
48 communications of the acm | August 2010 | vol. 53 | no. 8

practice

P
h

o
t

o
g

r
a

ph

 d
e

t
a

i
l

 o
f

 F
ig

u

r
e

 1
.

Partway through this code-under-
standing task, there’s a knock at the
door. It’s Joe, the newest member of the
team. He is working on a bug and is con-
fused about how one of the product’s fea-
tures is implemented. As the team histo-
rian, Jane is accustomed to this type of
question. They start the conversation
by looking at an architectural diagram
tacked to the wall near Jane’s computer.
To get into specifics, Jane draws a ver-
sion of the diagram on the whiteboard,
sketching only the relevant parts of the
architecture but in more detail than
the printed diagram. As she talks Joe
through a use case, she overlays the dia-
gram with arrows to show how different
parts of the system interact. From time
to time, she brings up relevant code in
her development environment to relate
the diagram back to the code.

After several minutes, Joe feels con-
fident he understands the design and
heads back to his office. Jane goes back
to her own work. Between exploring the
search results and answering Joe’s ques-
tions, Jane’s development environment
now has dozens of open documents.
Jane tries to resume her task but cannot
find where she left off in all the clutter.
She closes all open documents, reissues
her original search, finds her place in
the search results, and carries on ex-
ploring the dependency on the unsup-
ported library.

This story illustrates the wide range
of diagramming practice. The dia-
grams range in quality from sketches
to high-quality posters; in formality,
from idiosyncratic scribbles to well-
defined notations; in longevity, from
the duration of a single task to an
entire release cycle; and in audience,
from solo use, to anchoring a conver-
sation, to communicating with the
whole team or user community.

Although the practice illustrated
in the story is widespread and useful,
there are a few downsides where soft-
ware could make an improvement.
First, the diagrams are typically not
tied to the code. To go from architec-
ture-level to code-level discussions re-
quires switching tools—for example,

Software developers regularly draw diagrams of their
systems. To get a sense of how diagramming fits into
a developer’s daily work, consider this fictitious, but
representative story:

Jane is a developer who has been a member of her team
so long that everyone calls her the team historian. Since
the product just shipped a few weeks ago, Jane is finally
getting around to some code cleanup she had planned
for ages—namely, dropping a dependency on a library
that is no longer supported. Jane uses her development
environment to search for all the places where her
product uses the unsupported library. She clicks through
the results one by one and reads the code to understand
how it uses the library. As she jumps around the code
base, she sketches a class diagram on a notepad to
capture the architectural dependencies she discovers.

doi:10.1145/1787234.1787250

 Article development led by
 queue.acm.org

Could ubiquitous hand-drawn code map
diagrams become a thing of the past?

by Robert DeLine, Gina Venolia, and Kael Rowan

Software
Development
with Code
Maps

c
r

e
d

i
t

 t
k

august 2010 | vol. 53 | no. 8 | communications of the acm 49

Art in Development

50 communications of the acm | August 2010 | vol. 53 | no. 8

practice

no visual transition to show where
the jump landed. The more she navi-
gates, the greater the pileup of docu-
ment tabs. These navigation steps are
not just for editing the code. Software
developers also have a frequent need
for information during their program-
ming tasks.7,8 To try to find answers,
they browse around the code and other
documents, which adds both relevant
and irrelevant documents to the envi-
ronment’s working set. With so much
discontinuous navigation, a developer
can easily become disoriented.

Better support for code diagrams
in the development environment
could support code understanding
and communication, and could serve
as a “map” to help keep developers
oriented. The software visualization
community has previously explored
different types of maps, such as zo-
omable box-and-line diagrams9 and
cityscapes,10 for tasks such as pro-
gram understanding and analyzing

from the whiteboard to the develop-
ment environment. This separation
also causes poor task support. For
example, Jane’s code search and note-
pad diagram are not tied together in
any way. The two can easily get out of
sync and cannot be stored or retrieved
together, as when Jane’s diagram was
available during task resumption but
her search results were gone.

Second, there is no transition be-
tween team-level documentation
and task- or conversation-specific
diagrams. For example, Jane has to

reproduce parts of the poster on the
whiteboard in order to answer Joe’s
specific questions. Third, there is a
lost opportunity to help deal with the
disorientation Jane feels when con-
fronting all the open documents on
resuming her task.

