Differentially-Private Network Trace Analysis

Frank McSherry

Ratul Mahajan

Microsoft Research

Abstract— We consider the potential for network trace
analysis while providing the guarantees of “differential pri-
vacy.” While differential privacy provably obscures the pres-
ence or absence of individual records in a dataset, it has two
major limitations: analyses must (presently) be expressed in
a higher level declarative language; and the analysis results
are randomized before returning to the analyst.

We report on our experiences conducting a diverse set of
analyses in a differentially private manner. We are able to
express all of our target analyses, though for some of them
an approximate expression is required to keep the error-level
low. By running these analyses on real datasets, we find
that the error introduced for the sake of privacy is often
(but not always) low even at high levels of privacy. We
factor our learning into a toolkit that will be likely useful
for other analyses. Overall, we conclude that differential
privacy shows promise for a broad class of network analyses.

Categories and Subject Descriptors

C.2.m [Computer-communication networks] Miscellaneous
General Terms

Algorithms, experimentation, measurement
Keywords

Differential privacy, trace analysis

1. INTRODUCTION

As a community, if we do not solve this problem [privacy-
compliant data sharing], we are in trouble.
— Vern Paxson (HotNets-VIII, 2009)

The complexity of modern networks makes access to real-
world data critical to networking research. Without this
access it is almost impossible to understand how the network
behaves and how well a proposed enhancement will function
if deployed. But obtaining relevant data today is a highly
frustrating exercise for researchers and one that can often
end in failure.

Thus far, the community has mainly taken the social ap-
proach of encouraging institutions and researchers to release
collected data (e.g., CRAWDAD (6], ITA [11]). While ben-
eficial, this approach has weaknesses. The released data is

heavily sanitized (e.g., payloads are removed) and anonymized,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’ 10, August 30-September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

limiting their research value [21]. Worse, as demonstrated by
research [5, 26, 21] and real mishaps [2, 29, 20], anonymiza-
tion is vulnerable to attacks that infer sensitive information.
Because of this fear, many data owners today prefer the safer
option of not releasing data at all.

Consider an alternative approach to enable data-driven
networking research: instead of releasing sanitized data, the
data owners run analyses on behalf of the researchers; to
preserve privacy, restrictions are placed on what analyses
are permitted and what output is returned. This approach
was first advocated by Mogul and Arlitt [19] and recently
termed mediated trace analysis by Mittal et al. [18].

Given the intricacies of protecting sensitive information
and past failures, we believe that strong and formal privacy
guarantees are an important prerequisite for data owners to
adopt this approach. Existing proposals, however, provide
no guarantee. The basis for protecting privacy in Mogul
and Arlitt’s original proposal is human verification, which is
error-prone and hard to scale to sophisticated analyses [19].
To obviate human verification, Mirkovic proposes rules that
an analysis must follow to protect privacy [17]. It is un-
clear, however, what privacy properties are achieved by these
rules. Mittal et al. propose that only analyses that leak
fewer than a threshold number of bits (in an information-
theoretic sense) be allowed [18]. However, restricting in-
formation leakage and preserving privacy are not the same.
An analysis that reveals if hosts A and B communicate leaks
only one bit but may represent an unacceptable privacy loss
for the hosts.

We ask if mediated trace analysis can be enabled with for-
mal privacy guarantees. The definition of privacy that we
consider is differential privacy [8, 7]. Informally, differential
privacy guarantees that the presence or absence of individual
records is hard to infer from the analysis output. While it is
unclear if differential privacy is the appropriate guarantee for
networking analyses—or if there even exists a single defini-
tion that applies to all analyses and datasets—we consider
it because it provides one of the strongest known privacy
guarantees. Appealingly, it is resilient to collusion, supports
multiple interactive queries, and is also independent of any
auxiliary information that an attacker might possess; such
information has been shown to break anonymization [5, 26,
20, 29]. As such, differential privacy has the potential to
provide a strong foundation for mediated data analysis.

However, the strong guarantees of differential privacy do
not come for free. Privacy is preserved by adding noise to
the output of the analysis, imposing on its accuracy. The
added noise is scaled to mask the presence or absence of
small sets of records. While the magnitude of the noise is
typically small, and the distribution of the noise is known to
the analyst, it can render sensitive analyses useless. Addi-
tionally, using current tools a differentially-private analysis



must be expressed using high-level operations (e.g., SQL-
like) on the data, so that the privacy-preserving platform
can understand how the analysis manipulates data and add
noise accordingly.

Given limitations of accuracy and expressibility, the ques-
tions of whether and which networking analyses can be fruit-
fully conducted in a differentially private manner is open.
The answers depend both on the nature of the analyses and
the data. Differential privacy is a recent development, and
its practical utility is still unclear, even outside of network-
ing. We are aware of only two concrete case studies [15, 24],
and the results are mixed.

To shed light on the possibility of network trace analysis
with differential privacy guarantees, we attempt to repro-
duce a spectrum of network trace analyses using PINQ [14],
a differentially-private analysis platform. Our analyses in-
clude multiple examples of packet-level, flow-level, and graph-
level computations chosen from the networking literature.
Each analysis relies on sensitive fields in the source data
and will thus be difficult to conduct for researchers that do
not own the data.

We find that we are able to express all the analyses that
we consider, though some required approximations. Cer-
tain computations, such as arbitrary resolution cumulative
distribution function, are fundamentally impossible with dif-
ferential privacy (independent of the platform), but can be
approximated with noisy counterparts. Certain others, such
as sliding window computations and splitting a long flow into
individual connections, are hard to implement in a manner
that incurs only a small amount of noise. We find that the
impact of our approximations on the results is low, however.

There are multiple ways to implement an analysis, with
different privacy costs (i.e., added noise). We find that some-
times there is also a trade-off between algorithmic complex-
ity and privacy cost. These challenges are surmountable,
but they complicate (or, enrich) the task of implementing
networking analyses. We implement a toolkit with analysis
primitives that we find common to multiple analyses. To
aid other researchers, we are releasing this toolkit and our
analysis implementations [23].

We find that the added noise tends to not be a hindrance
because most analyses seek only broad distributional and
statistical information about the data. They rarely depend
heavily on few individual records, and differential privacy is,
in principle, compatible with this use. The main challenge
lies in extracting sufficient aggregates from the data in a
privacy-efficient manner. For a few analyses, we achieve high
accuracy only when the privacy level is low. As we gain more
experience at implementing privacy-preserving analyses, this
situation should only improve.

Overall, we conclude that differential privacy is a promis-
ing avenue for enabling mediated trace analysis for a large
class of analyses. Our work, however, is only the first step.
Before we can start convincing data owners to share data, we
need to resolve several key issues. One is managing privacy
loss due to repeat analysis of the same data. Another is pre-
serving privacy, with acceptable analysis noise, for higher-
level entities (e.g., hosts, subnets) that may be spread across
many records. Yet another issue is developing guidelines
regarding appropriate privacy levels for various situations.
Building on the strong foundation that is provided by dif-
ferential privacy, we hope that future work can resolve these
issues to the satisfaction of many data owners.

2. BACKGROUND

In this section, we give a brief background on differential
privacy and contrast it with alternative privacy definitions.
We also describe PINQ), the analysis platform we use in our
investigation.

