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ABSTRACT
Information retrieval effectiveness is usually evaluated using
measures such as Normalized Discounted Cumulative Gain
(NDCG), Mean Average Precision (MAP) and Precision at
some cutoff (Precision@k) on a set of judged queries. Recent
research has suggested an alternative, evaluating informa-
tion retrieval systems based on user behavior. Particularly
promising are experiments that interleave two rankings and
track user clicks. According to a recent study, interleaving
experiments can identify large differences in retrieval effec-
tiveness with much better reliability than other click-based
methods.

We study interleaving in more detail, comparing it with
traditional measures in terms of reliability, sensitivity and
agreement. To detect very small differences in retrieval effec-
tiveness, a reliable outcome with standard metrics requires
about 5,000 judged queries, and this is about as reliable as
interleaving with 50,000 user impressions. Amongst the tra-
ditional measures, NDCG has the strongest correlation with
interleaving. Finally, we present some new forms of analysis,
including an approach to enhance interleaving sensitivity.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms: Algorithms, Measurement

Keywords: Interleaving, Evaluation, Search

1. INTRODUCTION
A tremendous amount of research has improved informa-

tion retrieval systems over the last few decades. As effec-
tive approaches mature and relative improvements become
smaller, the sensitivity of evaluation metrics and their fi-
delity to actual user experience becomes increasingly critical.
Without sensitive measurement we might reject a small but
significant improvement. This becomes a problem if we re-
ject a large number of independent small improvements, be-
cause we have forgone an overall large improvement. With-
out fidelity in measurement, a small change in a retrieval
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model might be taking into account some bias of relevance
judges, rather than the preferences of real users.

The predominant form of evaluation in information re-
trieval is based on test collections (e.g. [19]) comprising query
topics, a document corpus and human relevance judgments
of topic-document pairs. This allows the application of stan-
dard metrics such as NDCG, MAP and Precision@k. Sen-
sitivity depends on the number of topics and judgments.
Fidelity depends on whether the test collection reflects real-
world search behavior. For example, the TREC Web Track
found that changing from informational to navigational [4]
assumptions when judging can change the outcome of an
evaluation [19, chapter 9]. Experiment outcomes can also
be affected by an assessor’s level of background knowledge
[14].

An alternate evaluation approach is based on user behav-
ior, estimating user success by measuring click, re-querying
and general browsing patterns on search results. This can
be motivated on grounds of fidelity and cost. On fidelity,
judges are usually far removed from the search process, so
may generate unrealistic query topics from observed queries,
and have a hard time assessing documents in a way that
reflects a user’s actual information need. Additionally, tra-
ditional measures combine document judgments to obtain
a score per query, for example based on discount and gain,
but these may not match real user experience. Finally, judg-
ments are slow and expensive to collect. For a system with
real users, usage-based evaluation is far cheaper, despite the
fact that the click data collected may not be reusable in the
way that most test collections are.

This paper considers the reliability, sensitivity and agree-
ment of these competing evaluation approaches. On the
Cranfield/TREC side, we consider relevance judgments for
up to 10,000 queries. On the user metric side, we perform
click-based tests involving the interleaving of two retrieval
functions over 200,000 user impressions, which we define as
events where a user runs a query and clicks a result. Us-
ing a large commercial dataset, we establish results that we
believe would also hold true in an academic setting.

We test sensitivity by measuring outcomes with varying
numbers of queries/impressions. This is done on pairs of re-
trieval functions with varying degrees of difference, including
one pair with a very small difference in effectiveness. Our
results show that both approaches can be very sensitive, but
judged evaluation may require thousands of judged queries
to obtain the required sensitivity.

We test agreement in overall outcomes between tradi-
tional measures and interleaving. We tend to find agree-
ment, which is an indication of the fidelity of the judgment-



based metric, since it is agreeing with an experiment involv-
ing real users. We then study various new ways of aggre-
gating and analyzing the interleaving data, showing how to
improve agreement with traditional metrics and also attain
reliability with fewer impressions. We also show that, in con-
trast to judgment-based metrics, interleaving can measure
the fraction of users for whom a ranking change was mean-
ingful. This allows assessment to move beyond an assump-
tion that relevance for all users is identical, and that rele-
vance of individual documents should be aggregated identi-
cally for all queries.