Getting lost in a large code base is
altogether too easy. The code consists
of many thousands of symbols, with
few visual landmarks to guide the eye.
As a developer navigates the code, she
follows hyperlinks, such as jumping
from a method caller to a callee, with

Table 1. Information needs that are related to diagramming behavior.

1.	 What code could have caused this behavior? 1.	 What is the purpose of this code?

2.	 What is statically related to this code? 2.	 What is the program supposed to do?

3.	 What code caused this program state? 3.	 Why was this code implemented this way?

4.	 What are the implications of this change?

Figure 1. Four diagrams of the Oahu system.

practice

august 2010 | vol. 53 | no. 8 | communications of the acm 51

project data. These maps are typically
designed to supplement a standard
development environment. Our goal
is to integrate maps into the develop-
ment environment such that develop-
ers can carry out most tasks within
the map.

To address these issues, using a us-
er-centered approach we are design-
ing an interactive code map for devel-
opment environments. In preparation
for our initial design we conducted
a series of field studies at Microsoft
Corporation. We interviewed devel-
opers to find how and why they draw
diagrams of their code, and we col-
lected many example diagrams along
the way.3 We also directly observed
developers at work to watch their
information-seeking behavior and to
catalog their information needs.7 Fi-
nally, we did a participatory design of
a paper-based code map to allow a de-
velopment team to design its content
and appearance and to witness how it
supported their conversations.1 Using
insights from these three studies, we
are actively prototyping Code Canvas,
a Microsoft Visual Studio plug-in that
replaces the tabbed documents with a
zoomable code map.5

How and Why Developers Diagram
To better understand how profession-
al software developers use visual rep-
resentations of their code, we inter-
viewed nine developers at Microsoft to
identify common scenarios, and then
surveyed more than 400 developers to
understand the scenarios more deep-
ly.3 The three most frequently men-
tioned scenarios were:

˲˲ Understanding existing code. Ex-
amining source code and its behavior
to develop an understanding of it.

˲˲ Designing/refactoring. Planning
how to implement new functionality,
fix a bug, or make the program struc-
ture better match its functionality.

˲˲ Ad hoc meetings. Asking a cowork-
er to explain existing code, vet a deci-
sion, or help work through a problem.

Developers rated these three
among the most important to their
job functions. More than half of sur-
vey respondents indicated that dia-
grams were important in these sce-
narios. Most ad hoc meetings were
small, involving two or at most five
people. While typically done solo, un-

derstanding existing code and design-
ing/refactoring often involved pairs or
small groups.

In a separate study we sought to
understand developers’ information
needs while carrying out their devel-
opment tasks.7 We observed 17 devel-
opers at Microsoft for approximately
90 minutes each, manually recorded
their activity minute by minute, and
coded these logs into 334 instances of
information-seeking behavior. From
this data, we identified 21 general in-
formation needs, clustered into seven
work categories. Consistent with the
previous study, we found many of
their information needs fell into the
categories of understanding execution
behavior and reasoning about design,
see Table 1.

In our observations, ad hoc com-
munication with coworkers was a
common way of addressing a variety
of information needs. Table 2 shows
the information needs that were most
frequently addressed by talking with
coworkers. This reliance on conver-
sations with coworkers corresponds
with the ad hoc meeting scenario from
the diagramming study.

From these two studies we know
that developers have frequent, spe-
cific information needs when trying
to understand existing code and plan-
ning code changes, and they often use
diagrams when looking for answers.
This suggests the plausible utility of
a code map that answers these needs
either directly or through interaction.
We also know that developers often
turn to coworkers to find the answers
they need, and they create diagrams to

Table 2. Top information needs for
which software developers turned to
their coworkers.

1.	 What have my coworkers been doing?

2.	 What are the implications of this change?

3.	 Is this problem worth fixing?

4.	 What is the program supposed to do?

5.	 In what situations does this failure occur?

6.	 How have resources I depend
on changed?

7.	 What code could have caused
this behavior?

Better support for
code diagrams in
the development
environment could
support code
understanding and
communication,
and could serve
as a “map” to help
keep developers
oriented.

