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ABSTRACT 

We introduce activity-based navigation, which uses human 

activities derived from sensor data to help people navigate, in 

particular to retrace a ―trail‖ previously taken by that person or 

another person. Such trails may include step counts, walking 

up/down stairs or taking elevators, compass directions, and photos 

taken along a user‘s path, in addition to absolute positioning (GPS 

and maps) when available. To explore the user experience of 

activity-based navigation, we built Greenfield, a mobile device 

interface for finding a car. We conducted a ten participant user 

study comparing users‘ ability to find cars across three different 

presentations of activity-based information as well as verbal 

instructions. Our results show that activity-based navigation can 

be used for car finding and suggest its promise more generally for 

supporting navigation tasks. We present lessons for future 

activity-based navigation interfaces, and motivate further work in 

this space, particularly in the area of robust activity inference.   

Categories and Subject Descriptors 

H5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous.  

General Terms 

Human Factors. 

Keywords 

Mobile applications, navigation, mobile user interfaces, sensor 

fusion, activity inference. 

1. INTRODUCTION 
Recent research has highlighted the usefulness of worn sensors to 

automatically detect and recognize a wide range of physical 

human activities using machine inference [2,7,14,22,28]. Inspired 

by the successes that have been achieved in discriminating among 

modes of human movement—such as between standing, walking, 

stair climbing, and riding an elevator—our work explores the role 

that various visual representations of these activities can play in 

helping users perform navigation tasks. We propose that by 

leveraging sensors that are easily integrated into a mobile phone, 

trails of the form ―walk west 50 steps, go up 2 flights of stairs, 

walk north 20 steps‖ can be constructed automatically while a 

user traverses this path, and made available for later playback to 

help the phone‘s owner (if they forget the path) or a different user 

(so they can retrace the owner‘s steps) find a previously visited 

location. We call this approach to re-finding places and objects 

―activity-based‖ navigation as it is based on human activities in 

reaching them (e.g. ―take the stairs up one floor then walk north 

50 steps‖). Our goal is to better understand both the advantages of 

and challenges faced by activity-based navigation interfaces to 

motivate and guide the designs for this approach to navigation. 

Activity-based navigation is an interesting alternative to map-

based navigation used in GPS road map systems or indoor 

localization systems because it does not require that a map be 

provided or constructed, and it is not dependent on absolute 

positioning which may be unavailable in certain situations. 

Scenarios for which activity-based navigation may be appropriate 

include: finding a lost object by retracing one‘s steps to the 

location in which it was last ―seen‖ (e.g., in Bluetooth range) [9], 

following trails shared by other users to find an unfamiliar 

meeting room when a colleague is already there, finding a friend 

in a concert hall, dark cinema or sports arena, as well as in real-

world pervasive games [4], for finding a hidden object or person. 

In contrast to the considerable amount of research that has 

explored activity recognition, in this paper we focus on how 

people use and interact with activity-based navigation data once 

the activities have been inferred from raw sensor data. We 

specifically compare what types of sensed information help users 

navigate as well as explore how to present trails using an example 

application of finding a car in a garage. We designed and 

implemented Greenfield1, an activity-based navigation user 

interface on a mobile device for following a trail to a car and 

conducted a user study of a car finding scenario with four 

conditions—three that presented different types of sensor 

information to the user using a GUI, and a fourth that used only 

verbal instructions. To examine how activity-based navigation 

both augments and is an alternative to GPS navigation, we 

conducted the study in two different parking garages, one with 

GPS signal and one without. Note that the trails in our study were 

manually constructed based on raw sensor data. We do not 

address the automatic creation of trails from sensed data, such as 

via inference techniques, in this paper.  

During our study, our ten users successfully found eight cars each. 

While users preferred having absolute positioning information 

(GPS) and maps when they were available, users were able to find 
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cars without resorting to exhaustive search with as little 

information as a step count and relative floor number. We found 

many useful lessons for activity-based navigation interfaces on 

mobile devices, including the need to support users who 

intentionally stray from the provided path and pick up the trail 

somewhere along the way. Half of our participants preferred a 

combined visual presentation of step counts, floor changes, and 

compass information, and half preferred a non-visual verbal 

description that included only the garage floor number and 

quadrant in which the car was located. The relative success of the 

verbal condition highlights the value of providing high-level 

summary information in activity-navigation based interfaces. Of 

the three GUI-based conditions, providing compass directions was 

preferred over providing photos, which resulted in higher mental 

load and task times. Our findings also motivate further work in 

activity inference, including robustly determining changes 

between building floors and recognizing a user‘s direction of 

movement irrespective of device orientation. 

2. RELATED WORK 
Scientists studying personal navigation describe how people build 

cognitive maps by subconsciously remembering landmarks and 

how to move between them to reach a destination, e.g., [8,16]. In 

his book ―Inner Navigation‖ [16], Erik Jonsson is particularly 

interested in when and why people experience breakdowns in 

spatial reckoning; examples include when we are distracted, on 

―auto-pilot‖ or when landmarks change. Inspired by recent 

research on activity recognition (particularly for elder care and 

health applications [7]), which suggests it is possible to recognize 

a variety of activities such as driving, walking, and using stairs 

and elevators [2,7,14,22,27,28], we wanted to explore whether 

using sensors to recognize activities could assist people when 

their personal cognitive maps are incorrect or incomplete, and 

particularly when navigation aids like maps and GPS may not be 

available. 

Researchers have long been interested in using technology to 

assist with navigation. For example, Krüger et al. [18] built a 

personal navigation system that included desktop, car, and mobile 

PDA components and which made use of street, pedestrian and 

building maps. For landmark-based navigation, Beeharee and 

Steed [3] explored the use of images to augment route 

descriptions and found that photographs aided pedestrians in 

following routes, but that real systems face challenges in 

providing up-to-date images, such as matching the current time of 

day. Hile et al. [13] used computer vision techniques on an 

existing photo collection to provide automatically annotated 

images for pedestrian landmark-based navigation using GPS data. 

