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ABSTRACT
Discovering frequent patterns from data is a popular exploratory
technique in data mining. However, if the data are sensitive (e.g.
patient health records, user behavior records) releasing informa-
tion about significant patterns or trends carries significant risk to
privacy. This paper shows how one can accurately discover and re-
lease the most significant patterns along with their frequencies in
a data set containing sensitive information, while providing rigor-
ous guarantees of privacy for the individuals whose information is
stored there.

We present two efficient algorithms for discovering the K most
frequent patterns in a data set of sensitive records. Our algorithms
satisfy differential privacy, a recently introduced definition that pro-
vides meaningful privacy guarantees in the presence of arbitrary
external information. Differentially private algorithms require a
degree of uncertainty in their output to preserve privacy. Our al-
gorithms handle this by returning ‘noisy’ lists of patterns that are
close to the actual list of K most frequent patterns in the data. We
define a new notion of utility that quantifies the output accuracy of
private top-K pattern mining algorithms. In typical data sets, our
utility criterion implies low false positive and false negative rates in
the reported lists. We prove that our methods meet the new utility
criterion; we also demonstrate the performance of our algorithms
through extensive experiments on the transaction data sets from the
FIMI repository. While the paper focuses on frequent pattern min-
ing, the techniques developed here are relevant whenever the data
mining output is a list of elements ordered according to an appro-
priately ‘robust’ measure of interest.

1. INTRODUCTION
Frequent Itemsets Mining (FIM) is a fundamental problem in

data mining [2, 16, 15]. In this problem, there is a universe M of
items (or symbols) and each data record, called a transaction, is an
unordered collection of items from M . For example, a transaction
could represent the items purchased by a customer in one visit to
a grocery store. An itemset1 is a (typically small) subset of items

1We use the terms pattern and itemset interchangeably.
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out of M . A transaction supports a pattern if it contains the pat-
tern. The frequency of a pattern is the proportion of transactions in
the data that support it. The goal in FIM is to discover and report
the patterns that occur most frequently in the data. There are typ-
ically two ways to control the size of output: (i) user specifies an
explicit frequency threshold and the algorithm outputs all patterns
whose frequencies in data exceed that threshold, or (ii) user spec-
ifies a positive number K and the algorithm outputs the K most
frequent (top K) patterns. The Apriori algorithm [2, 15] for FIM is
regarded as one of the most successful of techniques in data mining
[25]. It forms the basis of several data mining tasks such as mining
association rules [2], detecting correlations, discovering emerging
patterns [7], etc. Beginning with [2], there is an extensive body of
work (e.g. see [16, 13, 26, 23]) that deals with FIM and its vari-
ants in transactional data sets. In this paper we are concerned with
mining top K itemsets from transaction data.

Many compelling applications of frequent pattern mining deal
with sensitive data. For example, discovering strong correlations,
trends and rules from electronic medical records of hospital pa-
tients can be a valuable source of information for society [12, 17];
understanding common user behavior can provide useful informa-
tion for pricing advertising. However, releasing information about
sensitive data carries serious risks to privacy. Simply removing
obvious identifiers, such as names and exact addresses, does not
protect privacy since the remaining information may identify a per-
son uniquely [24, 4]. Even relatively sophisticated anonymiza-
tion techniques (e.g., those based on k-anonymity [24]) can fail to
hide the exact values of sensitive attributes when combined with
background knowledge [19] or easily available external informa-
tion [11]. Recent theoretical and experimental results demonstrate
that reasoning about the privacy of high-dimensional data is par-
ticularly difficult. For example, Dinur and Nissim [6] showed that
even highly noisy answers to a large number of counting queries
(“how many records in the database satisfy the following predi-
cate?”) allow an adversary to reconstruct large parts of a data set
exactly. External information is difficult to reason about in high-
dimensional settings. For example, Narayanan and Shmatikov [21]
showed how even a few pieces of a long record are enough to link
it to outside sources; Ganta et al. [11] show that independently
anonymized releases of large data sets could be combined to reveal
sensitive information. There is a basic tension, then, between util-
ity and privacy. The fundamental problem is to understand where
exactly the trade off lies between these two.