2. RELATED WORK
A small number of previous studies have evaluated the

sensitivity of MAP and Precision@10 in the TREC setting
[18, 19]. Voorhees and Buckley [8] concluded that an ab-
solute difference in MAP of five to six percent was needed
between two retrieval functions before the direction of the
difference between them as measured on fifty TREC topics
is reliable. Sanderson and Zobel [13] found that an even
larger difference is necessary. This paper compares tradi-
tional measures (with larger query sets) against interleav-
ing, which was found by Joachims and collaborators to be
particularly sensitive to ranking changes [17, 10].

A few previous papers studied the agreement between
TREC-style evaluation and user studies. Hersh, Turpin and
their collaborators found that MAP does not correlate with
the time it takes users to find relevant documents [11, 2].
Allan et al. found that bpref correlated with user search ef-
fectiveness only for some quality differences [12].

On the other hand, Al-Maskari et al. [1] found that various
metrics including search time, number of relevant documents
found and users’ perceived satisfaction differ significantly
when comparing behavior between the best and worst of per-
forming of three common information retrieval systems for
TREC topic queries (as measured by MAP). Additionally,
large differences in precision have been found to correlate
with how long it takes users to find relevant documents [9],
and user perception of result relevance [7]. However none of
these evaluations detected small changes in ranking quality,
which are of interest when developing retrieval algorithms.

Simply observing user clicking behavior on a real search
system, Carterette and Jones [3] found a correlation between
clicks and DCG on advertisements. In addition, Huffman
and Hochster show that satisfaction (as estimate by judges)
correlates with a DCG performance metric based on judg-
ments of the top three retrieved documents [15]. Finally,
Radlinski et al. found that a number of commonly measured
usage-based ranking metrics, such as time to first click, rank
of click and fraction of abandoned queries, do not reliably
correlate with ranking quality on an academic article collec-
tion given large differences in ranking quality [10] . However,
they found that an interleaved evaluation did allow clicks to
identify the better of two rankings quickly and reliably. De-
spite this, the lack of relevance judgments on their collection
left open the question as to whether metrics such as MAP,
NDCG and precision correlate (or even agree) with inter-
leaving.

Finally, a less common evaluation approach asks users or
judges to select the better of two rankings shown side-by-
side [16]. When done by judges, the same challenges exist
as with judging topic-document pairs. If done by users, this
requires a different search interface, meaning the evaluation
cannot be done with users in a natural setting.

3. EXPERIMENT DESIGN
In this section we detail the retrieval systems evaluated,

and the metrics we use.

3.1 Retrieval Systems
We evaluate the differences between five pairs of rankers

(retrieval functions) produced during normal development
by a large commercial search engine. We treat the rankers
as black boxes: for a query, each ranker produces an ordered
set of results. We split our experiments by the magnitude
of changes they measure.

Major experiments: The first three experiments we
present involve major revisions of the web search ranker,
which we refer to as rankerA, rankerB and rankerC. Experi-
ment majorAB compares rankers A and B, with experiments
majorBC and majorAC named equivalently. The differences
between these rankers involve changes of over half a percent-
age point of MAP and NDCG. These were chosen because
the changes in retrieval quality are of similar magnitude to
those commonly seen in recent research publications.

Minor experiments: The remaining two experiments
involve minor modifications to the ranking system – we term
these minorD and minorE. The overall differences involve
changes in retrieval performance of under 0.2 points (out
of 100) of MAP and NDCG, chosen as they are typical of
incremental changes made during algorithm development.
Experiment minorD involves a change in the processing of
rare queries, with a large effect on the performance of a small
fraction of queries. Experiment minorE involves a small
change in search engine parameters, with a small effect on
the performance of many queries.

3.2 Evaluation with Judgement-Based Metrics
Each ranker was evaluated using both standard informa-

tion retrieval metrics and based on user traffic. The standard
metrics were evaluated using approximately 12,000 queries
uniformly sampled from a real workload as part of previous
work (allowing frequent queries to appear multiple times,
and omitting queries classified as adult by human annota-
tors). The relevance of the top ten results returned by each
ranker were assessed by trained judges on a five-point scale
ranging from“bad”to“perfect”. As precision and MAP both
require binary relevance judgments, we binarized the ratings
by taking the top two levels as relevant, and bottom three
as non-relevant. This is consistent with the recent obser-
vation by Scholer and Turpin that precision and user met-
rics are better correlated when slightly relevant documents
are grouped with non-relevant documents rather than with
highly relevant documents [9].