In contrast to these systems, we focus on the value of activity-

based navigation when maps and/or GPS data may be partially 

available or not available at all.  

For indoor environments and other places where GPS information 

is not typically available, many researchers have developed 

techniques to provide localization information based on radio 

beacons in the environment, such as RADAR [1]. Woodman and 

Harle use a foot-mounted inertial unit, particle filters, and a 

detailed building map to provide absolute positioning for a person 

inside the building without knowledge of wireless beacons or 

installed infrastructure [30]. Robertson et al. further describe the 

FootSLAM algorithm that could be used to collaboratively build 

maps using foot mounted IMUs [29]. However, all of these 

systems require some sort of training or prior knowledge of the 

environment. In contrast, with activity-based navigation a trail can 

be created and retraced without prior knowledge or infrastructure. 

Several research groups are working on inferring where devices 

are located on the body and their orientation [12, 20], while others 

are developing algorithms agnostic to position and orientation that 

detect changes in location [5,25]. NaviSeer [26] is a commercial 

belt-worn dead-reckoning device which claims to track users to an 

error less than 2% of the distance travelled by classifying and 

compensating for errors introduced by different movement types. 

Combined with activity recognition work, these advances suggest 

that it will be possible in the future to detect people‘s activities 

without constraining how they use and carry their mobile devices.  

Most similar to our study are those that compared different 

presentation options for navigation using mobile devices. For 

example, Kray et al. [17] compared presenting route information 

using 2D and 3D maps and found participants preferred 2D maps. 

Froehlich et al. [10] compared different presentations of 

perspective, field of view, realism, and orientation in a restaurant 

finding service that provided virtual representations of 

participants‘ visible surroundings. While these studies provide 

valuable insights, they both augment or compare to street-level 

maps. Liu et al. [24] explored using photos, audio, and text to 

help people with cognitive impairments follow indoor directions 

to new locations, using a Wizard of Oz strategy that assumed the 

location of the participant was known. Participants suggested that 

photos might have been more useful if salient objects were clearly 

visible. In contrast to all of these studies, we focused on providing 

activity-based navigation information that de-emphasizes maps of 

the environment and can be used without relying on localization. 

3. ACTIVITY-BASED NAVIGATION 
We use the term activity-based navigation to refer to guiding a 

user to a destination using a trail of human movement activities 

such as walking a certain number of steps, going up or down a 

number of floors, etc. These activities may be obtained by using 

sensor data from a previous traversal of the trail by the same or a 

different user, who was carrying a suitable device such as a 

mobile phone with sensors. The device can conceivably 

automatically infer and record trail of activities based on sensor 

data gathered whenever the user is walking, thus obtaining trails 

without user assistance. The main advantage of this type of 

navigation over positioning-based navigation, such as using a 

GPS, is that it does not rely on pre-existing knowledge such as a 

map or 3D model of a building. Once a trail is created, it can be 

stored and later replayed to either the original user or, through 

sharing of the device or transmission of the trail data, a different 

user. The trail can also be reversed, so if a user walks from A to B 

(e.g., from their car to a shopping mall), they can be later guided 

from B to A. 

There are several activities that can be determined today using 

physical sensors that can be incorporated into mobile devices. The 

most obvious of these is step counting using an accelerometer, 

which provides an approximate measure of distance, e.g., ―walk 

10 steps‖. A magnetometer can provide a compass direction for 

this distance, e.g., ―walk 10 steps North‖. An inertial 

measurement unit (IMU) integrating accelerometer, gyroscope, 

and (sometimes) magnetometer information can be used to obtain 



3D distances and directions, though IMUs suffer from higher 

power consumption and gyroscope-derived orientations suffer 

from drift.  

While barometric pressure sensors drift over time due to weather, 

over timescales of a few minutes they can provide a reliable 

indication of small altitude changes such as a change of building 

floor [22]. Furthermore, combining barometric data with step 

counts/intervals derived from an accelerometer can disambiguate 

between modes of traversing floors, e.g., between an 

elevator/escalator vs. ramps/stairs, although disambiguating 

between these pairs (elevator vs. escalator) may be difficult.  

While not in common use today, recent research has explored use 

scenarios for carrying an outward-facing camera, e.g., a 

SenseCam [15] or a cameraphone worn on a belt or lanyard. 

While much of this research has focused on stimulating episodic 

memory for people with memory impairments [15,21], the photos 

taken by this camera are excellent candidates for use in activity-

based navigation, although it is important to note that researchers 

using photos as memory cues and for navigation have all 

described challenges in selecting appropriate photos (e.g., 

[3,13,21,24]). Finally, we must not overlook absolute position 

information collected from GPS location or, more generally, any 

positioning system that may be available. While activity-based 

navigation is likely to be most useful when GPS is not available, 

in many situations there may be the opportunity to present both 

types of information.  

In this paper, we explore how the five types of activity 

information highlighted above—step counts, compass direction, 

floor changes, photos, and absolute position—can contribute to 

the user experience and performance in an example activity-based 

navigation application, namely that of car finding. 

4. GREENFIELD:  

      HELPING USERS FIND CARS 
To explore activity-based navigation we designed Greenfield, an 

application that provides an activity-based trail to a parked car. 

This is useful both in situations where one has lost one‘s car and 

needs to find it, but also in finding a car parked by someone else, 

e.g. a private car parked by another family member, or a shared 

business vehicle. As Jonsson [16, pp. 53-55] observes, finding 

one‘s own lost car is a familiar example of a breakdown in spatial 

reckoning, a time when our cognitive map of where we parked our 

car fails, perhaps because a garage had a challenging layout, or 

another car we used as a landmark is missing.  