52 communications of the acm | August 2010 | vol. 53 | no. 8

practice

supplement their conversations. This
suggests that the code map should be
shared among teammates so they have
a common spatial frame of reference.

Designing a Code Map
The question remains, what should
the code map look like? We collected
many examples of developers’ visual
representations of their code and
identified the visual conventions they
used.3 These ranged from sketches
on whiteboards to diagrams care-
fully made using a drawing tool. We
also looked at the visual conventions
used by developers when represent-
ing code.2 Box-and-arrow diagrams
were by far the most common repre-
sentation, where each box represent-
ed some kind of software entity and
each arrow indicated a relationship
between two entities. Boxes were typi-
cally labeled, but arrows almost never
were.

Some of these diagrams made casu-
al use of visual notations, such as UML
(Unified Modeling Language), but this
was uncommon. Adjacency was some-
times used to indicate a relationship

between two entities. Generally, boxes
were arranged so that relationships
flowed in a more-or-less orderly di-
rection, top to bottom or left to right.
High-level groupings were indicated
by surrounding boxes or curves, or by
dividing lines. These visual conven-
tions suggest a starting point for the
design of a code map.

Armed with this general knowl-
edge, we worked closely with a soft-
ware development team called Oahu
(a pseudonym) to develop a paper
prototype of a code map.2 The Oahu
team consisted of a few dozen people
working on an incubation project of
around 75,000 lines of C#. We first
had each developer separately sketch
the Oahu project on a large piece
of paper. Four of these sketches are
shown in Figure 1. Next we synthe-
sized into a master drawing the com-
mon features and interesting excep-
tions that appeared in the sketches.
For several weeks we repeated a daily
cycle where we printed this drawing,
hung it in the developers’ offices,
interviewed the team members for
changes and reports of how they used

it, and then revised the drawing based
on their feedback. At their request,
we incorporated types and method
signatures reverse-engineered from
their code, using a tool we developed
for the purpose.

Through this process we arrived at
a design (Figure 2) that represented
the code in a way that was meaningful
to the team. The final design was ba-
sically an architectural layer diagram
sprinkled with types (white boxes)
containing method signatures. It
closely followed the visual conven-
tions we found in the earlier study. It
also included some features that are
not typical in architectural diagrams,
such as representations of planned,
but nonexistent code (for example,
the empty white box beneath the mo-
bile phones), colorized identifier frag-
ments to aid visual searching (which
we call concept keyword colorization),
and the vertical banding representing
concepts that cut across architectural
layers.

From these studies we learned that
it is possible to design a code map
from a simple set of visual conven-

Figure 2. The Oahu code map designed through team participation, with a callout showing
the map at full resolution. The dashed rectangle is the map region shown in Figure 3.

practice

august 2010 | vol. 53 | no. 8 | communications of the acm 53

tions. The Oahu code map showed
that a single map could represent an
entire software project in a way that
was meaningful to all the developers
on the team. The team’s response to
the map was mixed. Two new hires on
the Oahu team used the map exten-
sively as part of their “onboarding”
process, studying and annotating it of-
ten. Other team members had several
criticisms, all stemming from the lack
of interaction. They wanted to tailor
the level of detail and the element po-
sitions to the needs of the discussion
to change the content for the task (for
example, add call graphs to the map).
We were able to address all these con-
cerns in our Code Canvas.

Maps at the Center of the
Development Environment
We’ve incorporated insights from
these studies into a prototype user
interface for Microsoft Visual Studio,
called Code Canvas, which makes a
code map the central metaphor of the
development experience.5 Rather than

tioned in Code Canvas in the same lay-
out as the Oahu map.

An important lesson from the
Oahu research is that developers as-
sign meaning to the spatial layout of
the code. Code Canvas therefore takes
a mixed initiative approach to layout.
The user is able to place any box on
the map through direct manipulation,
but Code Canvas also uses the MSAGL
(Microsoft Automatic Graph Layout)
engine (http://research.microsoft.
com/msagl) to provide an initial lay-
out for new code maps and to prevent
occlusion and maintain relationships
as the user makes subsequent chang-
es to the layout.

