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Abstract

High quality speech-to-lips conversion, investigatedhis work, ren-
ders realistic lips movement (video) consistent with inpeesgh (audio)
without knowing its linguistic content. Instead of memorgdsame-
based conversion, we adopt maximum likelihood estimation efvih
sual parameter trajectories using an audio-visual jointsSian Mixture
Model (GMM). We propose a minimum converted trajectory erqor a
proach (MCTE) to further refine the converted visual paramsetéirst,
we reduce the conversion error by training the joint audsual GMM
with weighted audio and visual likelihood. Then MCTE uses ¢fen-
eralized probabilistic descent algorithm to minimize a cosiam error
of the visual parameter trajectories defined on the optimak&an ker-
nel sequence according to the input speech. We demonsteagdféit-
tiveness of the proposed methods using the LIPS 2009 Visuzg@®p
Synthesis Challenge dataset, without knowing the linguigthonetic)
content of the input speech.

Index Terms: visual speech synthesis, speech-to-lips conversion; mini
mum conversion error, minimum generation error

1. Introduction

Speech-to-lips conversion aims to render realistic faceojigharticu-
larly the lips, that is consistent with the input speech audihis has
various applications in multimedia communication. For exanthkejn-
telligibility of speech can be increased with a synthesizdking head.
We can also reduce the network load for video conferencincpioyert-
ing speech to face video at the receiving end. Speech-gabpversion
may also find use in other scenarios when direct video captisimap-
propriate, e.g., when video conferencing from a privatérenment.

Various approaches have been proposed for speech-tosipgic
sion, under different names, such as audio-visual mappingyhthe-
sis [2] and lip synchronization [3]. In particulgshone-based methods
model the audio-visual data using different phone models, lynastifi-
cial neural network [4] and hidden Markov models (HMM) [5]. &de
models usually synthesize the visual parameters from a pleaneesce
that is either provided by human labelers or by an automatiecdpesc-
ognizer (ASR). While the former is expensive and subject tonses-
tency resulting from human disagreement in phone labelirg)atier
requires a well trained speech recognizer that is usuatyptex and in
need of handmade labels for training.

Direct audio-visual conversignwithout using phones, has also been
shown effective. For example, a comparison of several sing/#vH
based conversion approaches is available at [1]. TerissGomez [6]
inverted an ergodic HMM instead of a set of left-to-right ppdHMMs.
Recently, Takacs et al.[7] reports that ASR-based spezdipg con-
version has inferior performance compared with direct cagivarusing
a neural network in their experiments. Some missing featurevezy
literature [8] also argues that phone-based models are posegmen-
tation and phone identification errors, though the problamize allevi-
ated by an audio-visual HMM inversion approach (HMMI) [1&tluses
a set of phone HMMs but doesn't operate on a phone sequeraiaedht
by Viterbi decoding.

Another class of direct audio-visual conversion methods @Gsis-
sian Mixture Models (GMM). In [3], while a set of HMMs are used
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for audio-visual conversion of spoken digits (small vocabyl, large
vocabulary audio-visual conversion is performed using fréoyérame
MMSE visual parameter estimation based on a single joint avidizal
GMM. In this work, we focus on GMM-based speech-to-lips cnsion
that does not use phones as an intermediate representation.

GMMs are also extensively used in another closely relatedap
tion, voice conversion. Besides frame-by-frame MMSE estiomaf9],
the GMM has been used for maximum likelihood estimation of coteple
parameter trajectories. In particular, [10] uses bothcstatid dynamic
feature statistics, as investigated in phone-based vepedch synthe-
sis [2], to significantly improve the voice conversion qualiVe adopt
the same method in GMM-based speech-to-lips conversion to Imode
the constraints between the static and dynamic visual paeasietthe
framework of maximum likelihood estimation.