In fact, several mobile phone applications already exist to help 

find cars (e.g., GParkS [11], and CarSpotter [6]). These use GPS 

to remember your car location and some allow people to manually 

record pictures or write down a parking number. The Garmin 

Nuvi 700 series of GPS products also automatically records the 

location if removed from the mount, allowing the user to navigate 

back to a parked car. While these applications highlight people‘s 

interest in assistance finding their cars, they make two 

assumptions that limit their usefulness. First, relying on GPS is 

not always practical as many places that cars are parked do not 

have GPS signal (e.g., underground garages), nor do GPS systems 

typically provide a way of identifying on which level of a garage 

the user has parked. Second, phone-based applications rely on the 

user to hit a button to record their GPS position or manually note 

their location, while the Garmin solution requires users to 

remember to take their GPS with them when leaving the car. 

An activity sensing approach addresses both of these issues, since 

it does not rely on absolute positioning data, and the same sensors 

that determine activity types can be leveraged to identify when to 

start (e.g., accelerometer detects the end of a driving activity [e.g., 

14,23], or Bluetooth connectivity with an in-car sensor is lost) and 

stop (e.g., Bluetooth connectivity with an in-office sensor is 

achieved, or a timeout is reached) the activity logging. Avoiding 

manual effort is a key point particularly in the case of finding 

one‘s own lost car; as Jonsson highlights, occurrences of spatial 

memory failure often involve user fatigue and distraction—which 

are likely the same times when a user might forget to perform an 

explicit action to remember their car location.  

We developed Greenfield as a Silverlight application on the 

Menlo V1 platform (Figure 3d). Menlo is a prototype mobile 

device with a capacitive touch screen (4.1‖ diagonal, 800x480) 

running Microsoft Windows Embedded CE 6.0 R2 which 

incorporates a Bosch BMA150 3-axis accelerometer and Bosch 

BMP085 digital pressure sensor (barometer). The application 

provides users with a series of activities in a trail, which we call 

breadcrumbs. Each breadcrumb consists of: walking for a 

specified number of steps (optionally specifying a compass 

direction), going up/down stairs for a specified number of floors, 

or taking an elevator for a specified number of floors. The 

Greenfield overview screen (Figure 1a) shows a list of 

breadcrumbs, each representing an action to perform (e.g., walk 

up [x] flights of stairs) en route to a destination. Tapping a 

particular breadcrumb opens the detail screen (Figure 1b) which 

can show additional information including camera images and a 

map with GPS locations (if available), and allows users to 

navigate between breadcrumbs. 

5. USER STUDY 
To explore how users would make use of an activity-based 

navigation system that relies on the five activity types described in 

Section 3, we conducted a user study with Greenfield in which ten 

participants were asked to find eight cars starting from a 

workplace office and ending in a parking garage. We asked 

        

(a)                                           (b) 

Figure 1. The Greenfield user interface. (a) The overview 

screen for a trail of breadcrumbs. (b) The detail screen for an 

elevator breadcrumb. 



participants to find ―a colleague‘s car‖, i.e. following the scenario 

of finding a vehicle parked by someone else.  We did not attempt 

to ask participants to find their own lost cars due to the difficulty 

of recreating such circumstances in a controlled manner. We 

reasoned that if participants can follow someone else‘s activity 

trail, using their own to jog their memory will likely be easier. 

While our activity-based navigation approach was originally 

inspired by situations in which GPS is unavailable, there are also 

occasions when GPS is available, but insufficient for completing a 

task (e.g., determining which floor a car is parked on). Thus we 

included two different garage conditions in our study (Figure 2a): 

(1) GGPS,a free-standing garage with 4 above ground levels with 

GPS coverage and a neighboring multi-level office building; and 

(2) GNoGPS, a 3-level underground garage directly below its 

associated office building with no GPS coverage. In each garage, 

participants experienced all four presentation conditions (Figure 

2b): three different activity trail presentations using Greenfield, as 

well as a verbal description. 

5.1 Activity Presentation Conditions 
In designing the three Greenfield presentation conditions to study, 

we decided that users would require a minimum of step counts 

and floor changes (by stairs or elevator) to avoid needing to 

search the entire garage for the target car, which we saw no value 

in asking our participants to do. We call this baseline presentation 

Steps/Floors (Figure 1a, Figure 3a). We also always provided a 

map representation in the detail view. For trails in GGPS the map 

displayed a 2D path superimposed on the map (Figure 3c), 

however in GNoGPS the map only displayed an overview of the area 

with a large circle coarsely indicating the last known GPS 

position (Figure 3a).  

The step count offered in Steps/Floors allows users to know 

whether the car is relatively ―near‖ to or ―far‖ from the elevator, 

but in the absence of GPS information, it does not give users 

enough directional information for them to follow a deterministic 

path to the car. We therefore created two other presentation 

conditions to compare the relative value that other types of sensor 

information might offer users; both augmented the baseline 

Steps/Floors (SF) presentation with directional information either 

in the form of compass directions, SF+Compass, (Figure 3b) or 

photos, SF+Photos, (Figure 1b, Figure 3c). For the SF+Compass 

condition, we split walking breadcrumbs when the trail changed 

direction, and included absolute compass coordinates (N, E, S, W) 

with the step count. We favored this approach to offering relative 

instructions (turn left/right) since users who make a mistake are 

likely to compound their error with relative directions, and can 

more easily correct themselves with an absolute reference. While 

our device did not have a magnetometer, it had a side-mounted 

compass to provide real-time directional feedback (Figure 3d).  

In addition to the three conditions showing sensed data 

(Steps/Floors, SF+Compass, SF+Photos) we also included a 

verbal condition as our control. In the verbal condition, we gave 

participants a verbal description of the garage level and quadrant 

(e.g., ―3rd floor, NW quadrant‖) where their friend‘s car was 

located. This condition controlled for the occasions when people 

do not have any technology assistance. We had planned to use an 

existing car finding application as a further control condition, but 

after trying out several we found that their reliance on GPS data 

meant that the applications provided inaccurate or overly general 

information that would have required participants to search the 

entire garage for each car. The four presentation conditions that 

we explored in our study are listed in Figure 2b. 