Code Canvas uses a technique
called semantic zoom to show differ-
ent levels of detail at different levels
of zoom. At the 10%-level of zoom, the
code itself is invisible because its size
is less than a pixel per line, but the type
names and member names are shown
at a readable size. The callout in Fig-
ure 3 shows the 100%-level of zoom,
where the code file itself is displayed

relying on tabbed documents and hi-
erarchical overviews to navigate and
edit the code, Code Canvas places all
of a project’s documents (code files,
icons, user interface designs, among
others) onto a panning, zooming code
map. The user can zoom out to get an
overview of the project’s structure and
zoom in to view or edit code and other
documents. (A video of Code Canvas is
available at http://www.youtube.com/
watch?v=tsFfyli2Y9s.)

We designed the look of the Code
Canvas map based on our experience
with the Oahu team. Figure 3 shows
the Oahu project loaded into Code
Canvas, in particular the upper left-
hand corner of the UI layer (the area
indicated with a dashed rectangle in
Figure 2). Using the visual conventions
from the Oahu map, the Code Canvas
map shows types as white boxes, with
the identifiers labeled using concept
keyword colorization, and with types
organized into labeled bands (Popup
Menu, Reminders, among others).
The type and concept boxes are posi-

Figure 3. The Code Canvas version of the Oahu map, focused on the upper left corner of the UI layer. The map includes two overlays: search
results in yellow and an execution trace as a series of red arrows. The callout shows the result of zooming into a method to edit its code.

54 communications of the acm | August 2010 | vol. 53 | no. 8

practice

using the standard editor, which pro-
vides the usual syntactic formatting
and coloring and standard editor fea-
tures such as code completion. At in-
termediate levels of zoom the code be-
comes visible, first in a skeletal form
(in the style of Seesoft,6 a well-known
software visualization tool from the
early 1990s), then as readable text.

For a tour of Code Canvas’s fea-
tures, let’s replay our initial story.

Jane’s development environment
shows an overview map of the whole
project, called the HOME canvas. Its
layout is as familiar to her as her home-
town, since she has been moving around
both of them for years. To start her task
of understanding her project’s depen-
dency on the unsupported library, she
searches for uses of the library. The
search results are overlaid on the map
in yellow boxes (as shown in Figure 3)
in addition to being listed in a separate
window. She immediately sees the two
parts of the code that depend on the li-
brary. She zooms into one of them to
look closer at exactly which classes are
implicated and then clicks on an indi-
vidual search result to look at the code
itself.

After exploring this way for a while,
she decides to focus on just the relevant
code, so she creates a new “filtered can-
vas” in a new tab that contains the subset
of the code containing the search results,
maintaining the spatial relationships
that help her stay oriented. As on the
HOME canvas, the code on the filtered
canvas is shown inside boxes represent-
ing the relevant classes and interfaces.
This filtered canvas acts as the class dia-
gram Jane previously drew on her note-
pad, except here the search results and
class diagram are automatically kept in
sync and are persisted together.

Joe knocks on the door and asks Jane
a question. She clicks over to the HOME
canvas tab, zooms out, and points at
parts of it to support what she’s saying.
The HOME canvas is shared among all
team members, precisely to provide a
common ground around which the team
can have discussions. To explain the
feature that is puzzling Joe, Jane sets a
debugger breakpoint and runs the pro-
gram. When the breakpoint is reached,
Code Canvas shows the call stack us-
ing a series of red execution arrows, like
those in Figure 3. Jane then creates a sec-
ond filtered canvas, focused on this call

stack. She zooms out to give Jim a tour
of the parts of the code involved in the
feature. When Joe asks detailed ques-
tions about the algorithms, Jane zooms
in on the relevant code. When the con-
versation with Joe is over, Jane simply
closes the new tabs and returns to the
one where she was working, which looks
exactly as she left it.

In short, Code Canvas provides ex-
plicit task support through multiple
canvases and uses stable, spatial lay-
outs to keep users oriented. These
design goals are shared by the Code
Bubbles project at Brown University.1
Code Bubbles’ strategy is to start with
an empty canvas and add items as the
user searches and browses the proj-
ect. In contrast, Code Canvas starts
with an overview and allows users to
filter down to items of interest. In our
future work, we will explore hybrids of
the two approaches.