1.1 Contributions
We present two efficient algorithms for discovering frequent item-

sets in sensitive data sets. Our algorithms satisfy differential pri-
vacy [9, 8], a recently introduced definition which provides mean-
ingful privacy guarantees in the presence of arbitrary external in-



formation. Differential privacy imposes a condition on the algo-
rithm that releases some statistics about a data set x. Roughly, it
states that small changes to x should not be noticeable to the users
(or adversaries) who view the released statistics. This implies that
no matter what the adversary knows ahead of time, he learns the
same thing about Alice whether or not her data is actually included
in the data set x [8, 11]. Our algorithms thus provide a picture of a
data set’s most significant structures while preserving privacy under
the sole assumption that the internal random coins of the algorithm
are secret.

We quantify the notion of utility (accuracy) needed for the al-
gorithms’ analysis and give rigorous accuracy bounds. Our exper-
iments show that the algorithms perform well on a standard suite
of data sets. Our algorithms are based on different techniques, but
have similar performance guarantees. Nevertheless, they are in-
comparable: one is more accurate, the other simpler.

Quantifying “Utility” for FPM. Because differentially private al-
gorithms must treat nearby inputs indistinguishably, they can at
best return approximate answers. Thus, our algorithms produce
a noisy list of itemsets which is “close” to the list of the top K
itemsets with high probability. (Our algorithms also release the ap-
proximate frequency of each of the itemsets in the output.)

To quantify the algorithms’ utility, we introduce a natural notion
of approximation for frequent itemset mining. Roughly, we require
that the itemsets in the output have frequencies within a small addi-
tive error of those of the K most frequent itemsets. Specifically, let
fK be the frequency of the Kth most frequent itemset in the input.
Given an accuracy parameter γ ∈ [0, 1], we require that with high
probability (a) every itemset with frequency greater than fK + γ is
output and (b) no itemset with frequency below fK − γ is output.
Equivalently, the algorithm must output the top-K itemsets of an
input in which all frequencies have been changed by up to γ.

In typical data sets, there is little concentration of patterns at any
particular frequency. In such cases, our utility guarantee implies
low false positive and false negative rates. For example, if there at
most 0.02 ·K itemsets with frequencies in the range [fK , fK + γ],
then with high probability the FNR is at most 2%.

Evaluating Utility. We present a rigorous analysis of the privacy
and accuracy of both algorithms. For a given level of differential
privacy, quantified by the parameter ε, we prove high-probability
bounds on how far the reported itemsets can be from the true top-K
itemsets. The error parameter γ of both algorithms isO(K log(U)/nε),
where K is the number of itemsets reported, n is the total number
of records in the transaction data set and U is the total number of
itemsets under consideration (e.g., for sets of ` items amongm pos-
sibilities, U is

(
m
`

)
and log(U) is O(` logm)).

We also provide a extensive experimental evaluation of both al-
gorithms on all the data sets from the FIMI repository [1]. First, we
calculate the concrete bounds implied by our utility theorems, and
find that the bounds correspond to meaningful error rates on the
FIMI data sets. The empirical error we observe in experiments is
even lower than the theoretical bounds. Our results indicate that for
all but one FIMI data set, we can release over 100 frequent itemsets
while keeping the false negative rate below 20%. We present the
results in detail in Section 4.

Evaluating Efficiency. In both our algorithms, there is a prepro-
cessing phase which extracts the topK′ > K itemsets using an ex-
isting non-private algorithm (Apriori, [2, 15]). The preprocessing
phase takes time roughly proportional to K′n, where n is the num-
ber of records in the database. Here K′ is the number of itemsets
with frequency greater than fK − γ, where γ is the utility param-
eter. After preprocessing, both of our algorithms require time only

O(K′ + K logK′ + nK) to produce the final output. Since K
and K′ are typically much smaller than n, the non-private itemset
mining is the efficiency bottleneck. This observation was borne out
by our experiments.
Techniques. The main difference between our two algorithms is
technique. Our first algorithm is based on the exponential mech-
anism of McSherry and Talwar [20]. Our main contribution is to
give an efficient algorithm for this case of the exponential mech-
anism (a priori, the mechanism requires exponential time). The
second algorithm is based on a new analysis for the established
technique of adding Laplace noise to released functions [9, 18, 14];
we show that in some settings one can add much less noise than
was possible with previous analyses. A more detailed discussion of
our techniques relative to previous work can be found in Sections 5
and 6.

The paper is organized as follows. In Sec. 2 we review the defi-
nition of Differential Privacy. Our new privacy preserving frequent
itemset mining algorithms are presented in Sec. 3. The experi-
mental evaluation of these methods is presented in Sec. 4. We ex-
tend our ideas to a more general problem called private ranking in
Sec. 5. We review related work in Sec. 6 and conclude in Sec. 7.