5.2 Creating Activity Trails 
To create the trails to the parking spots, for each garage-building 

pairing we selected 4 starting offices in different quadrants of the 

building (NW, SW, NE, SE) and 4 target parking spots located in 

different quadrants of the garage. We distributed the start and end 

locations across different floors in both the building and garage, 

 

Steps/Floors: Step Count, 
Floor Changes 

SF+Compass: Step Count, 
Floor Changes, 
Compass Directions 

SF+Photos: Step Count, 
Floor Changes, Photos 

Verbal: Garage Quadrant,  
Floor Number 

(a)                                           (b) 

Figure 2. Study garage (a) and presentation (b) conditions. 

 

 

                
(a)                                         (b)                                         (c)                                          (d) 

Figure 3. Example study conditions. (a) Detail screen of a Steps/Floors condition in GNoGPS (note the lack of a GPS trace in the map). 

(b) Overview screen of a SF+Compass condition in GGPS. (c) Detail screen of a SF+Photos condition in GGPS. (d) Study hardware. 



and rotated through different combinations of using stairs (S) and 

elevators (E) for each trial (e.g., SS, SE, ES, EE). 

The Steps/Floors, SF+Compass, and SP+Photos presentations 

were hand-crafted for each trail based on data collected by two 

experimenters. To collect data one researcher walked from each 

parking spot to the associated office and back, carrying three 

Menlo devices in a purse, pocket and hand, and additionally 

wearing a pedometer, a RoyalTek RBT-2300 GPS logger as well 

as a SenseCam wearable camera [15] that captured environment 

images every 5 seconds to collect ground truth. A second 

researcher followed the first researcher and captured in real time 

the data collector‘s current activity {walking, stairs, elevator}, the 

start and end times for the activity, the number of steps or floors 

traversed, and associated major compass directions using a 

custom tablet PC application. 

We had initially intended to use the internal accelerometer and 

barometer in Menlo to automatically obtain the Steps/Floors 

information to construct the study trails, adding the other 

information manually. However, when we analyzed the 

accelerometer and barometer data, we discovered that the location 

of the device in a pocket, bag or hand had a significant effect on 

the steps counted and floor determination which simple heuristics 

could not reconcile with reasonable accuracy. We therefore 

decided to use the ground truth data, and leave these issues for 

future advances in activity inference to address (see Section 2). 

For the SF+Compass condition, we chose the compass direction 

(e.g., N, S, E, W) corresponding to each change in the walk 

trajectory. Since all buildings and garages were aligned to 

compass points, we did not need to use directions such as SE or 

NW. For the SF+Photos condition (Figure 3c), we hand-selected a 

representative photo for each activity. For the trails to parking 

spots in GGPS, we created a map for the detail screen from GPS 

data and annotated it with numbered waypoints corresponding to 

the associated breadcrumbs (Figure 3c). Note that while the 

breadcrumbs are presented to the user in the office-to-car 

direction (as if it were auto-reversed by the application), the 

pictures are in the car-to-office direction, mimicking a real use 

scenario where users are trying to find a car using a trail captured 

from car to office. 

One effect of using ground truth instead of automatic inference 

was that we could not build real-time feedback into Greenfield, 

e.g., auto-advancing through the trail.  Users instead browsed 

through trails using on-screen controls. Ways of providing 

automatic feedback suggested by the study responses will be 

discussed in Section 7.   

5.3 Study Design 
We recruited ten participants (5M, 5F), ranging in age from 26 to 

53 (median 34) who worked in one of the two office buildings 

used in our study and who typically drove to work so they would 

be familiar with at least one of the parking garages. Five worked 

in the building associated with GGPS (3M, 2F) and five worked in 

the building associated with GNoGPS (2M, 3F). All participants 

worked at our institution, but were not involved in the research. 

Participants received a US$15 café coupon for their time. 

We used a within-subjects design in which participants found four 

parking spots in each of the two garages for a total of eight spots 

found; participants experienced each of the four presentation 

conditions in each garage (3 Greenfield and one verbal). Overall, 

participants used each presentation condition twice, once in each 

garage. To control for learning affects and familiarity with the 

garages, participants began by finding all four spots in the garage 

they parked most regularly, with half starting in GGPS (parking 

spots 1-4) and half starting in GNoGPS (spots 5-8). In each garage, 

the order in which the parking spots were visited was fixed across 

participants, but the administration of the 4 presentation 

conditions was counterbalanced across participants to ensure each 

parking spot was found using each of the 4 presentation 

conditions by at least two participants.  

Study sessions began by gathering the participant‘s demographic 

data and personal car finding experiences and challenges, 

followed by a short tutorial on the Greenfield interface. For each 

of the 8 tasks, we led the participant to the office associated with 

the start of the trail, handed the participant a piece of paper with 

the color, make, model and license plate number of a car and told 

her ―Your friend who works in this office needs you to get 

something from his car. He has given you this phone which 

recorded an activity trail on his way in from the car, and which 

you can now follow to find his car.‖ In conditions other than 

verbal, we handed the participant a Menlo loaded with the 

appropriate trail and reminded the participant of the type of data 

that was available in that condition. In the verbal condition we 

provided only a verbal instruction (e.g., ―4th floor, NE quadrant‖). 

Participants then attempted to find the car, with a researcher 

following them and noting problems encountered and comments 

made by the participant. If needed, we prompted participants to 

help them get them back on track by providing the least amount of 

help possible (14 occurrences, analysis in Section 6.3). Once the 

car was found we recorded the total time and the number of steps 

taken based on a pedometer that participants wore. We then asked 

the mental effort, physical, effort, and frustration questions from 

the NASA Task Load Index (TLX) and how helpful participants 

found the information for finding the car. All interactions with 

Greenfield were logged by the software. At the end of the study, 

participants filled out a final questionnaire that asked them to 

compare their experience in the four different conditions, as well 

as an ETS Cube Comparison Test to assess their spatial 

orientation abilities. Total study time was about 2 hours. 