Speech-to-lips conversion aims to convert input speechssicsu
into lips video as similar to what would have been presented tatk-
ing human as possible. The maximum likelihood estimation @iter
provides a effective way to train the GMM and perform the @sion.
However, maximum likelihood training does not explicitly ipize the
quality of audio-visual conversion. First, the criteriorights all feature
dimensions equally and does not take into consideratioritibgitconsist
of two parts, i.e., the audio part and the video part. Secandyudio-
visual GMM with maximum likelihood on the training data does no
necessarily result in converted visual trajectories tlatehminimized
error in human perception.

In response to the above issues, we propose a minimum trajector
matching error approach, called Minimum Converted TrajgcEnror
(MCTE) method, for improved audio-visual conversion. Figg re-
duce the conversion error by weighting the audio and visulb$gaces
in training the joint audio-visual GMM. Inspired by MinimumeBera-
tion Error (MGE) in speech synthesis [11], we propose furteéning
the model parameters by minimizing the mean square error betleen t
conversion result and the real visual trajectories usimggneralized
probabilistic descent (GPD) algorithm.

We develop a GMM-based direct speech-to-lips conversi@ sy
tem incoporating MCTE. Evaluated on the LIPS 2009 Visualegpe
Synthesis Challenge task [12], the MTE approach resultsnpraved
audio-visual conversion. Although the linguistic contefithe input
speech is unknown to the presented system, we compare it gitoph
rated LIPS2009 submission that has access to the aligneddytauth
of phone transcription.

2. MLE-based Audio-visual Conversion

The GMM has been used for maximum likelihood estimation (MLE) of
parameter trajectories in speech synthesis and voice omeln par-
ticular, [10] uses both static and dynamic features in MLEdaacon-
version to improve the voice conversion quality over frameffayne
MMSE estimation [9]. A similar approach has been investigated
phone-based visual speech synthesis/rewriting [2]. Wg@qgse using
the same method in GMM-based direct audio-visual conversion.

The audio-visual conversion leverages a mapping funcfios=
f(x), wherex = [z1,x2, -+ ,zr] is a time sequence of the source
feature vectors angy = [y1,y2, - ,yr] is the target feature se-
quence. Suppose; hasD, dimensions, andg; hasD, dimensions,
at each frame, thesgatic features are augmented with thgnamic
features and becom®D,, or 2D, dimensions:X; = [z¢; Az¢] and



Yy = [ye; Ay 3. AV conversion with MCTE
Similar to voice conversion [10], we formulate the audio-wailszon-

version problem as The MLE-based conversion algorithm is effective and odtpers pre-

vious methods. However, maximum likelihood training does rpii-o
Y = argmax P(Y|X) ~ argmax P(Y|X, ©), (1) mize directly towards audio-visual conversion error. Intjeatar, an

Y audio-visual GMM with maximum likelihood for the training @atloes
not lead to converted visual trajectories with minimized erro

Similar problems exist for MLE-based speech synthesis. To com-

pensate this deficiency, Minimum Generation Error (MGE) [hiak
been proposed for HMM training. In particular, an approerigener-
ation error is defined, which is minimized by using a generdljz®ba-

whereY = [Y7;...;Y;], X = [X4;...,X¢], and© is the GMM for
the joint probabilityP (X, Yz).
Given that the GMM had/ mixture components,

Y|X) = Y Pm|X)P(Y|X,m) i :
P( ’ bilistic descent (GPD) algorithm to update the parametetiseoHMMs.
alt m We propose the Minimum Converted Trajectory Error (MCTE)
~ Z P(m|X,0)P(Y|X,m,0) method to further refine the audio-visual conversion resulgny con-
all m version result in general, by minimizing the error betweercteersion
result and the real target trajectories in the training set.
~ In Figure 1, we illustrate the speech-to-lips conversicstesy.
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As shown in the voice conversion literature [10], the segeen on each dimension) g”@ conversion error
Y can be represented as a linear tranformation of the stationgec ,—ng; Reﬁn:\/isual
Y = Wy, such thathy, = 1 (ye11 — ye—1). Similarly, X = Wa. 450”5
Therefore, Si
~ I ﬂ
y = argmax P(Wy‘X’ G)) (5) | JointGMM for AV Conversion ]
The complexity of solving Equation 5 can be significantly reetli T O < —
by two reasonable approximations. Unlabeled Find MAP kernel I$ '\\A,iLsEu:’]' E> Lips
First, the summation over all mixture component sequences in ;;;f;:ﬁ E> sequence Trajectories Video
Equation 2 can be approximated with a single component sequenc igure 1: Speech-to-Lips Conversion
P(Y|X,0) = P(m|X,0)P(Y|X,m, ©), (6)

