.�

© 2010 ACM 0001-0782/10/0900 $10.00

  1. �Adam, N.R., Wortmann, J.C. Security-
control methods for statistical
databases: A comparative study,
ACM Comput. Surv., 21, 4 (1989),
515–556.

  2. �B arak, B., Chaudhuri, K., Dwork, C.,
Kale, S., McSherry, F., Talwar, K.
Privacy, accuracy, and consistency too:
a holistic solution to contingency table
release, in PODS (2007), 273–282.

  3. �B arbaro, M., Zeller Jr., T. A face
is exposed for AOL searcher no.
4417749, The New York Times,
August 9, 2006.

  4. �B lum, A., Dwork, C., McSherry, F.,
Nissim, K. Practical privacy: The SuLQ
framework, in PODS (2005), 128–138.

  5. �D work, C. Differential privacy, in
ICALP (2006), 1–12.

  6. �D work, C. A firm foundation for private
data analysis, Communications of
the ACM, Association for Computing
Machinery, Inc., 2010.

  7. �D work, C., Kenthapadi, K., McSherry,
F., Mironov, I., Naor, M., Our data,
ourselves: Privacy via distributed noise
generation, in EUROCRYPT (2006),
486–503.

  8. �D work, C., McSherry, F., Nissim,
K., Smith, A. Calibrating noise to

sensitivity in private data analysis, in
TCC (2006), 265–284.

  9. � Isard, M., Budiu, M., Yu, Y., Birrell, A.,
Fetterly, D. Dryad: distributed data-
parallel programs from sequential
building blocks, in EuroSys. ACM
(2007), 59–72.

10. � McSherry, F. Privacy integrated
queries: an extensible platform for
privacy-preserving data analysis, in
SIGMOD Conference (2009), 19–30.

11. � McSherry, F., Talwar, K. Mechanism
design via differential privacy, in FOCS
(2007), 94–103.

12. � McSherry, F., Talwar, K. Synthetic
data via differential privacy,
Manuscript.

13. � Mirkovic, J. Privacy-safe nework trace
sharing via secure queries, in NDA
(2008).

14. �R oy, I., Setty, S.T., Kilzer, A.,
Shmatikov, V., Witchel, E. Airavat:
Security and privacy for mapreduce, in
NSDI Conference (2010).

15. �Y u, Y., Isard, M., Fetterly, D., Budiu,
M., Erlingsson, U, Gunda, P.K.,
Currey, J. DryadLINQ: A system for
general-purpose distributed data-
parallel computing using a high-level
language, in OSDI (2008).

References

Frank McSherry (mcsherry@microsoft.
com), Microsoft Research, SVC, Mountain
View, CA.