The study administrators visited the 8 parking spots on the 

morning of each study day and recorded the details of the car 

parked there. In the few cases where the original car had moved, 

the administrator provided the updated car information to the 

participant once the researcher noticed the new car in the spot. We 

do not believe that these instances had a large impact on the 

results (e.g., slightly smaller step counts or time) because 

participants had followed the directions to get to the location and 

were quite close to the target spot when the change was 

discovered. 



6. RESULTS 
Participants‘ current parking habits suggest an activity-based 

navigation system like Greenfield could be beneficial. In initial 

interviews, six participants reported losing their cars at least 

monthly with two reporting misplacing their car once per week. 

Even for participants who rarely lose their cars, when they do it 

can be very frustrating. For example, P10 said that when she does 

misplace her car: ―it‘s catastrophic.‖ To avoid misplacing their 

cars, most (8) try to park in the same spot or area, particularly 

when parking at work, and 3 participants mentioned similar 

strategies for parking at shopping malls. 

6.1 Qualitative Comparison of Conditions 
During the study each participant eventually found every car. 

However, the systematic variations in presentation condition and 

environment to which they were exposed led to notably different 

experiences.  

Steps/Floors. Overall, participants did not find the step count 

information very helpful on its own. As Figure 4 shows, NASA 

TLX responses (1=―Very Low‖, 7=‖Very High‖) collected after 

each task found that Steps/Floors scored worst on effort and tied 

with SF+Photos for most frustrating. Given that Steps/Floors 

offered no directional information, it is unsurprising that 

participants had more difficulty with Steps/Floors when no GPS 

data was available. Comparing participants‘ experience between 

the two garages, a non-parametric Wilcoxon test showed that 

participants found Steps/Floors in GNoGPS to be significantly more 

frustrating (2.5 vs. 1, z=-2.54, p=0.011), mentally demanding (3 

vs. 1, z=-2.26, p=.024), less helpful (5 vs. 3, z=-2.69, p=0.007), 

and required more effort (3 vs. 2, z=-2.41, p=.016), than when in 

GGPS. 

Without the GPS-based map, participants used a variety of 

strategies for finding the cars, such as reasoning about the relative 

distance from the stairs or elevator based on step counts and 

walking in a grid pattern until finding the car. P2 commented for 

parking spot 7 that she was ―basically thinking about walking a 53 

step radius‖ and P10 said about the same spot, ―well that sucks. 

I've got to figure out 53 steps.‖  P8 commented while finding 

parking spot 8: ―no other information than 125 steps? I sense 

frustration." Several participants wished explicitly for more 

information than was provided by the Steps/Floors condition. P7 

commented ―3 or 4 directions would have helped.‖ P1 said she 

needed ―to know the direction out of the elevator, even NW 

would have been helpful.‖ Given that the Steps/Floors condition 

offered users the least information among our constructed 

interfaces, it is unsurprising that it was ranked least useful (4th) by 

7 participants at the end of the study as shown in Figure 5. 

SF+Compass. Many participants clearly valued the addition of 

compass information, as shown by the five participants that 

ranked it as the most useful of the four presentations (Figure 5). 

SF+Compass also tied for lowest frustration level, effort and 

mental demand in the NASA TLX responses (Figure 4). However, 

comments from our participants indicated that the inclusion of 

directional information also led to some usability issues, primarily 

due to that fact that SF+Compass had the longest trails of any 

conditioneach change in walking direction during a trail was 

conveyed with its own breadcrumb (Figure 3b). In SF+Compass, 

five participants deliberately did not follow the Greenfield trail, 

choosing to make their own way at the beginning and pick up the 

trail later.  They described skipping breadcrumbs to locate the 

ones they needed and we observed other participants act similarly, 

particularly in GGPS where they jumped to the garage 

breadcrumbs. P3 said ―I'm skipping the first few directions 

because I know where the garage is,‖ P9 said ―I actually don't care 

whether the person took the elevator or stairs, I only care about 

steps 8 and 9,‖ while P1 asked ―do I have to follow the 

breadcrumbs?‖ Although skipping was not unique to the 

SF+Compass condition, it was most noticeable. P10, who ranked 

SF+Compass as least useful, was very clear that she was 

overwhelmed by the number of breadcrumbs in the SF+Compass 

condition. Two participants voiced the opinion that instead of 

compass directions they would prefer more situated information. 

P2 asked for ―Go up elevator and turn right instead of due east" 

and P5 said she would ―rather have ‗walk to elevator‘ than North 

or South, perhaps with an ID of the elevator, e.g., North elevator‖. 

As with Steps/Floors we saw evidence that the experience differed 

between the two garage environments, with participants finding 

that they had to work significantly harder using the Compass in 

GNoGPS than when in GGPS (2.5 vs. 1.5, z=-1.99 p=.046). This 

suggests that even in the presence of directional compass 

information in GGPS, participants were using cues from the GPS 

paths to guide or confirm their progress. 

SF+Photos. In contrast to the obvious directional value that 

compass information provided to participants, users were less 

enthusiastic about the value provided by photos for navigation, 

with SF+Photos consistently ranked in the middle of the pack (2nd 

or 3rd) among all representations (Figure 5). Participant 

interaction logs indicate all participants looked at the photos and 

we noted at least five trails during which photos were pivotal to 

the discovery of the car, especially in GNoGPS where no other 

 

Figure 5. Total number of participants who ranked each study 

condition as 1st, 2nd, 3rd, and 4th preferred. 

 

 

 

Figure 4. Median participant NASA TLX ratings after finding 

a car in each condition (1=“Very Low”, 7=“Very High”). 

 



directional cues were present. For example, P7 deduced the 

direction that his ―friend‖ must have walked to the elevator from 

parking spot 6 and found the car easily, and P10 eventually 

determined that she was on the wrong level for parking spot 8 by 

examining the photo.  