Conclusion
Based the work practices we observed
in our field studies, we believe making
a code map central to the user inter-
face of the development environment
promises to reduce disorientation, an-
swer common information needs, and
anchor team conversations. Spatial
memory and reasoning are little used
by software developers today. In a lab-
based evaluation of a previous version
of our code-map design, we showed
that developers form a reliable spatial
memory of a code map during 90-min-
ute sessions of programming tasks.4
By exploiting these cognitive resourc-
es, code maps will allow developers
to be better grounded in the code,
whether working solo or collabora-
tively. We believe this will fundamen-
tally change and improve the software
development experience. 	

 Related articles
 on queue.acm.org

Code Spelunking Redux
George V. Neville-Neil
http://queue.acm.org/detail.cfm?id=1483108

Visualizing System Latency
Brendan Gregg
http://queue.acm.org/detail.cfm?id=1809426

The Woes of IDEs
Jef Raskin
http://queue.acm.org/detail.cfm?id=864034

References
1.	B ragdon, A., Reiss, S.P., Zeleznik, R., Karumuri, S.,

Cheung, W., Kaplan, J., Coleman, C., Adeputra,
F., LaViola Jr., J.J. Code Bubbles: Rethinking the
user interface paradigm of integrated development
environments. In Proceedings of the 32nd
International Conference on Software Engineering
(2010).

2.	 Cherubini, M., Venolia, G., DeLine, R. Building
an ecologically valid, large-scale diagram to
help developers stay oriented in their code. In
Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Cowmputing
(Sept. 2007).

3.	 Cherubini, M., Venolia, G., DeLine, R., Ko, A.J. Let’s go
to the whiteboard: How and why software developers
use drawings. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(May 2007).

4.	D eLine, R., Czerwinski, M., Meyers, B., Venolia,
G., Drucker, S., Robertson, G. Code thumbnails:
Using spatial memory to navigate source code.
In Proceedings of the IEEE Symposium on Visual
Languages and Human-centric Computing (2006).

5.	D eLine, R., Rowan, K. Code Canvas: Zooming toward
better development environments. In Proceedings
of the International Conference on Software
Engineering (New Ideas and Emerging Results).
May 2010.

6.	E ick, S.C., Steffen, J.L., Sumner Jr., E.E. 1992.
Seesoft: A tool for visualizing line-oriented
software statistics. IEEE Transactions on Software
Engineering 18, 11 (1992), 957-968.

7.	 Ko, A.J., DeLine, R., Venolia, G. Information needs
in collocated software development teams. In
Proceedings of the 29th International Conference on
Software Engineering (May 2007).

8.	S illito, J., Murphy, G. C., De Volder, K. 2008. Asking
and answering questions during a programming
change task. IEEE Transactions on Software
Engineering.

9.	S torey, M.A., Best, C., Michaud, J., Rayside, D.,
Litoiu, M., Musen, M. SHriMP views: An interactive
environment for information visualization and
navigation. In Proceedings of the Conference on
Human Factors in Computing Systems (May 2002).

10.	 Wettel, R., Lanza, M. Visualizing software systems
as cities. In Proceedings of the IEEE International
Workshop on Visualizing Software for Understanding
and Analysis (2007).

Robert DeLine (http://research.microsoft.com/~rdeline)
is a Principal Researcher at Microsoft Research, working
at the intersection of software engineering and human-
computer interaction. His research group designs
development tools in a user-centered fashion: they
conduct studies of development teams to understand their
work practice and prototype tools to improve that practice.

Kael Rowan (http://research.microsoft.com/~kaelr) is a
Senior Research Software Design Engineer at Microsoft
Research, focusing on the next generation of software
development including software visualization and
spatial layout of source code. His background has gone
from operating system internals and formal software
verification to modern user interfaces and HCI.

Gina Venolia (http://research.microsoft.com/~ginav) is a
senior researcher with Microsoft Research in the Human
Interactions of Programming group. Her research focuses
on building systems that make knowledge flow more
freely among people. She is studying distributed software
teams and developing systems that exploit spatial
memory to support navigation and team awareness.

© 2010 ACM 0001-0782/10/0800 $10.00