2.1 Differential Privacy

Differential privacy requires that a computation exhibit
essentially identical behavior on two data sets that differ
only in a small number of records. Formally, let A and B
be two datasets and A © B be the set of records in exactly
one of them. Then, a randomized computation M provides
e-differential privacy if for all A and B and any subset S of
the outputs of the computation:

Pr[M(A) € §] < Pr[M(B) € S] x exp(|A© B|)

That is, the probability of any consequence of the compu-
tation is almost independent of whether any one record is
present in the input. For each record, it is almost as if the
record was not used in the computation, a very strong base-
line for privacy. The guarantee assumes that each record
is independent of the rest and applies to all aspects of the
record. So, if each record is a packet, differential privacy
protects its IP addresses, payloads, ports, etc., as well as its
very existence.

Differential privacy is preserved by adding “noise” to the
outputs of a computation. Intuitively, this noise introduces
uncertainty about the true value of the output, which trans-
lates into uncertainty about the true values of the inputs.
The noise distributions that provide differential privacy vary
as a function of the query, though most commonly we see
Laplace noise (a symmetric exponential distribution). The
magnitude of the noise is calibrated to the amount by which
the output could change should a single input record arrive
or depart, divided by e. The value of a perturbed result
depends greatly on the data, however; a count accurate to
within 10 may be useful over a thousand records but not
over ten records. The noise distribution is known to the
analyst, who can judge if the noisy results are statistically
significant or not without access to the actual data.

The parameter e is a quantitative measurement of the
strength of the privacy guarantee. Lower values correspond
to stronger guarantees, with ¢ = 0 being perfect privacy.
Typically, ¢ < 0.1 is considered strong and € > 10 is con-
sidered weak. We are not advocating specific levels of dif-
ferential privacy as sufficient but are instead interested in
understanding the trade-off between accuracy and privacy.

Comparison with alternative privacy definitions Un-
like differential privacy, many alternative formulations do
not provide a direct guarantee or are vulnerable to auxiliary
information that the attacker might possess. Consider, for
example, k-anonymity, which provides guidance on releasing
data such that the identity of individual records remains pri-
vate [29]. A release provides k-anonymity if the information
for each record cannot be distinguished from at least k-1
other records. However, this definition provides no guar-
antee in the face of auxiliary information that may exist
outside of the released dataset. Such information can break
anonymization [20, 5, 26].

As another example, consider reducing information leak-
age as a way to preserve privacy [18]. The reasoning is that
the fewer bits of information that an analysis leaks about
specific records, the more privacy is protected. However,



Aggregations
Count Std. deviation of added noise is v/2/e.
Sum Std. deviation of added noise is v/2/e.

Average Std. deviation of added noise is v/8/en,
where n is the number of records.
Median The return value partitions input into sets

whose sizes differ by approx. v/2/e
Transformations
No sensitivity increase

Where, Select

Distinct

GroupBy Increases sensitivity by two

Join, Concat No sensitivity increase for either input
Intersect

Partition Privacy cost equals the maximum of the

resulting partitions

Table 1: Main data operations in PINQ.

this reasoning is indirect at best and fallacious at worst.
Revealing even one bit can lead to significant loss in pri-
vacy. For example, revealing if hosts A and B communicate
requires only one bit of information but may represent an
unacceptable loss in privacy. Moreover, any such scheme al-
ways leaks at least one bit, in response to: “did the analysis
reveal too many bits?” This response bit can encode very
sensitive information, and is always revealed to the analyst.

2.2 Privacy Integrated Queries (PINQ)

PINQ is an analysis platform that provides differential
privacy [14]. Rather than provide direct access to the under-
lying data, PINQ provides an opaque PINQueryable object
supporting various SQL-like operations. The analyst spec-
ifies queries over the data in a declarative language, and is
rewarded with aggregate quantities that have been subjected
to noise. Once a noised aggregate has been extracted from
PINQ, it can be manipulated freely by the analyst, and used
in further queries. PINQ tracks the privacy implications of
successive operations and ensures that the cumulative pri-
vacy cost does not exceed a configured budget.

Table 1 summarizes the main data operations supported
by PINQ and their privacy implications. There are two types
of operations: aggregations and transformations. Aggrega-
tions return the aggregate value after adding noise per differ-
ential privacy. Transformations return a new PINQueryable
object that can be further operated upon. They can amplify
the sensitivity of subsequent queries, so that aggregations
run with one value of € may deplete many multiples of e
from the privacy budget. PINQ ensures that any amplifica-
tion is properly accounted. Importantly, the logic within a
transformation can act arbitrarily on the sensitive records.

The semantics of the transformations are similar to SQL,
with two major exceptions. First, the Join operation in
PINQ is not a standard equijoin, in which one record can
match an unbounded number of other records. Instead,
records in both data set are grouped by the key they are
being joined on, so that the Join results in a list of pairs of
groups. This restricts each pair to have limited impact on
aggregates (that of a single record) despite being arbitrar-
ily large, but it does enable differential privacy guarantees
which would not otherwise exist.

A second difference is a Partition operation that can split

a single protected data set into multiple protected data sets,
using an arbitrary key selection function. This operation is
important because the privacy cost to the source data set is
the maximum of the costs to the multiple parts, rather than
their sum. We can, for example, partition packets based on
destination port, and conduct independent analyses on each
part while costing only the maximum.

As the discussion above illustrates, and will become clearer
later, the privacy cost of an analysis depends not only what
the analysis aims to output but also on how it is expressed.
PINQ is essentially a programming language, and the space
of analyses that can be expressed is limited mainly by the
analysts creativity. Omne of our contributions is to devise
privacy-efficient ways of expressing network data analyses.
We will see many common tools and programming patterns
that we expect to be broadly useful, several of which we
explicitly factor out into a re-usable toolkit.

2.3 An Example

Suppose we want to count distinct hosts that send more
than 1024 bytes to port 80. This computation, which in-
volves grouping packets by source and restricting the result
based on what we see in each group, can be expressed as:!

packets = new PINQueryable<Packet>(trace, epsilon);
packets.Where(pkt => pkt.dstPort = 80)
.GroupBy (pkt => pkt.srcIP)
.Where(grp => grp.Sum(pkt => pkt.len) > 1024)
.Count (epsilon_query) ;

The Packet type contains fields that we might expect, in-
cluding sensitive fields such as IP addresses and payloads.
The raw data lies in trace. The total privacy budget for the
trace is epsilon, and the amount to be spent on this query is
epsilon_query. The analyst can run multiple queries on the
data as long as the total privacy cost is less than epsilon.
The expressions of the form x => f(x) are anonymous func-
tions that apply f to z.

For one of our datasets (the Hotspot trace in §3), the cor-
rect, noise-free answer for this analysis is 120. In a particular
run with epsilon=0.1, we get an answer of 121. Different
runs will yield different answers. The expected error for this
analysis is +10.

3. DIFFERENTIALLY-PRIVATE
NETWORK TRACE ANALYSIS

Our goal is to investigate if differential privacy can provide
an effective basis for mediated trace analysis. If feasible, we
can enable rich yet safe data analysis, without requiring the
data owners to expose raw, anonymized, or sanitized data.
As a precursor to conducting analysis, however, the ana-
lysts need to know the format of the stored data. This can
be accomplished by having the data owners release format
specifications or release synthetic data on which an analysis
can be tested before submitting to the owner. A non-goal of
our work is investigating if new analyses can be developed in
a differentially private manner. This task, which is distinct
from conducting existing analyses (or their variants), may
require intimate access to raw data.

The strong and direct guarantees of differential privacy
are appealing but its utility for network data analysis is

The code fragments in this paper are stylized C# code.
They will not compile or record outputs but are otherwise
almost identical to actual PINQ code.



uncertain because of two issues. First, differential privacy
introduces noise, which may incapacitate certain sensitive
computations. Examples include arbitrary resolution CDF's
and fragile statistics like minimum and maximum. Second,
the analysis must (currently) be expressed in a restricted
high-level language. Networking analyses are not typically
constrained to such languages, and privacy aside it may be
challenging to express analyses in such languages. These
two constraints have interplay, in that the amount of noise
introduced depends on how the analysis is expressed. We
will see several cases where we must exchange fidelity to the
original algorithm for a smaller amount of noise introduced.