Despite these successes with photos, we also observed three 

occasions in which participants were either confused by the 

photos or spent considerable time trying to deduce locations from 

photos. Several people asked what time of day the photos were 

taken and realized they needed to focus on building landmarks 

since the cars might have changed. P8 had a particularly striking 

use of the photos. He walked backward in an effort to try to match 

what he was seeing in the photo to his surroundings, and 

described needing to ―turn images to figure [them] out backward 

in his head.‖ Such examples of extra effort taken by users to 

incorporate the photos into their car-finding strategies were 

reflected in SF+Photos being rated as having the highest mental 

demand, tied with Steps/Floors for most frustrating, and rated as 

more effort than either SF+Compass or Verbal (Figure 4). 

Participants‘ reliance on photos in GNoGPS unsurprisingly lead to 

the perception of increased effort over the use of photos in GGPS 

(3 vs. 2, z=-2.21, p=.02), where they could use both photos and 

GPS data.  

The most frequent complaint about the SF+Photos condition was 

that it did not effectively convey directional information which 

was mentioned explicitly by 4 participants. For example, P2 

complained about ―lack of directions,‖ P5 said ―this is where it 

doesn't tell me what direction,‖ and P1 told us ―compass 

dir[ections] would have been helpful.‖ On the final survey we 

asked participants whether it was confusing to see photos taken 

when walking from the car to the office. The median response was 

2.5 on a 7 point scale (1=―Not Confusing‖ to 7=―Very 

Confusing‖) suggesting that overall, participants were not 

confused. Participants‘ suggestions for improving photos instead 

included wanting more photos per breadcrumb (P7), and picking 

photos from important locations like the car (P10) or turns (P8).  

Verbal. Given the simplicity of the verbal instructions (floor and 

quadrant of garage) which necessitated a search of the entire 

quadrant to find the car, we were surprised by its popularity. Five 

participants ranked it as most useful (Figure 5), and it tied for 

lowest frustration level, effort, and mental demand (Figure 4). 

Several participants‘ comments help clarify the popularity of the 

verbal condition, including ―specific accurate and could take the 

elevator‖ (P8), ―familiar, not a lot of unknowns,‖ (P10) and ―just 

need verbal description to be effective.‖ (P6). However, other 

participants were less enthusiastic. P9, who ranked Verbal lowest, 

said ―I was less confident that I was going to find it than in other 

tasks‖ and P3, who ranked Verbal third, said ―[he] found that it 

was more mentally demanding because [he had] to actually think 

about whether to take stairs or elevator, etc.‖ (rather than having 

the device tell him). 

In summary, participants generally preferred SF+Compass and 

Verbal overall, followed by SF+Photos, then Steps/Floors. This 

ordering also agrees with post-study ratings for each condition, 

where users generally perceived SF+Compass (median=1.5) and 

Verbal (2.5) to be more helpful than both SF+Photos (3.5) and 

Steps/Floors (4), rated on a scale from (1 = ―Very Helpful‖ to 7 = 

―Not Helpful‖). Looking across environmental conditions, we 

found participants actively used GPS data to find cars when it was 

available, and that the task of car-finding was made noticeably 

more difficult in the absence of such data, but was still possible. 

6.2 Quantitative Comparison of Conditions  
As a loose measure of how well participants performed the car 

finding task, we calculated for each parking spot the step 

difference, defined as the increase in the number of steps taken by 

participants over the ground truth trail, and the time difference, 

defined as the increase in the time taken by participants over the 

ground truth trail. It is important to note that these are rough 

measures; participants did not necessarily follow the same trail, 

have the same stride length or walking speed, and external factors 

such as waiting for elevators or using stairs rather than elevators 

also affected these results. Nonetheless, comparing the time and 

step differences between conditions gives some insight into the 

relative challenges of each condition. Because participants‘ 

subjective feedback suggested that they relied heavily on GPS 

data when it was available, we focused on the data collected from 

the task trails in GNoGPS to gain better insight into the relative 

value of the different presentation conditions in supporting 

activity-based navigation when GPS was not available.  

Table 1 shows the median step and time differences across the 

presentation conditions in GNoGPS. Ground truth trail lengths for 

these four parking spots ranged from 134 steps to 283 steps. Of 

our ten participants, we had data collection problems with the step 

count and timing data for P4 and P6 and a hardware problem 

prevented capturing durations for P5. Occasions when 

participants‘ steps and time were less than the ground truth, 

resulting in negative differences, are included in the median 

calculations, although this happened only twice for steps and once 

for time, out of a total of 34 traces.  

The Verbal condition had the lowest median time and step 

differences, pointing to the fact that participants took relatively 

direct and efficient paths in the Verbal condition, which may 

explain why half the participants ranked the Verbal condition as 

―most preferred‖ (Figure 5). Among the three GUI-based 

conditions, SF+Compass had a median time difference roughly 

one minute faster than the other two. Interestingly, the additional 

time it took users to find cars using SF+Photos could not be 

explained by users taking longer paths, since the step differentials 

with SF+Photos were generally on par with, or even lower than, 

the SF+Compass condition; rather, we believe participants lost 

time due to studying the photos and mentally reconstructing the 

scene. Not surprisingly, Steps/Floors had the highest median step 

and time differences, highlighting that users took more circuitous 

and less focused paths in this condition. Thus, for Greenfield 

presentations in absence of GPS, these numbers suggest that 

Table 1. Median differentials of participant data collected versus our ground truth data in GNoGPS. Number of data samples in 

subscripts, data collection problems prevented capturing some of the step and time differences for P4, P5, and P6. 

 Verbal SF+Compass SF+Photos Steps/Floors 

Step Differences 56(8) 67(9) 58(9) 159(8) 

Time Differences (seconds) 17(9) 65(8) 137(8) 170(8) 

 



SF+Compass generally supported the most efficient navigation, 

followed by SF+Photos, then Steps/Floors, which is consistent 

with users‘ relative subjective experiences across the conditions. 