wherer is the Maximum A Posterior (MAP) mixture component se-
qguencesn = argmax,,, P(m|X, ©).
With Equation 6, Equation 5 can then be solved in a closed form  When training the GMM in the joint audio-visual feature spasing

3.1. Refined audio modeling

[10]. the EM algorithm, it is common to impose equal weight on all featur
. . dimensions. For the conversion task, this criterion dogaké into con-
G = (WTDg) W)_IWTDg) Eg), ) sideration that the training features consist of two pai¢e propose
weighting the audio and visual subspaces with parametgrand oy
where respectively:
Y Y Y
B = B ing,T] ®) og(W ([XY; rm, Sim)) (1)
1
— -1 XX)ox YY)?Y 2
D7 = diag {ng ;egee g, DS } ) = —log((2m) PR X 20T T

1 X T (XX) 71 X
Itis observed in voice conversion that performance degi@maaty- 24X (X = )" B (X = 1)
ing to the above approximation is not significant [10]. Ouriprmary
results on audio-visual conversion also confirm that thieflediged so-
lution by EM algorithm performs no better than the approxirdaiee.
Second, in calculating Equation 4 and Equation 4, we may durth ~ Inour experiments, we observe consistently that weightiegii-
simplify the problem by assumw@(xy) 0. dio spaces more than the visual space reduces the mean square er

. o ror of the converted visual trajectories. According to Bra2, the
Given a mixture componenty, the full coviarance matrix in the conversion quality is affected b (m|X, ©) and P(Y'|m, ©), which

1 yy)—1
—5ov (Y = m) TSR (Y - ).

XX YY XY
joint space ofX andY can be partitioned inte ), 25", XY can be interpreted as choosing the right mixture componenép-
and E%)X). In many cases where training data is not abundant, itis ping given the audio observation and estimating the vistdfitution
not easy to obtain robust estimation of all elements in theseiaeat given the mixture component. Heavier weighting on the audisgace

When X andY are in the same feature space, such as in voice con- in Equation 11 leads to more distinguishable mixture companent
version,E(XY) and=Y %) are usually approximated using diagonal P(m|X, ©) but increased perplexny_d@P(‘Y\m, ©). Tha obaervatlon
matrices. In audio-visual conversion, howevarandY’ are in differ- suggests thal(m| X, ©) may be dominating the approximation quality

ent spaces with no strong correlation between the correipgaimen- g; ti?eufaeta?ﬂré This may also depend on the particular parafnatien

. . XX YY)
sions. Therefore, we only estim { o ) and Z$n0 ', yielding the Note that though it is possible to fine tune the weighting pera
simplified Equation 10. ters, we find the empirical choice of weighting exclusivelytba audio
EY), ~ply) DY) = n(¥Y) (10) subspacedx = 1, oy = 0) already result in significant performance
me,t ~~ Hmy s Pmy = 2my improvement.



3.2. Refined visual modeling

Inspired by the MGE, we further improve the conversion relsyltefin-
ing the visual GMM model using the GPD algorithm.