The expressibility restriction could potentially be over-
come by the invention of new differentially-private primitive
computations. Although PINQ does contain mechanisms
for extending the platform, the extensions become part of
the trusted computing base. For this reason, we restrict our
study to the existing operations supported by PINQ, to see
how far we can go with just those operations. While we
are largely successful, our experience does point at a few
extensions that will be broadly useful.

To understand if differentially private network trace anal-
ysis is feasible, we consider a wide array of real analyses.
We investigate the extent to which each can be faithfully
expressed and its accuracy loss over real data.

Analyses Table 2 shows the analyses that we consider
and summarizes our results (explained later). The analysis
selection process was informal and intended to maximize di-
versity with a manageable number. We made a list of analy-
ses that appear in recent networking literature and preferred
those with computations that are disparate from others al-
ready picked. While picking an analysis, we ignore any prior
expectations about whether it would be easy to conduct in
a differentially private manner.

There is no standard classification of networking analyses
to let us judge if we have included an analysis from each
class. But based on our original list, we find that set of
analyses can be classified as operating on the granularity of
packets, flows, or graphs. As the table shows, our chosen
set includes multiple examples of each category. That we
can conduct these analyses in a differentially private manner
does not imply that we can conduct any analysis. But the
diversity of our selected analyses gives us confidence that
if we can conduct these we can conduct a wide range of
network trace analyses.

In addition to being diverse, these analyses require access
to information that data owners typically consider sensitive.
For instance, worm fingerprinting [27] (a packet-level anal-
ysis) requires raw packet payloads; stepping stone detec-
tion [33] (a flow-level analysis) requires addresses and ports
in traffic flows; and anomaly detection [13] (a graph-level
analysis) requires information on the amount of traffic at
individual links of an ISP and how it varies across time. Be-
cause of the sensitivity of such information, researchers find
it difficult today to conduct these and similar analyses on
real data. If finding one data source for such analyses is
difficult, finding multiple is almost impossible.

Datasets  The analysis accuracy depends on the nature
of the data. We thus use real network traces in our work.
Table 3 shows the datasets that we study in this paper and
the type and the number of records they contain. Different
datasets are used by different analyses. The size of each is

Record #records
Hotspot <timestamp, packet> 7.0M
IspTraffic <timestamp,link,packet> 15.7B
IPscatter <monitor, IPaddr, ttI> 3.8M

Table 3: The datasets that we consider.

comparable to what its analysis typically operates on. We
also studied other datasets [4, 11] for several of the analyses
and obtained results similar to those presented below.

Hotspot is a tepdump trace of packets that we collected on
the wired access link of a large hotspot. It contains complete
packets, including unaltered addresses and payloads.

IspTraffic is constructed from traffic at a large ISP (whose
identity we are required to keep confidential). The ISP
has over 400 links and it provided us highly aggregated
information on traffic volume at each link in each 15-min
window over a week-long period. We mimic a fine-grained
dataset using this information by de-aggregating traffic vol-
ume into 1500-bytes packets that are spread evenly across
the time window. Note that the aggregate representation of
the source data is not itself a basis for differential privacy;
the presence or absence of individual packets can still be
observed in the precise aggregates.

IPscatter is a list of IP addresses and their TTL-distances
from 38 monitors. It was constructed using the data col-
lected by Spring et al. [28], who conducted traceroute probes
from 38 PlanetLab sites to an IP address inside each BGP
prefix. The constructed dataset includes a record for each
IP seen along each probe.

Privacy level The accuracy of a differentially pri-
vate analysis depends on the desired strength of the pri-
vacy guarantee (parameter €). We consider three different
values of e—0.1, 1.0, and 10.0—that correspond roughly to
high, medium, and low privacy levels. Recall that higher
values are not necessarily unsafe but are theoretically easier
to break.

Privacy principal The guarantees of differential pri-
vacy are for the records of the underlying data set. These
records may or may not directly correspond to the higher-
level privacy principal that the data owner wants to protect.
Network data is interesting in that there are multiple pos-
sible privacy principals such as packets, flows, hosts, and
services. If the underlying records are finer-grained than
the intended principal (e.g., packets vs. hosts), no explicit
guarantees are given for the principal.

Selecting an appropriate-granularity privacy principal is
an important first step for the data owner. As a logistical
matter, finer-grained records that share the same higher-
level principal can be aggregated into one logical record us-
ing SQL-like views. Using this aggregated data will then
provide guarantees as the level of the principal. But in gen-
eral, the analysis fidelity will decrease as fewer records are
able to contribute to the output statistics.

In this paper, we assume that the privacy principal is at
the granularity of records in the dataset. This position is
generous for analysis but it is also the starting point for
beginning to understand the applicability of differential pri-
vacy in our context. If analysis noise is excessive even at this
granularity, there is little hope. In the future, we intend to
study the impact of using higher-level principals.



Packet-level analyses Expressibility High accuracy
Packet size and port dist. (85.1.1) faithful strong privacy
Worm fingerprinting [27] (85.1.2) faithful weak privacy
Flow-level analyses
Common flow properties [30]  (§5.2.1) could not isolate connections in a flow strong privacy
Stepping stone detection [33]  (§5.2.2) | (one of the two) sliding windows were approximated | medium privacy
Graph-level analyses
Anomaly detection [13] (85.3.1) faithful strong privacy
Passive topology mapping [9] (§5.3.2) used a simpler clustering method weak privacy

Table 2: The analyses that we consider and summary results for them.

4. A PRIVATE ANALYSIS TOOLKIT

In this section we present a collection of tools that im-
plement primitives that are common to many network trace
analyses. The tools are applicable to data analysis broadly
and represent the first practical implementations that are
sensitive to privacy cost and added noise. We will arrive at
specific networking analyses in the next section. Our toolkit
and the associated analyses are publicly available [23].

4.1 The Cumulative Density Function

Often, in addition to simple aggregates like counts and
averages, we are interested in understanding the underly-
ing distribution itself, which may have informative ranges
or modes. In networking analyses, distributions are often
studied using the CDF: cdf(x) = number of the records with
value < x. Measuring precise empirical CDFs with arbi-
trary resolution is not possible with differential privacy; as
the resolution ¢ decreases, cdf(x) - cdf(x-d) depends on only
a few records in the data. We present three approaches to
approximate the CDF.

A simple approach is to partition the range into buckets of
a certain resolution and count, for each bucket, the records
that fall in that bucket or a previous one. Let buckets be
the set of values that represent the high end of each bucket,
then:

foreach (var x in buckets)
trace.Where(rec => rec.val < x).Count(epsilon);

This approach directly measures each value of cdf(x), but the
standard deviation of the error is proportional to |buckets|.

A more advanced approach is to use the Partition oper-
ation to partition data into buckets:

tally = O;
parts = trace.Partition(buckets, rec => rec.value)
foreach (var x in buckets)

tally += parts[x].Count(epsilon);

yield tally;

This approach has the advantage that the total privacy cost
is independent of the number of buckets (i.e., resolution) but
a limitation is that the error at each measurement accumu-
lates to form the CDF. However, these errors cancel some-
what, and their standard deviation is proportional only to
V/ |buckets|.