Given Q queries, we compute precision at cutoff 51 for
retrieval algorithm R as follows

Precision@5(R) =
1

Q

Q∑
i=1

[
1

5

5∑
i=j

relb(di
j)

]

where di
j is the jth-ranked document returned by R in re-

sponse to query qi, and relb(di
j) is the binarized relevance

assessment of this document. We compute Mean Average
Precision (MAP) similarly, except that instead of measur-
ing MAP down to a deep rank (such as 1,000 in TREC), we

1Chosen because few users look at results below the top 5.



Algorithm 1 Team-Draft Interleaving

1: Input: Rankings A = (a1, a2, . . . ) and B = (b1, b2, . . . )
2: Init: I ← (); TeamA← ∅; TeamB ← ∅;
3: while (∃i : A[i] 6∈ I) ∧ (∃j : B[j] 6∈ I) do
4: if (|TeamA| < |TeamB|) ∨

((|TeamA|= |TeamB|) ∧ (RandBit()=1)) then
5: k ← mini{i : A[i] 6∈ I} . . . top result in A not yet in I

6: I ← I + A[k]; . . . . . . . . . . . . . . . . . . . . . . . . append it to I

7: TeamA← TeamA ∪ {A[k]} . . . . . clicks credited to A

8: else
9: k ← mini{i : B[i] 6∈ I} . . . top result in B not yet in I

10: I ← I + B[k] . . . . . . . . . . . . . . . . . . . . . . . . append it to I

11: TeamB ← TeamB ∪ {B[k]} . . . . clicks credited to B

12: end if
13: end while
14: Output: Interleaved ranking I, TeamA, TeamB

limit ourselves to only the top ten documents2:

MAP@10(R) =
1

Q

Q∑
i=1

[
1

ni

10∑
j=1

relb(di
j) · Precision@j(R, qi)

]
where for query qi there are ni known relevant documents.
We measure NDCG using an exponential gain and logarith-
mic decay based on the graded relevance judgments:

NDCG@5(R) =
1

Q

Q∑
i=1

[
1

Ni

5∑
j=1

2rel(di
j) − 1

log(j + 1)

]
where Ni is the maximum possible DCG given the known
relevant documents for qi. Due to space constraints, we refer
the reader to [5] for more details about these metrics.

3.3 Evaluation with Interleaving
Interleaved evaluation, originally proposed by Joachims

[17], combines the results of two retrieval functions and
presents this combination to users (essentially, alternating
between the results from the two rankings while omitting
duplicates). The users’ clicks indicate a relative preference
comparing the quality of two retrieval functions: the rank-
ing that contributed the most clicked results is considered
to be better. Radlinski et al. [10] showed that Joachims’
interleaving approach, as well as a modified approach they
introduced, detects changes in ranking quality much more
reliably than other click-based metrics.

Our evaluation on real user traffic using interleaving in-
volved showing the rankings produced for each experiment
to a small fraction of users of a commercial search system
until 220,000 impressions of non-adult queries with clicks
had been observed. The experiments were performed in suc-
cession over two months, with each experiment run on the
same days of the week (Tuesday through Friday) to avoid
any weekday/weekend effects.

Producing Interleaved Rankings
We now describe our specific interleaving algorithm, the

Team-Draft approach introduced by Radlinski et al. [10].
Let A and B be retrieval functions. Given the results for a
query q, A(q) = (a1, a2, . . . , an) and B(q) = (b1, b2, . . . , bm),

2Deeper judging of documents was impractical due to the
large number of queries assessed. However, since ni is the
number of known relevant documents, we are essentially as-
suming that anything not in the top 10 is unranked.

Team-Draft interleaving combines these results into a single
ranking. This algorithm is motivated by how sports teams
are often assigned in friendly games: Given a pool of avail-
able players, two captains take turns picking the next pre-
ferred available player for their team. This approach treats
A(q) and B(q) as team captains’ preference orders. Sub-
ject to a coin toss after every pick, the rankings take turns
“picking” the next available result for their “team”, with the
ranking shown to the user who issued the query being the
pick order. An example ranking produced by Team-Draft
interleaving, along with team assignments, is shown in Fig-
ure 5. The full algorithm is presented in Algorithm 1. For
further details, we refer the reader to [10].