6.3 When Participants had Trouble  
Analogous to Jonsson‘s [16] exploration of breakdowns to 

understand how people make cognitive maps, we looked in detail 

at problems our participants had to help us understand challenges 

with activity-based navigation using a mobile device. 

Surprisingly, the 14 times we needed to prompt participants to get 

them back on track were distributed across the four presentation 

conditions3 in Steps/Floors, 3 in SF+Compass, 4 in SF+Photos, 

and 4 in Verbaland they occurred in both the GGPS (6) and 

GNoGPS (8) garages.  Although we did find gender effects in the 

spatial orientation test we administered, with all but one female 

scoring lower than all the men, these effects did not seem to carry 

through to the need for prompts, which were nearly evenly 

distributed across men (6) and women (8). We identified the 

following reasons for prompts: 

Wrong Floor (4): In GNoGPS, which had an underground garage 

directly below the building, 4 participants required prompting 

about being on the wrong floor. The first trail that participants 

followed in this building included a 14-step walking breadcrumb 

between the stairs to the ground floor and those that continued 

down to the garage levels. This was technically correct as these 

are separate stairwells, albeit close to one another. P1 required a 

prompt for this and expressed an interest in feedback saying ―wish 

[there was] something telling me [I‘m going] in the wrong 

direction.‖ Three other participants also had trouble, but did not 

require prompts. Participants appeared to conceptually think of 

the two sets of stairs as continuous, and when they saw the walk 

breadcrumb they were not certain if they needed to walk 

somewhere else before continuing down. For example P8, who 

initially went to the wrong floor, wondered if 2 floors down meant 

he should count building floors or sections of stairs, as floors 

were separated by two sections of stairs connected by a 

switchback landing. 

The trail for parking spot 8 caused the remaining 3 prompts 

related to floors. As can be seen in Figure 1b, in the Elevator 

breadcrumb, floor levels are presented as relative distances (e.g., 5 

Floors Down). This was particularly problematic for trails in 

GNoGPS, because the office floors are numbered 1 – 4 and 

underground parking levels are G1, G2, and G3. Thus for parking 

spot 8 where participants started at a 4th floor office, they had to 

determine that 5 floors down meant G2. Both P5 and P10 

mistakenly thought the car should be on G1, and took 654 and 

617 extra steps respectively. These were the only instances where 

the step difference was more than two standard deviations from 

the average. More generally, 6 participants talked through the 

―floor math‖ verbally and sometimes experienced difficulties that 

they self-corrected. For example, P2, who initially got off the 

elevator on the wrong floor in GNoGPS, said ―[I] couldn't do math 

on floors.‖ P8 also talked about how he ―had to count relative 

floors in the elevator.‖ P5 said ―if I‘m on the 4th floor I think 

about 4 floors down as ground and I bet others have that problem 

too.‖  This particular issue may be less of a concern in cultures 

where the ground floor is ―G‖ rather than ―1‖. 

Wrong Place (3): Participants did not always try to follow the 

exact trail between an office and parking spot and instead picked 

up the trail once they reached the garage or another landmark. 

Eight of ten participants did this at least once and most of the time 

resumed the trail without difficulty. However, we saw two cases 

where participants could not successfully resume the trail once 

they reached the GGPS garage. Both participants made the incorrect 

assumption that there was only one set of stairs in GGPS, looked 

for the car near the north stairs instead of the south stairs, and had 

to be prompted to reconsider their assumptions. These are good 

examples of the increased difficulty in following someone else‘s 

trail, since they would have known which stairs to take had it been 

their own trail. Lastly, P7 got off track in the GNoGPS Steps/Floors 

condition and needed a prompt to look for the car in another 

direction. 

Memory Failures (4): In the verbal condition, participants had to 

rely on their memory of the floor and quadrant information given 

at the beginning of the task, and four prompts were required to 

remind our participants of what they had been told.  

Missed information in user interface (3): In three cases we 

pointed participants to information contained in the interface that 

they had not observed, reminding P8 and P10 in GGPS of the map 

in the detail view and pointing P1 to additional breadcrumbs. 

7. DISCUSSION 
Overall, we have shown that activity-based navigation can help 

users successfully navigate using trails for a car finding task. 

While our results used hand-crafted trails, and we do not under-

estimate the technical challenges that remain, much of the 

necessary inference, such as step counting and floor detection, has 

already been demonstrated in the literature (e.g., [14, 22, 28]). 

While users preferred having absolute positioning information 

and maps when they were available, users were still able to find 

cars without resorting to exhaustive search, with as little 

information as a step count and floor number. In the rest of this 

section we discuss our key findings that have implications for 

future work in this area. 

7.1 Trails Were Useful Without Being 

        Precisely Followed  
While Greenfield was designed to take users step-by-step along 

trails, 8 of our 10 participants chose to self-navigate at least once 

and refer to the device interface only for guidance when they had 

to make a choice, e.g., which floor to go to. For activity-based 

navigation, this motivates using absolute rather than relative 

measures where possible, e.g., ―turn North‖ rather than ―turn left‖, 

since then users who pick up a trail mid-stream will not be 

disadvantaged by the lack of prior context. It also motivates 

simplifying the user interface for trails to facilitate quickly finding 

such decision points. This could be done by automatically 

chunking long trails and labeling them, e.g., grouping by 

―outside‖ and ―inside‖ using GPS signal, or segmenting at 

elevator/stairs breadcrumbs since they are typically key navigation 

stages. If similar trails are recorded every day (as would be the 

case for car finding), another method for highlighting decision 

points would be to learn over time which breadcrumbs varied and 

which parts stayed relatively constant, and highlight the former. 