An even more advanced approach takes measurements at
multiple resolutions and aggregates at most a logarithmic
number of measurements to reproduce the full set of val-
ues for the CDF. A recursive function to implement this
approach is:

CDF3(data, epsilon, max)
if (max == 0)
yield return data.Count(epsilon);
else
//--- partition data at max/2
var parts = data.Partition(new int[] { 0, 1 },
x => x/(max/2));
//--- emit counts for [0,max/2)
foreach (var x in CDF3(parts[0], epsilon, max/2))
yield return x;

//--- a cumulative count for [0,max/2)
var count = parts[0].Count(epsilon);
//-—- emit frequencies for [max/2, max)

parts[1] = parts[1].Select(x => x - max/2);
foreach (var x in CDF3(parts[1], epsilon, max/2))
yield return x + count;

The standard deviation associated with each measurement
is proportional to log(|buckets|)®/2.

Figure 1 compares these three approaches to the actual
CDF for the time difference between a packet and its re-
transmission in the Hotspot trace. We discretize values to
1-ms granularity. The top graph shows that the error from
the first approach is incredibly high, but the other two ap-
proaches are accurate. The bottom graph zooms in to show
the distinction between the latter two approaches. We see
that in the second approach yields a smoother estimate that
mimics reality but consistently underestimates because the
error accumulates across the range. (In a different run, we
may see a consistent overestimation.) The errors with the
third approach are generally lower but could represent an
over- or under-estimation at individual points. In any case,
with both these approaches the errors are relatively small
and likely acceptable for most settings with modest abso-
lute counts.

A natural consequence of noisy measurement is that the
computed CDFs are not non-decreasing. If needed, the
CDFs can be made non-decreasing through isotonic regres-
sion. Linear time algorithms (e.g., the “pool adjacent viola-
tors” algorithm [3]) can find the non-decreasing curve that
minimizes the squared error distance from the input. Such
smoothing can also increase the accuracy in some cases (e.g.,
cdf3 in Figure 1). But it is a non-reversible removal of in-
formation, so we do not do it by default.

4.2 Finding Frequent (Sub)strings

Many analyses need to identify substrings or values that
occur frequently, for example, common payloads or addresses.
While this may seem at odds with privacy, the presence or
absence of individual records is not necessarily at risk; if a
particular string occurs a large number of times, it is essen-



o
0 50 100 150 200 250
Time diff (ms)
(a) Complete view of all three methods

42000

cdf2
""" cdf3
41500 —— - noise-free
Iz
041000
)
40500
40000 +———"——TF———+——7 T+
230 235 240 245 250

Time diff (ms)

(b) Zoomed in view of cdf2 and cdf3

Figure 1: Comparing three approaches for comput-
ing CDF's with the actual (noise-free) CDF. (a) The
complete view shows that the first approach has high
error but the other two are indistinguishable from
the actual CDF. (b) The zoomed-in view shows the
error behavior of the last two approaches.

tially a statistical trend that need not reveal the presence or
absence of one of its representatives.

As a concrete example, consider the problem of learning
the common strings of length B bytes. We might partition
our set of packets by the all possible values, of which there
are at most 2562, and measure the number of records in
each bin. Although the privacy cost is not high, the compu-
tational cost is exorbitant for even small values of B.

Instead, we can reveal common strings by asking about
statistics of successive bytes. Initially, we partition the records
into 256 bins based on the first byte, and count the number
of records in each bin.

parts = data.Partition(bytes, rec => rec.str[0])
foreach (var byte in bytes)
if (parts([byte].Count(epsilon) > threshold)
yield return parts[bytel

All common strings contribute to the counters associated
with their first bytes, which should be noticeably non-zero.
Each byte with count greater than threshold can now be ex-
tended, by each of the 256 bytes, to form prefixes of length
two. Again we can partition and count, using our new can-
didates and the first two bytes of each string, resulting in
a set of viable prefixes of length two. This process contin-
ues until length B, at which point the counts correspond to
the number of records with each distinct B byte string. We
would have ideally culled most of the strings along the way,
rather than at the very last step, as a monolithic partition
operation would do. While we incur a higher privacy cost,
due to the B rounds of interrogation, we can afford to take

string true count est. count % err
2D2816FECDCAB780 3038504  3038500.005 -0.000
F389B84545A38BAF 92494 92505.050  0.012
E41903DCF7D86F2F 41600 41606.893  0.017
6F7EO03DC833D6F2F 40279 40287.970  0.022
CD4F03DCE10E6F2F 40084 40087.437  0.009
B68503DCCA446F2F 37431 37448.584  0.047
58B403DC6C736F2F 36526 36537.877  0.033
41EAO03DC55A96F2F 29625 29624.397 -0.002
9FBBO3DCB37A6F2F 20715 20711.169 -0.018
TEEEB845D1088BAF 18976 18980.823  0.025

Table 4: True and noisy counts of the top-10 strings.

measurements with less accuracy as we face relatively fewer
opportunities for false positives.

We used the procedure above to find the top 10 strings in
the payloads of the Hotspot trace. Table 4 shows the hash
value of the discovered strings, true and estimated counts,
and the relative error. We see that the top 10 strings are
discovered correctly, in order, and the error in the estimated
count is low. The number 10 was an arbitrary choice for
presentation; the computation produces counts for all strings
whose counts exceed a user specified threshold with a user
specified confidence.

4.3 Frequent Itemset Mining

A recurring theme in many data analyses is that com-
monly co-occurring items are a possible indication of corre-
lation. The task of identifying frequently co-occurring items
across an input list of item sets is called frequent itemset
mining.

There are many algorithms for this task, including the
popular apriori algorithm [1]. It starts with a collection of
singleton sets and counts the number of times each occurs.
Sets that have sufficient frequency are retained, and merged
to form sets of size two, and so on.

Thus, the insight underlying this algorithm is similar to
what we used for frequent substring counting. But a key
difference from a privacy perspective is that the records,
which are each essentially a set of items, must be partitioned
amongst the candidate itemsets; each record can only con-
tribute to the count for one candidate itemset even though
it may support several. Consequently, if there are too many
candidate itemsets it can be hard to assemble enough evi-
dence for any one candidate.

We get over this hurdle by aggressively restricting the can-
didate item sets with high thresholds, focusing the support
of the records and ensuring that we do not spread the counts
too thin. Counter-intuitively, these high thresholds allow us
to learn more. We omit implementation details for space
constraints.

As one brief example of its use, we use it to discover the
common sets of ports that are used simultaneously by hosts.
Our discovered sets were very close to reality. The top-
five, which are all correct, in the Hotspot trace are (22,80),
(25,22), (443,80), (445,139), and (993,22).

S. NETWORK TRACE ANALYSES

We now survey our experiences at reproducing several
analyses from the networking literature. We stress that
while we consider a wide range of analyses, our experiences



may not be representative. Moreover, our reproductions are
each only one of many possible ways of reproducing an anal-
ysis; different ways of measuring the same quantity may lead
to different results.

Table 2 summarizes our findings. “Expressibility” reflects
the faithfulness of our implementation to the original anal-
ysis, ignoring quantitative privacy constraints. That is, if
the privacy allotment was arbitrarily high, would we recon-
struct the original results or deviate from the specification
of the original algorithm? To a first order, we find that we
are able to reproduce the analyses, though some flexibility
is required in reproducing the spirit of the analysis, if not
the exact letter.

“High accuracy” indicates our qualitative assessment of
what privacy level yielded highly accurate results; stronger
privacy levels do not necessarily yield bad results (some do)
but do produce noticeably different outputs. In all cases,
medium privacy (e= 1.0) produces admirable results. Pick-
ing an appropriate point in the privacy-accuracy trade-off
requires a more concrete understanding of the data’s sen-
sitivity and the value of accuracy, but our results suggest
several plausibly valuable locations on the privacy-accuracy
curve.