In addition, our implementation involves a minor modi-
fication to this algorithm due to the many near duplicate
documents commonly found on the web. While each ranker
avoided returning near-duplicates, each may return a differ-
ent near-duplicate of the same result. Hence steps 5 and 9
were modified: when verifying the next result in the pref-
erence order of A(q) and B(q) was not already selected, we
also skip over a result if it is very similar to one already
selected, using the similarity measure described in [6].

Credit assignment
Given an interleaved ranking I produced by Algorithm 1
with team assignments TeamA and TeamB, and clicks on
these results, we must determine which ranking is consid-
ered better. To do this, we simply count how many distinct
results were clicked on for each team. If one of the teams
received clicks on more documents, this impression counts
as a preference for that team. Otherwise it is a tie, and the
impression is ignored. Note that the actual number of clicks
is ignored, as is the order of clicking and the rank at which
the clicked documents were presented. We will explore al-
ternative credit assignment approaches in Section 7.4.

3.4 Research Questions
In the rest of this paper, we ask the following questions:

(1) How many queries must be judged to obtain significant
results for each metric given realistic ranking quality dif-
ferences? (2) Does interleaving produce correlated results
with judgment-based metrics? (3) How many impressions
are needed to obtain comparable results? (4) How do inter-
leaving algorithm design choices affect the outcome of the
evaluations, and how can we extend interleaving analysis?

4. STABILITY OF JUDGMENT METRICS
In this section, we evaluate how the outcome of a com-

parison between ranking functions depends on the number
of queries assessed when evaluated according to standard
information retrieval metrics. We start with the previously
described set of about 12,000 queries. From this set, we
subsample n queries (with replacement) and measure the
difference in the score of each input ranking according to
NDCG@5, MAP@10 and Precision@5, repeating the sam-
pling 1,000 times for each n. We then count the fraction
of sampled sets of queries where each of the input rankings
scored higher, ignoring cases when the scores were identical.
The outcome of this evaluation is presented in Figure 1.

The top plot in Figure 1 shows the fraction of query sam-
ples for which the ranker hypothesized to be better (by the
ranker developers) obtains a higher average NDCG@5 score
than the other ranker, versus the number of queries in the
query set evaluated. For very small query set sizes, each
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Figure 1: Query set size vs. the frequency with
which “better” ranking scores higher.

0%

20%

40%

60%

80%

100%

1 10 102 103 104

P
ro

ba
bi

lit
y 

of
 o

ut
co

m
e 

(M
A

P
)

Number of queries in sample

worse (95% significant)
worse (90% significant)

worse (not significant)

exactly tied

better (not significant)

Figure 2: Preferred ranking drilling down by out-
come for experiment minorE measured with MAP.

ranker has higher NDCG@5 roughly half the time. Once
the query set size is comparable to typical TREC evaluation
sets of 50 to 200 queries, there is a preference for the better
ranker on between 50 and 90 percent of samples. Once the
query set size approaches about 1,000 queries, one of the
rankers tends to be consistently identified as better, with
the exception of the minorE experiment. As would be ex-
pected, larger changes in ranking quality can be detected
with smaller query set sizes. It is worth noting, however,
that even with 10,000 queries in the sample, the outcome
for experiment minorE is still uncertain using NDCG@5.

The middle plot in the figure shows the same results us-
ing MAP@10 to evaluate performance. Although the results
are similar to those obtained with NDCG for the major ex-
periments, this is not the case for the minor experiments,
which measure smaller ranking changes. MinorD involves
a change where we expect to significantly improve perfor-
mance on a small fraction of queries. For small numbers of
queries, the “better” ranker in fact performs worse accord-
ing to MAP, while the opposite is true with large numbers of
queries. This happens for two reasons. First, the binariza-
tion of the relevance judgments makes MAP scores behave
differently than NDCG@5 scores. Second, according to the
binarized scores, the improved ranker actually reduces per-
formance slightly for many frequent queries, while improving
some rare queries dramatically. If only one query is picked
at random, it is usually a frequent query, and hence the
unimproved ranker scores higher for most query sets. How-
ever, once the set of queries becomes large enough that at
least one rare query is usually selected, the average change in
MAP on the entire set of queries becomes positive. Experi-
ment minorE sees consistent improvements with large query
set sizes, unlike with NDCG. Also note that the relative dif-
ferences in majorAB and majorBC are different when using
MAP than when using NDCG. This can be explained by
noting that perhaps majorBC involved more improvements
in finding medium relevance documents, while majorAB in-
volved more improvements in finding highly relevant docu-
ments (with MAP only sensitive to the latter).