While we did not explore automatic feedback in the Greenfield UI 

in the study (e.g., auto-advancing between breadcrumbs), users‘ 

self-navigation has implications pertaining to feedback for 

activity-based navigation. In particular, the interface should allow 



for the fact that the user may deliberately choose not to precisely 

follow the path, but still provide feedback when possible. For 

example, a device could tell the user how many floors they have 

just descended without being concerned how they moved between 

floors. This might help address ―floor math‖ issues participants 

experienced by highlighting errors in number of floors ascended 

or descended. We are particularly interested in exploring ways 

that feedback could be more interactive. For example, Greenfield 

could indicate the likelihood that a user is currently at a given 

breadcrumb using beacon-based location techniques [1], but also 

allow a user to self-declare where they are in the trail if they wish, 

facilitating joining trails partway. 

Finally, our participants were familiar with the general layout of 

the buildings/garages used, but in other activity-based navigation 

scenarios where a user is navigating through unknown 

surroundings (e.g., finding a meeting room in an unfamiliar 

building), the trail may be more faithfully followed and automatic 

feedback with auto-advancing of the trail, which is familiar from 

car navigation systems, may be useful. For example, P8 said ―it 

would be great if I didn‘t have to count [steps] in my head,‖ and 

would have liked Greenfield to help him keep track of how far he 

had walked. 

7.2 Breadcrumbs Interpreted at High Level 
Our study showed that human interpretation of where 

breadcrumbs should start and end differs significantly from what 

naïve inference based on sensor data would produce. Participants 

routinely voiced that the step counts were inaccurate, even when 

the worn pedometers proved the numbers to be quite accurate. 

Typically this was due to participants failing to begin counting 

steps when the pedometer dideven when following the trail 

precisely. For example, participants would unconsciously omit the 

steps taken from the elevator to the door of the elevator vestibule, 

as they viewed the ―elevator‖ breadcrumb as ending there. 

Similarly, participants were confused by a ―walking‖ breadcrumb 

between two ―stairs‖ breadcrumbs that was arguably correct since 

the two stairwells were not vertically aligned, but participants 

considered it logically as a continuous set of stairs that traversed 

multiple levels.  

It may be difficult for inference algorithms to correct for this 

human interpretation, since some information may be missing, 

e.g., the location of the elevator vestibule door in the trail. 

However, another way to look at this is that reporting excessive 

precision can be counterproductive. For example, providing only 

N, S, E, W rather than precise degree values worked well during 

our study. In addition, hiding low-steps breadcrumbs and 

providing round values (e.g., to one significant figure) rather than 

precise step counts may avoid confusing users with too much 

detail. Finally, the popularity of the verbal condition indicates that 

users liked having a high-level summary. Simple summation of 

the breadcrumb information could be used to offer this in 

Greenfield, e.g. ―3rd floor, approximately 100 steps NW from 

elevator.‖ 

7.3 Relative Value of Sensed Information 
In our study, we looked at five types of activity information: step 

counts, floor changes, compass directions, photographs, and 

absolute location from a GPS. We felt strongly that providing a 

minimum of floor and step information was important to avoid 

exhaustive search strategies, and therefore focused on 

understanding the relative benefits of absolute position, compass 

and photos for helping participants make more efficient 

navigation choices. We found that absolute position information, 

both in the form of paths (GPS traces), and floor/quadrants 

locations (verbal), was the most effective and required the least 

amount of effort in helping users reach their goal. However, our 

study also showed that in situations where absolute location was 

not available, activity-based navigation using trails is a viable 

means of leading users to geographical locations. 

The popularity of SF+Compass overall, and the fact that it 

benefited users over Steps/Floors in both garages, highlight that 

real-time directional data was valuable for users in finding the 

cars, regardless of the presence of GPS information. This 

motivates including barometric pressure sensors and 

magnetometers on mobile devices. It also motivates further 

research into localizing a device with respect to the person 

carrying it, building off previous work (e.g., [5, 12, 20, 25]), so 

that magnetometer data can be translated into movement 

direction. Similarly, work in accurately determining floor level 

irrespective of where a device is carried (e.g., hand, pocket, purse) 

is also motivated to ensure this information is available in 

practice. 

While photos provided value for some participants, they were less 

valued than compass information in our study and increased the 

mental demand on participants. Offering more photos per 

breadcrumb as well as associating them with salient landmarks in 

the trail might improve their value to users. This would be 

possible in real deployments, as photos would be captured by the 

same device performing the activity inferencing. In different 

applications of activity-based navigation, photos may also prove 

more valuable than for our car finding setting, as photos often 

look similar in garages and therefore provide relatively little 

orientation information. 

8. CONCLUDING REMARKS 
We have explored the feasibility and usefulness of activity-based 

navigation on a mobile device through the lens of the application 

of car finding (which is useful when one loses one‘s car, or has to 

find a car parked by someone else). We used hand-crafted trails of 

information (e.g., ―walk 10 steps north‖, ―go up two floors using 

the stairs‖) based on data that can be inferred from sensors: step 

counts, compass direction, floor changes (including the mode of 

change, stairs/elevator), photos and absolute positioning (when 

available).  

In general, participants were quite successful using Greenfield. As 

P9 said ―I did not have to remember specific details (which floor, 

how far from stairs, which aisle) rescuing my own memory is 

highly beneficial since this is the type of detail I typically don't 

pay that much attention to.‖ While our study had limitations 

including the lack of real-time feedback in following the trails, we 

found lessons for future activity-based navigation user interfaces.  

These lessons include the need to provide designs that allow users 

to join a trail at any point along the way, that users interpreted 

breadcrumb start and end points differently than the literal 

interpretations from sensed data (e.g., elevators ―end‖ after the 

vestibule, staircases near each other are regarded as a single 

stairwell), that too much precision and detail hindered rather than 

helped users, and that providing summaries of trails would be 

beneficial. 



Directions for future work include furthering the state of the art of 

inference algorithms to better support activity-based navigation, 

studying activity-based navigation in less familiar environments, 

and exploring how and what information could be presented to 

help users cope with and overcome inference errors which will be 

present in any real-world system.  
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