5.1 Packet-level Analyses

We now present our results in more detail, beginning with
packet-level analyses. Unless otherwise specified, we use the
Hotspot trace.

5.1.1 Packet-size and port distributions

Two common packet-level analyses are measuring the dis-
tribution of packet sizes and ports. These are easy to repro-
duce with the CDF computation methods that we described
earlier. We use the second method in our experiments.

Figure 2(a) shows the fidelity of the CDF's of packet length
computed with the three values of € that provide different
privacy strengths. The graph also shows the real, noise-free
CDF and error bars for each noisy CDF. We see that the
error is minimal even at the strongest privacy level. As one
measure of the overall accuracy, we compute the root mean

square error (RMSE) as /£ %;(1 — vvpf[z[l] )2, where vp[i] and

vny[i] are the private and noise-free values at index i. At
€=0.1, the RMSE is only 0.01%.

This extremely low error implies that accurate results can
be obtained even with far less data. Indeed, when we restrict
our computations to only 1/10th of the data, the RMSE
increases to only 0.02%.

We also see that privately computed CDFs correctly cap-
ture the interesting features of the distribution, for example,
spikes at 40 and 1492 bytes. The former corresponds to TCP
acknowledgments with no data, and the latter to the maxi-
mum packet size with IEEE 802.3 (which is used for wireless
communication).

Figure 2(b) shows that similarly high-fidelity result are
obtained for port distributions. At e=0.1, the RMSE is only
0.07%. With 1/10th of the data, the RMSE is 0.7%. The
error for ports is more than that for packet lengths because
there are more unique ports, and thus there are in general
fewer packets that contribute to port frequencies.

While packet length and port distributions may not seem
the most exciting quantities, they are simply examples of
CDFs of arbitrary packet statistics. Computations using
more sensitive information (e.g., the CDF of the scores of

6_
=
o
o
— 47
-
£ .
~ epsilon=0.1
E >4 eeee-s epsilon=1
8] ——— epsilon=10
—-—- noise-free
O""I""I""I'
0 500 1000 1500
(a) Packet length (bytes)
6_
=
o
g
— 47
-
£ .
~ epsilon=0.1
E L Y epsilon=1
8] ——— epsilon=10
—-—- noise-free
0 " T " T " T
0 20000 40000 60000
(b) Ports

Figure 2: Packet length and port CDFs computed
without noise and with different values of ¢. The
curves (and error bars) are all indistinguishable.

a packet payload classifier) are similarly straightforward for
an analyst to specify and to convince the data provider of
the privacy guarantees.

5.1.2  Worm fingerprinting

We now consider a more complex packet-level analysis
which looks closely at packet payloads and depends criti-
cally on this very sensitive data. Automated worm finger-
printing [27] examines a stream of packets for frequently oc-
curring payload substrings, with an additional “dispersion”
requirement that the substring is originated by and destined
to many distinct IP addresses.

The PINQ fragment grouping the packets by payload and
restricting to those with the appropriate dispersion proper-
ties is:

trace.GroupBy (pkt => pkt.payload)

.Where(grp => grp.Select(pkt => pkt.srcIP)
.Distinct ()
.Count() > srcthreshold)
.Where(grp => grp.Select(pkt => pkt.dstIP)
.Distinct ()
.Count () > dstthreshold)

These packet groups are still hidden behind the privacy cur-
tain, and while we could count the groups (2739 &+ 10, with
thresholds at 5), or consider other statistics thereof, we can-
not (yet) directly view them.

To read out the interesting payloads, we leverage their fre-
quency in the data set. We use the frequent string finding
technique (§4.2) to spell out payloads that appear a signif-
icant number of times. This produces a list of candidate
payloads, from which we want to evaluate each to see if it
might be deemed suspicious. A simple PINQ fragment to
produce the number of distinct destinations associated with
each candidate payload is:



parts = trace.Partition(candidates, x => x.payload);
foreach (var candidate in candidates)
parts[candidate] .Select(x => x.dstIP)
.Distinct ()
.Count (epsilon)

A similar fragment yields the distinct sources for each pay-
load. The reported values for each payload are correct up
to the error PINQ introduces.

With a dispersion threshold of 50 for sources and destina-
tions, the noise-free computation yields 29 payloads. Search-
ing for prefixes privately with € values of 0.1, 1.0, and 10.0
reveals 7, 24, and 29 of these 29, respectively. That is, we
miss 75%, 17% and 0% of the payloads. The missing pay-
loads tend to correspond to payloads with low overall pres-
ence but above average dispersal.

Thus, unlike packet length and port analysis, the accu-
racy of worm fingerprinting is low at high privacy levels and
high only at low privacy levels. Because the theoretical dis-
tribution of analysis error is known in advance, the analyst
can judge that the results have low accuracy at high privacy
levels.

The approach of [27] is extended in several ways in the
paper. The extensions include reducing false positives by
incorporating the destination port into the signature and
sliding a window over the payloads to look for invariant con-
tent. We are able to express both these extensions in PINQ.
But with them, we do not find any high-dispersal signatures
in our trace, even in the absence of noise. Our monitored
environment likely observes little worm activity because it
is behind a single public IP address.

5.1.3  Summary

We showed results from two kinds of packet-level analyses
at the opposite ends of the spectrum. One was simple dis-
tributions over packet sizes and ports, and the other was a
more involved computation that considered payloads, ports,
and IP addresses. We found that the both could be faith-
fully reproduced and the output fidelity was high at least at
low privacy levels. Based on these results, we surmise that
many other forms of packet-level analyses, such as various
classification algorithms [10], can also be implemented in the
differentially private manner.

5.2 Flow-level Analyses

We now investigate the feasibility of conducting flow-level
analyses in a differentially private manner. These analyses
differ from packet-level analyses as they consider properties
across groups of packets. Rather than aggregate directly
across packets, we need to first apply non-trivial compu-
tation across the packets to yield the derived statistics of
interest.

5.2.1 Common flow statistics

A common operation for network analyses is to compute
flow properties such as round trip time (RTT) and loss rate.
To compute these statistics, we use the techniques used by
Swing [30]. A flow refers to the standard 5-tuple.

Swing measures RTT of a flow by differencing the time
between the TCP SYN and the following SYN-ACK. Con-
sidering only the handshake means that the results are not
impacted by delayed acknowledgments. To reproduce these
RTT values in PINQ, we join SYNs with SYN-ACKs, seek-
ing pairs corresponding to common flows, with the ACK

_ 60

T

<

I

9]

5 40+

o

e

£ epsilon=0.1

w204 e epsilon=1

5 - —— epsilon=10
—-—- noise-free

0 T T T T T ]
0 200 400 600
(a) RTT (ms)
150

)

& ]

© 100 ]

3

o

<

£ 1 epsilon=0.1

e, 5Of ------ epsilon=1

5 - — - epsilon=10
—-—- noise-free

0 ———T—T—— T
0.0 0.2 0.4 0.6 0.8 1.0

(b) Loss rate

Figure 3: The CDF of RTT and loss rate com-
puted without noise and with differential privacy.
All curves (and error bars) are indistinguishable.

number of the second equal to the sequence number of the
first, plus one.

syns = packets.Where(x => x.syn)

acks = packets.Where(x => x.syn && x.ack)

times = syns.Join(acks,
x => x.src + x.dst + (x.seqn + 1),
y => y.dst + y.src + y.ackn,
(x,y) => y.time - x.time);

Swing measures flow loss rate downstream of the moni-
tored link using TCP retransmissions. When a packet is
lost downstream, the monitor will observe a corresponding
retransmission. We group packets by flow, and compare dis-
tinct sequence numbers to total packets:

trace.GroupBy (pkt => pkt.flow)
.Select(grp => grp.Select(pkt => pkt.seq))
.Select(grp => grp.Distinct().Count/grp.Count())
.Select(x => 1.0 - x);

Once RTT and loss rates have been computed, we can
study their distributions using the CDF primitive. Figure 3
shows the results for these two properties with the three
privacy levels. RTT is computed only for flows for which we
see both the SYN and its ACK. Loss rate is computed only
for flows with more than 10 packets. We see that for both
properties the results are high-fidelity even at the strongest
privacy level. At e=0.1, the RMSE for RTT is 2.8% and for
loss rate is 0.2%.