The lower plot in Figure 1 shows the outcome as mea-
sured by Precision@5. Interestingly, the outcome for ex-
periment minorD disagrees with both MAP and NDCG for
large query set sizes. We hypothesize this difference to hap-
pen because improvements to rare queries often occur at
lower ranks, with MAP and NDCG both less sensitive to
such changes than Precision. A relevant document for a fre-
quent query dropped out of the top 5 more often than a
relevant document was added to the top 5 for a rare query.

We also tried taking the top three levels as relevant when
binarizing our five levels of judgments (rather than the top
two levels), in which case the plots for MAP and Precision@5
become more similar to those for NDCG@5. This suggests
that the changes made in the minor experiments happen pre-
cisely to documents near this relevance threshold, and the
choice of threshold is critical when evaluating ranking qual-
ity using metrics based on binary relevance. One could argue
that this is evidence that the correct threshold for “relevant”
is lower (so that all three metrics agree), yet perhaps one of
the metrics better agrees with user behavior: we will study
this in the next section. Our results also suggest that if only
highly relevant documents are considered relevant (as found
by [9], although based on judgments collected with very dif-
ferent judging guidelines), NDCG and MAP may disagree
on the relative ordering of some ranking functions.
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Figure 3: Frequency of ties vs. query set size

To further analyze the effect of queryset size on evaluation
outcome, Figure 2 shows more detail for one metric (MAP)
for one experiment (minorE). It shows the fraction of query
samples for which a two-sided paired t-test indicates that
one ranking is significantly better or worse (of 1,000 sam-
ples for each query set size). For small query set sizes, the
performance on the set is usually exactly tied. As the query
set size increases, more often than not the hypothesized bet-
ter rankings is preferred (for up to about 85% of query sets
of size 10,000). However, for small query sets from five to 30
queries, the worse ranking is sometimes statistically signifi-
cantly better. At this significance level, this is not unusual
(this incorrect conclusion with 95% confidence is drawn less
than 5% of the time), but it is interesting that the differ-
ence is never significant the other way: For no query set,
even consisting of 10,000 queries, does a t-test indicate that
the hypothesized better ranking is better, although it is pre-
ferred by 85% of the selected query sets.

Finally, Figure 1 ignores queries where the scores are tied.
As we saw that ties are very frequent at small sample sizes,
Figure 3 shows how often each of the metrics were tied de-
pending on the number of queries judged, averaged across
the five experiments. As expected, ties are more common
for small numbers of queries and for Precision@5 and MAP,
which can take fewer values than NDCG@5.

5. SENSITIVITY OF INTERLEAVING
In this section, we perform a similar analysis to the previ-

ous section but with interleaving. From the 220,000 impres-
sions observed for each experiment (except for the majorAC,
where due to a misconfiguration only 190,000 impressions
were collected) we sample impressions at random, obtain-
ing from 1,000 to 200,000 sampled impressions. For each
number of impressions, we evaluate which ranking was pre-
ferred by interleaving. This is repeated 1,000 times for each
sample size, and the results are plotted in Figure 4. The fig-
ure shows the fraction of impression samples for which the
ranking hypothesized to be better was indeed preferred by
interleaving. The errors bars are too small to be visible.

We see a similar result as when sampling judged queries,
with the major experiments agreeing with the hypothesized
direction for even small numbers of impressions, and slower
convergence for the minor experiments. However, even with
just 1,000 impressions one ranking was consistently preferred
60% to 80% of the time. Moreover, as the number of impres-
sions grows, the preferred ranking is always preferred for a
larger fraction of samples, without the flipping behavior seen
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Figure 4: Number of query impressions during eval-
uation vs. the frequency with which hypothesized
better ranking wins.

for MAP earlier. From the plot, interleaving results are 95%
reliable after about 50,000 impressions, which corresponds
to the standard IR metrics with about 5,000 judged queries
for the major experiments, and over 10,000 queries with the
minor experiments. Also, note that the outcome of minorE
disagrees with the binarized judgment-based metrics (MAP,
Precision@5) when the top two relevance levels are taken
as relevant, and provides a statisticaly significant outcome
whereas NDCG@5 does not.