We define the conversion error as the Euclidean distanceckeetw
the conversion result and the real visual trajectory in thming set,

T
D@, 9) =Y llye — Gell- (12)
t=1

With the approximation using the MAP mixture component se-
quence adopted in Equation 6, the conversion problem, i.exinmz
ing P(Y|X,®©), becomes the following two steps. First, given the
sequence of audio featureés, a MAP mixture sequence is estimated:
m = argmax P(m|X, ©). Second, given the MAP mixture sequence,
the visual features are estimated by maximizin@” |, ©). Note that
the second step is the same as a parameter generation probeemife
ture component sequenge. In other words, we tackle the conversion
problem by generating features from a corresponding HMMg¢kwhas
a sequence of states and Gaussian kenfietietermined by the MAP
process.

Therefore, we can improve the conversion performance by mini-
mizing the empirical conversion error, measured using a costtifin
L(©) similar to MGE in synthesis [11].

N
1 (AN W)
L(©) =+ > Dy',§'(m',0)), (13)
i=1
whereN is the number of training utterances.

Using the GPD algorithm, given the’" training utterance, the up-
dating rule for the parameters of the mixtures on the MAP sezpien

O(n+1) (14)
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In particular, with Equation 7 and Equation 14,
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where Ef;?t,d is the d** dimension of the mean vector of
the ¢! mixture in the MAP mixture sequence, andp =
[0,...,0,1x Dy +4,0,0,...,0]T

For simplicity, we further assume thilfnyoy) has only diagonal
non-zero elements, i.ar,f’d is the variance corresponding E)'E?X),t,d'
Denotev g = 1/07 ;andZ, = ZpZ},

04" (", ©) 5
Ovt g
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In contrast to the MGE, which directly estimates the pararseter
the involved HMMs, MCTE uses the GPD algorithm to update ihaal
distribution parameters of the MAP mixture component sequemicieh
replace the corresponding parameters in the visual GMM.

4. Experiments and Results

4.1. Setup

We employ the dataset used in LIPS 2008/2009 Visual Speech&sia
Challenge [12] to evaluate the proposed audio-visual asive meth-
ods. This dataset has 278 video files with correspondingoauacks,
each being one English sentence spoken by a single natis&espgith
neutral emotion.

The video is sampled at every 20ms, or 50 frames per second.

For each image, Principle Component Analysis (PCA) is perfdrme

on automatically detected and aligned mouth image, resultiry60-
dimensional visual parameter vector. Mel-Frequency Cep&waffi-
cient (MFCC) vectors are extracted from local windows of 20wtk a
step size of 5ms. The visual parameter vectors are interplalgtéo the
same sampling frequency as the MFCCs. In audio-visual caovers
the input sequence of MFCCs are converted into a sequencisual v
PCA vectors, which drives a lips movement image sequence biefere
stitched to a facial background video [13].

We compare the performance of several alternative convemsioh
ules.

1. PhnRewritingis a phone rewriting method leverages a set of
tied triphone visual parameter HMMs, trained using the isua
PCA sequences segmented by human labeled phone transcrip-
tion. The visual speech synthesis has access to ground truth
phone labels and boundaries, and is performed by using the vi-
sual HMMs to synthesize the visual PCAs. This was the MSRA
submission to LIPS 2009 [13].

2. Conv(equal)is a direct audio-visual conversion method based
on maximum likelihood estimation. Each audio and visual di-
mension is weighted equally when training the joint GMM. We
empirically determined to use 1024 Gaussian mixtures.

3. MCTEis the proposed MCTE method, with the same number of
Gaussian mixtures as the alternative direct conversion resdul

4. Conv(a-weighteddndMCTE (a-weightedjveight each audio di-
mension equally and the visual dimensions have weight zero
when training the joint GMMConv(v-weightedand MCTE(v-
weighted)have weight zero for the audio dimensions.

Note that while Takacs et al. [7] uses an automatic speectyreco
nizer to obtain the phone sequence for the phone-based redeiting
system, we use the LIPS 2009 ground truth phone labels anddboun
aries in the phone rewriting methods, eliminating the quasitmout the
quality of the speech recognition results. This should Bpftkin un-
derstanding the performance of phone rewritting approadhtandirect
conversion approach.