We also considered other properties that Swing considers,
including loss rate upstream of the monitor (computed using
out-of-order packets) and path capacity (computed using the
time difference and sizes of in-order packets). For these, the
results are similar to those shown above.

There was one class of computations in Swing that we
could not immediately reproduce in PINQ. This class oper-
ates at the level of connections, e.g., computing the number



of packets per connection. A (5-tuple) flow may include mul-
tiple TCP connections, and we could not isolate the connec-
tions within a flow using the currently available operations.
This issue is not fundamental, however. The data owner
could pre-process the traces to add a “connection id” field,
or (as we are currently investigating) PINQ could be ex-
tended with more flexible grouping transformations. Once
connections are identified, the connection-level analyses are
straightforward.

5.2.2 Detecting stepping stones

We now consider an analysis that operates across pack-
ets of different flows rather than working within individual
flows. This analysis detects stepping stone relationships be-
tween flows [33]. A stepping stone occurs when a computer
is accessed indirectly, through a chain of one or more other
computers. One scenario for such usage is to launch attack
in a way that makes it it harder to trace back to the source.

Stepping stone detection [33] leverages the intuition that,
for related interactive flows, the states of the flows are likely
to go from idle to active together, many times. It estab-
lishes a time-out interval (T;q4,.=0.5 secs) after which a flow
is considered idle, and a another time window (6=40 ms)
within which idle-to-active transitions of two flows are con-
sidered correlated. It then identifies as stepping stones pairs
of flows that exhibit a high ratio of correlated idle-to-active
transitions to all such transitions. To minimize false posi-
tives, it also constrains the correlated flows to occur in the
same order multiple times and places a lower bound on the
ratio of the ordered occurrences to idle-to-active transitions.

Identifying the set of idle-to-active transitions is a sliding
window computation that we conduct in PINQ by bucketing
time in buckets of width 27;4.. We group packets by a
combination of flow and bucket. Each group can contain
at most one activation in it’s second half—the last—and we
have enough context to confirm this packet as an activation
or not.

packets.GroupBy(x => new {x.flow,x.time/(2*T_idle)})
.Where(/* if last packet is an activation */)
.Select(x => x.Last())

This captures roughly half of the activations. To produce
the remaining we shift each time by T;z. and apply the
same operation, moving packets from the front half of each
bucket to the rear.

Next, we need to identify correlated activations across
flows. While we could reproduce the sliding window in the
same manner as above, the double groupings required double
the noise we must suffer. We find that a better option is to
bin the activations by time, and then run frequent itemset
mining to identify pairs of flows that are frequently acti-
vated together. This trade-off between fidelity to the source
algorithm and privacy efficiency is one we will see again. De-
signing analyses for privacy from the ground up is likely to
yield better results in settings where privacy is mandatory.
The pseudo code for binning flows by time is:

activations.GroupBy(x => x.time / delta)

.Select(x => x.Select(y => y.flow)
.Distinct())

Finally, we need to evaluate if the pairs thus produced
are stepping stones by the original criteria. To evaluate a
given candidate pair, we simply count the number of bins
containing both. To evaluate many pairs, we first Parti-
tion the activations by flow, which reduces the privacy cost
dramatically.

€ | noisy corr. | noise-free corr | false positives

0.1 | 0.06 +0.07 0.03£0.01 18/20
1.0 | 0.72£0.10 0.76 £0.12 1/20
10.0 | 0.78 £0.03 0.82£0.05 2/20

Table 5: Evaluating private detection of stepping
stones.

In the Hotspot trace, we find a surprising number of cor-
related flows (even with non-private computations), likely
because of the couplings between flows introduced by the
wireless channel. This likely suggests that the original step-
ping stone algorithm needs to be recalibrated for wireless
traffic. For us, however, this complicates the task of fre-
quent itemset mining as the data becomes too dense. We
could tweak T;q and §, but that makes validation harder.

Instead, to reduce density and being able to compare
against the original parameters, we focus on the set of flows
with [1200, 1400] activations. We compare against a faith-
ful implementation (in Perl) that does not approximate the
task of identifying correlated flows. Thus, the comparison
includes errors introduced by privacy constraints as well as
algorithmic approximation.

Table 5 shows the results. For each value of ¢, it shows
the average and standard deviation of the approximate cor-
relation for the top-twenty flows pairs, approximately com-
puted with bucketed correlations. For those flow pairs, it
also shows the actual average correlation scores (computed
with the Perl script), and what fraction had no actual corre-
lation. We see that e=0.1 has a very high false positive rate.
But higher values of € have good accuracy, suggesting that
stepping stones can be detected accurately with “medium”
privacy levels. That we see accurate results at these privacy
levels also indicates that the impact of algorithmic approx-
imation is low. The threshold for correlation used in the
original analysis was 0.3, and every non-false positive can-
didate for € at 1.0 and 10.0 was above this threshold.

5.2.3  Summary

We presented two kinds of flow-level analyses. One com-
putes statistics within flows and another that is based on
correlations among different flows. Though there are rough
edges (that are resolvable), in both cases, we are able to
capture the essence of the analysis and the output is high
fidelity. Based on these, we believe that many other forms
of flow-level analyses can be conducted in a differentially
private manner. For instance, we are able to reproduce the
association-rule mining based analysis of Kandula et al. [12]
with a high fidelity; we omit results due to space constraints.

5.3 Graph-level Analyses

We now turn our attention to analyses that focus on network-

wide properties rather than those of individual packets or
flows. As with the previous two sections, some statistical
properties are relatively easy to produce: distributions of
in and out degrees of nodes in the graph, restricted to vari-
ous ports or protocols, distributional properties of computed
quantities of edges (e.g., the distribution of loss rates across
edges in the graph). Some useful properties, such as the
diameter of the graph or the maximum degree, are difficult
or impossible to compute because they rely on a handful of



600 —

e epsilon=0.1
1 e epsilon=1
Y ———-epsilon=10
< —-—--noise-free
ko]
9]
=
@
0
9]
£
S
2

0 T

T T T T T
0 200 400 600

Time bin

Figure 4: The norm of anomalous traffic computed
with and without privacy. All four lines are indis-
tinguishable.

records. We consider two complex graph-level analyses that
lie between these two extremes.

5.3.1 Anomaly detection

The first graph-level analysis that we consider is the detec-
tion of network-wide traffic anomalies by observing link-level
traffic volumes across time. We follow the analysis proposed
by Lakhina et al. [13]. They first assemble a matrix indexed
by link and time bucket, where each entry corresponds to
load on the link at that time. They then apply principal
components analysis (PCA) to this matrix and use the first
few factors to represent “normal” traffic. Entries not well
described by these factors represent substantial deviations
from the normal, and they are labeled as anomalies and
flagged for inspection.