5.1 Query level sensitivity
Given the consistency of interleaving with even a relatively

small number of impressions, we now investigate whether it
can be used to drill down further to analyze ranking perfor-
mance. Figure 5 shows one example impression for the query
shaun cassidy ruby and the rockits during experiment majo-
rAC (the URLs shown are shortened to fit). This query ap-
pears 27 times with a non-draw outcome (at least one click,
and not an equal number on each “team”) in the 190,000
total impressions. In the example, we see that the rank-
ings differed in where they returned the Wikipedia page for
Shaun Cassidy. In fact, for 70% of clicked impressions, this
result was clicked and determined the winner according to
interleaving – and always preferred Ranking C. This suggests
that this particular web result is most relevant for users who
issued this query. Such an analysis can provide a detailed
view not only of which ranker was preferred, but which re-
sults contributed to this preference for each frequent query.

Note that in addition to being useful as an evaluation tool,
identifying particularly important differences in the rankings
that affect user behavior could be used to generate training
data for learning to rank. We leave this as future work.

6. CORRELATION BETWEEN METRICS
We can now address our second question: Does interleaved

evaluation agree with standard information retrieval metrics
in direction as well as in magnitude? We answer it by com-
bining the results from the previous two sections. For each
experiment, Figure 6 shows the relative NDCG@5, MAP@10
and P@5 difference versus the deviation from 50% observed
with interleaving. For example if rankerA is preferred to
rankerB for 52% of impressions in some experiment, we
plot this as a 2% interleaving signal. The error bars on
the judgment-based metrics indicate the 95% confidence in-
tervals using 1000 samples of 10,000 queries as in Section 4.



team Presented Ranking A Ranking C
(A) facebook/ShaunCassidy wall (@1) facebook/ShaunCassidy wall X (@2) wikipedia/Shaun Cassidy

X(C) wikipedia/Shaun Cassidy –(@2) wikipedia/Shaun Cassidy (@4) usatoday.com/life/television/...
(A) facebook/ShaunCassidy (@3) facebook/ShaunCassidy (@5) wikipedia/Ruby & The Rockits
(C) usatoday.com/life/television/... (@6) prime-time-...suite101.com/... (@7) facebook/ShaunCassidy wall
(C) wikipedia/Ruby & The Rockits (@7) thedeadbold.com/news/... (@6) prime-time...suite101.com/...
(A) prime-time...suite101.com/... (@8) buzzdash.com/polls/ruby-the.. (@10) puckettsprojects.com/2009/07/...

Figure 5: Example impression for query “shaun cassidy ruby and the rockits” from experiment majorAC. “X”
indicates a click that counts, “–” the clicked URL on the other ranking, “@n” is the rank at which results from
each input were shown. Of 27 impressions with a non-draw outcome, wikipedia/ShaunCassidy determined
the outcome 19 times (70% of the time).

Table 1: Correlation between IR metrics and inter-
leaving experiments.

Inter’l Scoring IR Metric Correlation p-value

Per impression
NDCG@5 0.882 0.048
MAP@10 0.689 0.198
P@5 0.662 0.223

Per query
NDCG@5 0.910 0.032
MAP@10 0.776 0.122
P@5 0.733 0.159

The error bars on interleaving are 95% binomial confidence
intervals given all the impressions for each experiment.

The figure shows that NDCG@5 is highly correlated with
interleaving, with the other metrics being somewhat less
correlated (although the difference is not statistically sig-
nificant due to the small number of experiments). This
suggests that interleaving is a reliable way to estimate the
NDCG@5, MAP@10 and Precision@5 difference between
pairs of rankers. Note that with the numbers of queries and
impressions considered, the differences in all the interleaving
experiments, and most of the judgment based evaluations,
are statistically significant – despite the disagreements be-
tween metrics. The correlations corresponding to these plots
are shown in the first three rows of Table 1.

7. INTERLEAVING DESIGN CHOICES
Thus far, we have used the team-draft interleaving method

exactly as described by Radlinski et al. [10]. We now explore
a number of possible variations of the analysis of interleav-
ing.

7.1 Impression Aggregation
Interleaving credit assignment provides one “vote” to each

impression, in effect allowing more frequent queries to con-
tribute more to the outcome of an interleaving experiment.
The alternative to is aggregate the preference by query: For
each query, count how often each ranker is preferred, then
aggregate per query and measure the fraction of queries for
which each input ranker is preferred.