2. DIFFERENTIAL PRIVACY
Our algorithms satisfy differential privacy [9], which bounds the

effect that any single record has on the distribution of the released
information. Let Dn be the space of transaction data sets contain-
ing n transactions.

DEFINITION 1 (ε-DIFFERENTIAL PRIVACY [9]). A random-
ized algorithm A is ε-differentially private if for all transaction
data sets T, T ′ ∈ Dn differing in at most one transaction and all
events O ⊆ Range(A):

Pr[A(T ) ∈ O] ≤ eε Pr[A(T ′) ∈ O] .

Both algorithms presented in this paper satisfy ε-differential pri-
vacy. In Sec. 6 we also discuss some algorithms that satisfy a
weaker notion called (ε, δ)-differential privacy [22].

DEFINITION 2 ((ε, δ)-DIFFERENTIAL PRIVACY [22]). A ran-
domized algorithm A is (ε, δ)-differentially private if for all trans-
action data sets T, T ′ ∈ Dn differing in at most one transaction
and all events O ⊆ Range(A):

Pr[A(T ) ∈ O] ≤ eε Pr[A(T ′) ∈ O] + δ .

Both these definitions capture the notion that the probability of see-
ing a particular output does not depend too much on any particular
transaction. However, definition 2 additionally allows a small ad-
ditive error factor of δ.
Example: Laplace noise. Differentially private algorithms must
be randomized, since they must blur the distinction between two
neighboring inputs T, T ′ even when T and T ′ are known to the
adversary. A common technique to introduce randomness is the
addition of Laplace noise to outputs. Suppose that we would like
to release (an approximation to) a vector of real-valued statistics.
That is, for some function f : Dn → Rd, we would like to release
an approximation to close to f(T ). Dwork et al. [9] showed that it
suffices to add noise proportional to the sensitivity of the function
f . Sensitivity measures the maximum possible change in the value
of f when transaction from the data set is changed.

DEFINITION 3 (SENSITIVITY [9]). The sensitivity of a
function f : Dn → Rd is the smallest number ∆f such that for
all inputs T, T ′ ∈ Dn which differ in a single entry (transaction),
||f(T )− f(T ′)||1 ≤ ∆f .



Consider the randomized algorithmAf that computes f(T ) and
releases f̃(T ) = f(T ) + Lap

(
∆f
ε

)d
, where Lap(λ)d denotes a

vector of d i.i.d. samples from the Laplace distribution Lap(λ).
Recall that Lap(λ) is the distribution on R with density at y given
by 1

λ
exp(−|y|/λ). Dwork et al. [9] showed thatAf is ε-differentially

private. The standard deviation of Lap(λ) is λ
√

2, so this algo-
rithm adds noise proportional to ∆f/ε.

Noise addition is not directly relevant to FIM because the output
cannot be described by a single low-sensitivity real-valued func-
tion. However, we will use this technique for reporting the fre-
quencies of the itemsets we output.

Recently McSherry et al. [20] proposed a technique, the expo-
nential mechanism, for designing differentially private algorithms
for non-real valued outputs. In the next section we discuss this
mechanism in detail; we adapt their technique to FIM in our first
algorithm (Section 3.1).

We provide two differentially private algorithms for top-K FIM
with provable privacy and utility guarantees. Since the algorithms
are randomized in nature, we cannot provide the exact solution to
the FIM problem. Hence, with high probability, we want to output
a list of itemsets that is close to the list ofK most frequent itemsets
in the transaction data set. “Close” here means roughly that the
itemsets in the output have frequencies within a small additive error
of those of the K most frequent itemsets. We formalize this notion
in the following section.

3. PRIVATE FIM ALGORITHMS
The output of frequent itemset mining algorithms is typically a

list of itemsets together with their supports or frequencies. Modi-
fying such an algorithm to satisfy differential privacy requires in-
troducing uncertainty into the output. There are two natural ap-
proaches to doing this: we can first construct a noisy list of itemsets
(i.e. by including some ‘infrequent’ sets in the list, while leaving
out some ‘frequent’ ones) and then perturb the frequencies of those
itemsets, or we can first add noise to the frequencies of all item-
sets and then select the itemsets with the highest noisy frequencies.
In this paper, we present algorithms which illustrate each of these
approaches. Our first algorithm is based on the exponential mech-
anism of [20]; the second, on the Laplace noise model of [9].

To quantify our algorithms’ utility, we introduce a natural notion
of approximation for frequent itemset mining. Given an input data
set T , the true frequency of an itemset refers to the proportion of
records in T in which the itemset actually occurs; in contrast, the
reported, or noisy, frequency refers to the estimate reported by the
algorithm.