While the algorithm is mathematically sophisticated, we
will have little trouble adapting the approach to work within
PINQ. The first step, computing the link xtime load matrix
is an aggregation:

rows = trace.Partition(links, x => x.link)
foreach (var link in links)
vals = rows[link].Partition(times, x => x.time);
foreach (var time in times)
vals[time] .Count (epsilon);

While the counts are noisy, the definition of a volume
anomaly is robust to small counting errors, and no significant
anomaly should go unnoticed. This robustness can be seen
in Figure 4 even at the highest privacy level. The graph
shows, for the IspTraffic dataset, the volume of anomalous
traffic, i.e., bytes that are badly explained by the first few
singular vectors of the traffic matrix. Despite the complexity
of the analysis, the relatively low volume of noise added
to each measurement and the robustness of the technique
lead to results that are indistinguishable from the noise-free
version. The anomalies in the network, e.g., at time unit of
270, clearly stand out. The RMSE at ¢=0.1 with respect to
noise-free results is 0.17%.

5.3.2  Passive network discovery

Eriksson et al. propose a novel approach to map network
topology [9]. It takes as input a collection of hop count
measurements between a large number of IP addresses and
a few monitors. It infers network topology by clustering IP
addresses based on these measurements—two IP addresses
that have similar hop counts to most of the monitors are
likely topologically close. This work follows the clustering

@ 16 l‘\: B T R R R |
2 ] i St SPS
144 —&— epsilon=0.1 Laiie Bk S
) --#-- epsilon=1
124 — =+—--epsilon=10
1 —-®--noise-free
10 — T T - T T 1
0 2 4 6 8 10

Num. iteration

Figure 5: Clustering error with and without privacy.

with small number of active measurements to each of the
identified clusters.

We focus on whether we can reproduce the clustering anal-
ysis in a private manner; active measurement require non-
private information by necessity. This separation is not un-
common in privacy-preserving data analysis: a large volume
of protected data is analyzed to find trends, after which a
smaller amount of privileged data is subjected to arbitrary
computation involving the learned trends.

The clustering analysis starts by establishing the average
value of each monitor across all IP addresses, to be used in
lieu of absent readings.

average = monitor.Average(epsilon, x => x.hops);

The monitors are then assembled into a collection of vectors,
one for each IP address, and one coordinate per monitor.
Addresses not observed at a monitor result in the average
value for that coordinate:

monitors.Aggregate((x,y) => x.Concat(y))
.GroupBy(x => x.IP)
.Select( /* additional logic */)

So assembled, the set of vectors can be subjected to stan-
dard clustering algorithms. We use k-means clustering of
PINQ. The original analysis uses Gaussian EM instead, an
extension of k-means using covariance matrices for each clus-
ter. While Gaussian EM is also expressible, it has a higher
privacy cost and is consequently less accurate for us. This
calls into light the trade-off between algorithmic complex-
ity and accuracy; more complex algorithms can give better
results in the absence of privacy constraints, but if their so-
phistication requires looking “too closely” at the data, the
necessary noise to preserve privacy can counteract these
gains.

The data used by Eriksson et al. is hop count (inferred
using TTL) from scanning IP addresses to honeypot mon-
itors. We run our analysis on the IPscatter dataset, which
is similar. It has hop count measurements from PlanetLab
nodes (as monitors) to large number of IP addresses.

Figure 5 shows the results with different values of € as well
as without privacy. It plots the objective function of the k-
means optimization, the average distance from a point to
its nearest cluster center, against the number of iterations
conducted. Nine centers are used, initialized to a common
random set of vectors for each execution. For each value of ¢,
each iteration of the algorithm consumes another multiple of
the privacy cost. After 10 iterations, a value of ¢=0.1 costs
1. However, given the flatness of the curves, for a fixed



privacy budget, the appropriate strategy may not be to run
ten iterations at one-tenth the accuracy.

The curves reveal that at the strongest privacy level (e=0.1)
the RMSE is worse by 50%. The medium privacy level is
much closer and its error may be acceptable. (The impli-
cations of variation in cluster quality on the reconstructed
network topology is beyond the scope of this paper.) The
weakest privacy level, however, is able to provide results al-
most identical to the non-private computation.

5.3.3  Summary

We considered two graph-level analyses. We were able to
reproduce the anomaly-detection analysis faithfully because
most of its complex computations are on heavily aggregated
data that is less hindered by privacy constraints. The pas-
sive network discovery analysis yielded high-fidelity results
only with weak privacy guarantees. It also exposed a trade-
off between algorithmic complexity and privacy cost. Given
that these two analyses are fairly involved, our experience
suggests that many other graph-level analyses can be con-
ducted in a differentially private manner.

6. RELATED WORK

The dominant method for data sharing today is trace
anonymization [16, 31, 22]. However, many researchers have
shown that anonymization is vulnerable to attacks that can
extract sensitive information from the traces [5, 26, 31, 21].
The utility of anonymized traces is further limited by the
removal of sensitive fields, critical for certain analyses [21].

Because of these shortcomings of anonymization, researchers

have begun exploring mediated trace analysis. There are
three proposals to our knowledge, none of which match the
strong and direct privacy guarantees of differential privacy.
First, Mogul and Arlitt’s SC2D relies on the use of pre-
approved analysis modules and human verification to pre-
serve privacy [19]. Given the complexity and diversity of
network analyses, it is unclear if human verification is prac-
tical and what guarantees it can provide.

Second, Mirkovic’s secure queries [17] are conceptually
similar to our work in that the analysis is expressed in a
high-level language and the analysis server is tasked with
ensuring privacy. The privacy requirements are inspired by
differential privacy as well. However, privacy is enforced us-
ing a set of ad hoc rules whose eventual properties are poorly
understood. Further, while we show that a range of anal-
yses can be accurately done using our methods, Mirkovic
does not evaluate the usefulness of secure queries.

Third, Mittal et al. develop a method for quantifying the
amount of information revealed by an analysis and propose
that data owners refuse to support analyses that leak more
than a threshold [18]. While intriguing, this approach is vul-
nerable to targeted attacks. As previously discussed, single
bits can be arbitrarily sensitive, and the refusal reveals a bit
in itself. Differential privacy reveals less than a bit about
each record, but many bits about aggregate statistics.

Differential privacy is a recent concept and its practical
utility is an open question that can be answered only by
applying it to several domains. Along with McSherry and
Mironov, who study Netflix recommendations [15], and Ras-
togi and Nath, who study distributed time-series [24], our
work helps to further an understanding of this question.
Reed et al [25] recently proposed an analysis language sim-
ilar to PINQ to detect botnets in a differentially private

manner. While this approach has not been evaluated yet,
our experience suggests that it can be effective.

7. DISCUSSION AND OPEN ISSUES

Our results indicate that differential privacy has the po-
tential to be the basis for mediated trace analysis, which will
enable data owners to let other analysts extract statistical
information in a provably private manner. The limitations
of differential privacy with respect to output fidelity and the
need to implement the analysis in a high-level language are
surmountable for a large class of analyses.

Retrospectively, the success of differential privacy in this
domain stems from two factors. First, many analyses seek
aggregate statistical trends and common patterns in the
data. For such analyses, individual records contribute only a
small fraction to each output value, which implies that only
a small amount of noise can guarantee privacy. Second, the
computations that many analyses conduct directly over in-
dividual records are rather simple and thus easy to express.
Any complicated computations (e.g., clustering, PCA) are
conducted only over aggregate data that can first be ex-
tracted privately with a high fidelity. These properties may
not hold for all analyses but they appear to hold for large
class of analyses.