As shown in Table 1, this method provides a higher (al-
though not statistically significantly so) correlation with all
the judgment based metrics. This effect is surprising because
the queries for evaluating the judgment-based metrics were
sampled from a real workload, so we would expect interleav-
ing to correlate more highly with the NDCG measured on
this workload sample. We hypothesize this happens because
the set of queries used for evaluating with standard IR met-
rics was sampled from the search workload a few years ago,
thus has a different distribution than the current workload.
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Figure 6: Correlation between IR metrics and inter-
leaving experiments (corresponding to “per impres-
sion” row in Table 1).



Table 2: Summary of interleaving and NDCG@5
evaluation for each experiment.

Experi- NDCG@5 Interleaving
ment All % qry ∆ All % imp ∆
majorAC 1.41 82.3% 1.70 1.4% 40.3% 3.5%
majorBC 0.83 80.5% 1.03 1.2% 36.8% 3.2%
majorAB 0.58 78.8% 0.73 0.9% 38.5% 2.1%
minorD 0.20 16.0% 1.21 0.6% 7.1% 6.9%
minorE 0.01 63.5% 0.02 -0.4% 28.6% -1.1%

7.2 Change frequency versus magnitude
In addition to providing a summary difference per exper-

iment, both judgment based metrics and interleaving allow
us to measure the fraction of queries for which the relevance
of the two rankers differs, and the changes on just those
queries. We present this analysis in Table 2. The left three
columns show the mean NDCG@5 difference for each exper-
iment (matching the NDCG@5 signal in Figure 6), as well
as the average fraction of queries where NDCG@5 differs,
and the mean NDCG@5 difference on just those queries.

To perform a similar analysis for interleaving, we must
modify the credit assignment process. In Team Draft inter-
leaving, each result is assigned to exactly one team, even
if the rankers agree about the result order. If the input
rankings are identical down to rank k, then the interleaved
ranking will also share that top-k, and credit assignment is
purely according to the coin toss. This is fair on average,
over many queries, but is not informative.

In the modified credit assignment process, no credit is as-
signed to clicks in any such shared top-k. Lower clicks are
treated as before. This does not change the mean interleav-
ing signal (the shared results belong to each team equally of-
ten), but reduces the fraction of impressions that contribute
to the outcome of the interleaving experiment. The last
three columns of Table 2 show the mean interleaving signal,
fraction of impressions where the click is on a non-shared
result, and the mean signal from just these impressions.

We see that the fraction of queries where NDCG changes
is much higher than the fraction of interleaving impressions
where a click happens on a non-shared result. This is be-
cause changes in the relevance of any of the top 5 results
(whether the user clicks on them or not) count as changes
in NDCG@5, but do not count as changes in interleaving if
the user only clicks on higher results. In fact, much of this
difference is explained by navigational queries: When both
rankers return the same top result, and users only click on
that top result, any changes lower down are not considered
meaningful by interleaving.

Second, note that the effect of experiment minorD be-
comes much clearer: a small fraction of queries/impressions
changed, but the performance difference on these queries is
large. The disagreement between NDCG@5 and interleaving
on minorE persists, but whereas NDCG@5 seems to have
changed only a very small amount on average, the signal on
the impressions with changes in interleaving is now stronger.

7.3 Detecting Multiple Intents
Taking the analysis of interleaving impressions with changes

further, we can look for queries with a particularly high or
particularly low fraction of affected impressions and a sig-
nal far from 0% on those queries. Table 3 shows a sam-
ple of such queries from the majorAC experiment. Pre-
dominantly navigational queries that are answered well by

Table 3: Sample queries from majorAC experiment.
Inter’l Affected impr.

Query Impressions Signal Fraction Signal
facebook 5461 0.2% 4% 5.0%
myspace 1778 5.0% 12% 42%
usps 55 8.2% 16% 50%
cash for clunkers 58 36% 94% 39%
oprah denim makeovers 331 10% 97% 10%

Table 4: Effect of different credit assignment ap-
proaches on the consistency of interleaving outcome.