4.2. Objective evaluation results

The objective evaluations are performed using two metricsst,Rive
use all the data for both training and conversion, for thelfling” set
performances. Second, we perform leave-20-out cross vVialijand
the measures from all the folds are averaged to form the ‘gstet
performance.
The conversion performances are evaluated using Mean SKuare

ror (MSE) and Average Correlation Coefficient (ACC), defireedfol-
lows,

T
1 N
MSE = =% llge—wll, (7
T t=1
T D ~
1 (Yt,d — Hyq)(Gt,a — Pgg)
sce = Sy X

t=1d=1 TYa%9a

In Figure 2, we can see that weighting only the audio dimerssion
in training the joint GMM consistently improves both the Midased
conversion and the MCTE conversion. The proposed MCTE method
consistently outperforms MLE-based direct conversion. iltpaccess
to human labeled phone transcription in both training antinggives
the phone rewriting methods an advantage. The gap howeangisly
reduced by adopting the proposed MCTE method. Accordingeoth
jective measures, the best MCTE performance is comparable ttth-
Rewriting method, which won the top audio-visual consisyeranking
in LIPS 2009 [13] .

In Figure 3, we illustrate the conversion results by the MCTE
method and by the MLE-based direct conversion method, resplct
The proposed MCTE method is shown to result in trajectorieersion-
ilar to the ground truth which a human speaker produces.

4.3. Subjective evaluation results

A subjective “scoring” test is also carried out to compare \Gan
weighted), MCTE(a-weighted), PhnRewriting and the ordjirecord-
ing. We select twelve sentences from the LIPS 2009 test aeh s
constructed by a sequence of words but in a semantically mglasim
order. These sentences are converted into video clips tdwrer part of
the face using each method. The original recordings cropptettsame
area and the conversion results are randomly assigned xgalsjective
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Figure 2: Objective Evaluations
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Figure 3: Top PCA dimensions w/ and w/o MCTE

test sessions, such that each session has two sentencesftbmethod
or the original recording. Each video clip also includesdheund truth
input speech audio. The subjects are asked to score theysertaudio-

visual consistency” on a 1-5 basis for each sentence in esgs$ios.
Each session is evaluated by three different subjects.

M Conv(a-weighted)
MCE(a-weighted)

M PhnRewriting

M Original

Figure 4: Subjective scores for “audio-visual consistér{ayth stan-
dard errors)

Figure 4 shows the averaged subjective scores for “audioabi
consistency”. Besides the similar observations as in thectibg evalu-

ations, we also point out the p-values in the unpaired tiledd-Test:
MCTE(a-weighted) and Conv(a-weighted) 0.0002%; MCTE ahd-P
Rewriting 3.9%.

5. Conclusion & Discussion

This work investigates the problem of speech-to-lips cosiva and
aims to render photo-realistic lips movement that are comdigtith the
input speech signal without knowing the underlying lingigi€ontent.
Instead of frame-based conversion, it adopts the maximumiHied
based Gaussian Mixture Model (GMM) in estimating visual psater
trajectories. We propose Minimum Converted Trajectory EfMCTE)
training to refine the converted visual trajectories. Thappsed method
leverages a joint audio-visual GMM trained with audio-abweighted
maximum likelihood criterion. MCTE uses the generalized pimlistic
descent algorithm to minimize conversion error of the visuabme-
ter trajectories defined on the optimal mixture component sezpieb-
tained using the input speech. On the LIPS 2008/2009 viquegch
synthesis challenge dataset, we demonstrate the effeetiserf the pro-
posed MCTE method. The best presented system, without kndbing
linguistic content of the input speech, is compared with terated
LIPS 2009 submission that utilized the given ground truthrghee-
quence and their timing information. The proposed MCTE mettaod c
be applied to general conversion problems, not necessianitgt to the
speech-to-lips conversion reported in this work.
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