We do not claim that implementing analysis in a differen-
tially private manner is straightforward. We ran into many
challenges and counter-intuitive behaviors. Some analyses
yielded low fidelity results at strong privacy levels; high
output fidelity could be achieved only at weak privacy lev-
els. Between, at medium privacy settings, the accuracy was
rarely bad, but distinguishable from the truth. Whether
this is sufficient depends on the needs of the analyst, and
the available privacy resources. As more thought is put into
algorithm (re-)design, we expect these trade-offs to improve.

Some computations that are easy otherwise (e.g., sliding
windows) can have a high privacy cost. Others, such as em-
pirical CDF's with arbitrary resolutions, are fundamentally
impossible to do in a differentially private manner. Fur-
ther, there are multiple ways to implement the same analy-
sis, some more privacy efficient than others. A worthwhile
task for the future is to educate networking researchers on
the concept of privacy efficiency, which is distinct from, and
sometimes counter to, the more familiar concept of compu-
tational efficiency. A related one is to develop a library with
privacy-efficient implementations of common primitives used
by networking analyses. The toolkit presented in this paper
is a first step in that direction [23].

This paper is by no means the final word on the use of
differential privacy for mediated trace analysis; there are
several policy-related and practical challenges that must first
be fully explored. One such challenge, which we mentioned
in §3, is developing support for coarser-granularity privacy
principals (e.g., flow or hosts) even when the underlying data
is at a finer-granularity (e.g., packets).

Another challenge is developing guidelines for data owners
on what privacy level (parameter €) to set for their datasets.

2Expressing analyses in high-level languages makes them
easier to debug and maintain as well. In the specific context
of PINQ), because it is based on LINQ), the analyses will also
automatically scale to a cluster [32]. Today, for flexibility,
most networking analyses are written in low-level languages
(e.g., C, Perl). Our survey provides evidence that the com-
munity can afford to move to high-level languages.



While we explore a range of levels in our work, owners will
have to decide on specific levels to us for their data. There is
unlikely to be a single answer for all situations. Instead, the
appropriate level should be based on a combination of data
sensitivity, the value of the analysis, acceptable noise-level,
and the trust in the analyst.

Yet another challenge is managing the impact of repeated
use of the same data, by the same analyst or by different
analysts. Each use leaks some private information (in the-
ory) and successive uses leak more information. Differential
privacy provides useful guidance on this issue. Two analyses
with privacy cost ¢l and ¢2 have a total privacy cost at most
cl 4 ¢2. Using this property, the data owners can enforce
various policies such as limiting the total privacy cost per
analyst or across all analysts. They can also reduce privacy
cost (i.e., increase €) with time such that the data is available
longer but the added noise increases with time.

Resolving these challenges requires balancing usability and
privacy. With the strong foundation provided by differential
privacy, we are optimistic that they can be resolved to the
satisfaction of many data owners.

Acknowledgments We are grateful to Saikat Guha,
Suman Nath, Alec Wolman, the anonymous reviewers and
our shepherd, Walter Willinger, for feedback on this paper.
We also thank Stefan Savage for suggesting the worm fin-
gerprinting and stepping s analyses early in the project.

8. REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In VLDB, 1994.

[2] AOL search data scandal. http://en.wikipedia.org/
wiki/AOL_search_data_scandal. Retrieved
2010-16-01.

[3] M. Ayer, H. Brunk, G. Ewing, W. Reid, and
E. Silverman. An empirical distribution function for
sampling with incomplete information. The Annals of
Mathematical Statistics, 26(4), 1955.

[4] R. Chandra, R. Mahajan, V. Padmanabhan, and
M. Zhang. CRAWDAD data set microsoft/osdi2006
(v. 2007-05-23).

[5] S. E. Coull, C. V. Wright, F. Monrose, M. P. Collins,
and M. K. Reiter. Playing devilés advocate: Inferring
sensitive information from anonymized network traces.
In NDSS, 2007.

[6] CRAWDAD: A community resource for archiving
wireless data at Dartmouth.
http://crawdad.cs.dartmouth.edu/.

[7] C. Dwork. Differential privacy. In ICALP, 2006.

[8] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In Theory of Cryptography Conference, 2006.

[9] B. Eriksson, P. Barford, and R. Nowak. Network
discovery from passive measurements. In SIGCOMM,
2008.

[10] P. Gupta and N. McKeown. Algorithms for packet
classification. IEEFE Network, 15(2), 2001.

[11] The Internet traffic archive. http://ita.ee.1bl.gov/.

[12] S. Kandula, R. Chandra, and D. Katabi. What’s going

(13]

(14]

(15]

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

(25]

[26]

27]
(28]

29]

(30]

(31]

(32]

(33]

on? Learning communication rules in edge networks.
In SIGCOMM, 2008.

A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In SIGCOMM, 2004.
F. McSherry. Privacy integrated queries: An
extensible platform for privacy-preserving data
analysis. In SIGMOD, 2009.

F. McSherry and I. Mironov. Differentially private
recommender systems: building privacy into the
Netflix prize contenders. In KDD, 2009.

G. Minshall. tcpdriv. http:
//ita.ee.1lbl.gov/html/contrib/tcpdpriv.html.

J. Mirkovic. Privacy-safe network trace sharing via
secure queries. In workshop on Network Data
Anonymization, 2008.

P. Mittal, V. Paxson, R. Summer, and

M. Winterrowd. Securing mediated trace access using
black-box permutation analysis. In HotNets, 2009.

J. C. Mogul and M. F. Arlitt. SC2D: An alternative to
trace anonymization. In MineNet workshop, 2006.

A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. In Security
and Privacy, 2008.

R. Pang, M. Allman, V. Paxson, and J. Lee. The devil
and packet trace anonymization. SIGCOMM CCR,
36(1), 2006.

R. Pang and V. Paxson. A high-level programming
environment for packet trace anonymization and
transformation. In SIGCOMM, 2003.

Network trace analysis using PINQ. http:
//research.microsoft.com/ping/networking.aspx.
V. Rastogi and S. Nath. Differentially private
aggregation of distributed time-series with
transformation and encryption. In SIGMOD, 2010.

J. Reed, A. J. Aviv, D. Wagner, A. Haeberlen, B. C.
Pierce, and J. M. Smith. Differential privacy for
collaborative security. In EuroSec, 2010.

B. Ribeiro, W. Chen, G. Miklau, and D. Towsley.
Analyzing privacy in enterprise packet trace
anonymization. In NDSS, 2008.

S. Singh, C. Estan, G. Varghese, and S. Savage.
Automated worm fingerprinting. In OSDI, 2004.

N. Spring, R. Mahajan, and T. Anderson. Quantifying
the causes of path inflation. In SIGCOMM, 2003.

L. Sweeney. k-anonymity: A model for protecting
privacy. Int’l Journal of Uncertainty, Fuzziness, and
Knowledge-Based Systems, 10(5), 2002.

K. V. Vishwanath and A. Vahdat. Swing: realistic and
responsive network traffic generation. ToN, 17(3),
2009.

J. Xu, J. Fan, M. Ammar, and S. Moon.
Prefix-preserving IP address anonymization:
Measurement-based security evaluation and a new
cryptography-based scheme. In ICNP, 2002.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ulfar
Erlingsson, P. K. Gunda, and J. Currey. Dryad LINQ:
A system for general-purpose distributed data-parallel
computing using a high-level language. In OSDI, 2008.
Y. Zhang and V. Paxson. Detecting stepping stones.
In USENIX Security, 2000.