Impre- Credit Assignment
ssions constant log(rank) 1/rank top bottom
1,000 70.2% 72.2% 66.5% 67.5% 71.1%
5,000 86.0% 89.2% 82.2% 82.5% 86.2%

10,000 91.3% 93.5% 88.6% 89.5% 92.3%
50,000 98.8% 99.3% 97.3% 97.9% 98.8%

100,000 99.8% 99.9% 99.0% 99.4% 99.7%
200,000 100% 100% 99.9% 100% 100%

both rankerA and rankerC have a low fraction of affected
impressions. For example, for “facebook”, 96% of impres-
sions are followed by a click on the top result for both
rankers, http://facebook.com/. The remaining impressions
are followed by clicks on various results, the most commonly
clicked one (usually presented around rank 53) was a direct
link to the facebook.com login page. For “usps”, most users
clicked on the top result, http://usps.com/. Of the 16%
that did not, most clicked on the US Postal Service package
tracking page. However, other queries saw big changes in
ranking quality between rankerA and rankerC, resulting in
almost all clicks being on non-shared results (although the
rankers did sometimes share at least one top result, as the
fraction of affected impressions is not 100%)4.

7.4 Credit Assignment Alternatives
As a final analysis, we consider a credit assignment al-

ternative where, unlike [17, 10], all clicks are not given an
equal (constant) weight. This is motivated by the particu-
larly strong bias web users have to click on top ranked search
results. It may be the case that users who click on the top
result are more likely to be clicking randomly than users
who click further down the list. Alternatively, presenting
the best result at the top of rankings is most important, so
perhaps clicks at top positions should be weighted higher.

Table 4 shows the fraction of impression sample sets for
which the ranking that was preferred overall was preferred
on the sample (averaged across all five experiments). We
compare the standard credit assignment (constant) with pro-
viding a score of log(rank) or 1/rank to each click before
determining which input ranking is preferred. We also com-
pare this to only considering the highest ranked click (top)
or the lowest ranked click (bottom).

As in Figure 4, with more impressions interleaving is more
consistent, and the choice of credit assignment has little ef-
fect. However, giving logarithmically more weight to lower

3The ranks changed as the web changed, and due to other
instabilities inherent in web search result ranking.
4Note that if 100% of clicks on an interleaved ranking are
on results from one of the input rankings, this translates to
a signal of 50% in Table 3.



clicks improves consistency. In contrast, giving higher weight
to higher clicks makes interleaving less consistent. The dif-
ferences in bold are statistically significant improvements
(with 95% confidence) over constant credit assignment.

Recently, in a completely independent study, Yue et al. [20]
found that by learning a combination of related scoring alter-
natives, even larger improvements in sensitivity are possible.

8. CONCLUSION
In this paper, we have presented a detailed comparison

between performance as measured by judgments-based in-
formation retrieval metrics and performance as measured
by usage-based interleaving on five real pairs of web search
ranking functions. We saw that performance measured by
these methods is in agreement and, particularly in the case
of NDCG@5 and interleaving, is highly correlated.

Using judgment-based metrics, we saw that realistic dif-
ferences in ranking quality of about 1% by these metrics
often were not reliably detected with queryset sizes below
thousands of queries. We also saw that for some ranking
improvements, particularly involving large changes to rare
queries, it is possible for MAP measured on small query
sets to disagree with MAP measured on large query sets.
This suggests that small query set sizes may be impractical
for measuring certain types of improvements in information
retrieval research, or may even provide misleading results.
NDCG appeared more reliable in this regard.

Evaluation with interleaving metrics was seen to require
tens of thousands of user impressions to detect changes of
this magnitude, with approximately 5,000 judged queries ap-
pearing to be similarly reliable to 50,000 user searches with
clicks. Additionally, our results demonstrated that measur-
ing the fraction of impressions where a click was made on
non-shared results provides a better view of the changes in
ranking quality than by identifying queries where NDCG
changes: This separates changes to results which matter less
to users from those that affect users more.

While 50,000 impressions per pair of rankers to evaluate
may appear impractical for comparing tens of rankers, as
are often evaluated during research, our results are consis-
tent with interleaving outcomes being transitive (as was also
seen by [10]), which we intend to investigate further in future
work. In particular, if different rankers were interleaved with
one or more standard baseline rankers, this would likely al-
low direct comparison between different ranking algorithms
that were never compared directly.

Finally, we explored a number of alternative credit assign-
ment modifications to interleaving. Our results suggested
that placing more weight on lower clicks improves the con-
sistency of the experimental outcome, thus making it more
reliable with a small number of impressions.

Overall, we found a strong agreement between judgment-
based and click-based evaluation, bolstering our confidence
in both types of performance assessment. Moreover, our
results show that the query volumes necessary to detect re-
alistic changes in retrieval quality using interleaving require
just tens to hundreds of regular search users, making them
attainable in an academic environment.
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