DEFINITION 4 (APPROXIMATE TOP-K FIM). Let T be a set
of n transactions over an alphabetM ofm items. LetK denote the
number of frequent itemsets to be reported in the output and let `
denote the size of itemsets under consideration. Let fK denote the
frequency of the Kth most frequent itemset of size `. For positive
real parameters ρ, γ, η, we say an algorithm is (ρ, γ, eta)-useful if,
with probability at least (1 − ρ), the output is a list of K itemsets
of size ` along with estimated frequencies and satisfies:

1. (Soundness) No itemset in the output has true frequency less
than (fK − γ).

2. (Completeness) Every itemset with true frequency greater
than (fK + γ) is in the output.

3. (Accuracy) For every pattern in the output list, the noisy fre-
quency reported differs by no more than η from the corre-
sponding true frequency.

3.1 Exponential Mechanism-based Algorithm
In this section we describe the exponential mechanism due to

McSherry et al. [20] and show how it can be adapted, with some
work, to FIM. The exponential mechanism is in fact a family of al-
gorithms, parametrized by a finite setR of possible outputs (called
the range) and a real-valued function q : Dn × R × R that as-
signs each possible output r a score q(T, r) based on the input
T . Given R, q, T and ε, the goal is to produce an output with
as high a score as possible, while satisfying ε-differential privacy.
To this end, the algorithm draws a single sample from the distribu-
tion on R which assigns each element r ∈ R mass proportional
to exp(εq(T, r)/2∆q). Here ∆q is the maximum of the sensitivi-
ties (Def. 3) of the functions q(·, r). That is, ∆q is the maximum
over r and neighboring data sets T, T ′ of |q(r, T )−q(r, T ′)|. Intu-
itively, the mechanism is useful since high mass to elements r with
high scores. McSherry and Talwar showed that this algorithm is
ε-differentially private.

At a high level, our first algorithm consists of K applications of
the exponential mechanism. In each round, we sample from the set
of itemsets of size `. Given a dataset T , the score of an itemset is a
truncated version of its frequency, denoted f̂ . The analysis of pri-
vacy relies on bounding the sensitivity of the truncated frequency.

Algorithm 1 Exponential Mechanism based FIM
Input: Transaction data set T , privacy parameter ε, itemset length

`, K, fK , and error parameter γ.
1: Preprocessing: Using FIM algorithm, find all length ` item-

sets with frequencies > ψ = fK − γ. Assume all unknown
frequencies to be ψ. Call these frequencies as truncated fre-
quencies.

2: Sampling: Sample K itemsets without replacement such that
Pr[Selecting itemset I] ∝ exp( εn

4K
f̂(I)), where f̂(I) is the

truncated frequency of I.
3: Perturbation: Perturb the true frequencies of the itemsets

sampled in the previous step by adding Lap
(

2K
εn

)
noise.

4: return The sampled K itemsets and their noisy frequencies.

In Algorithm 1, we describe our exponential mechanism based
FIM algorithm. The algorithm takes the transaction data set T , the
data set size n, the alphabet sizem, the itemset length `, the number
of desired patterns K, the privacy parameter ε and the confidence
parameter ρ as input. In the Preprocessing step, γ is computed as
4K
εn

(
ln K

ρ
+ ln

(
m
`

))
(see Lemma 5). A FIM algorithm is run with

a sufficiently low threshold so as to get at least K itemsets in the
output and all itemsets with frequency≥ fK−γ. This may require
two runs of the FIM algorithm (first to get fK and the other to get
all itemsets with frequency ≥ fK − γ).

In our algorithm, along with the notions of true frequency and
noisy frequency, we have a notion of a truncated frequency. For an
itemset with true frequency f , if f ≥ fK − γ, then its truncated
frequency is f , otherwise its truncated frequency is fK−γ i.e trun-
cated frequency f̂ = max (f, fK − γ). In the Sampling step, the
truncated frequencies are used to sample K itemsets such that the
probability of selecting an itemset is proportional to exp( εn

4K
f̂(I)).

We give details of the sampling in the next section. In the Pertur-
bation step, the true frequencies of the K sampled itemsets are
perturbed by a zero mean Laplace noise with parameter 2K

εn
before

being output. In order to compute the true frequencies of all the K
itemsets, in the worst case, O(K · n) of additional work may be
required. The noise addition step itself has complexity O(K).

3.1.1 Implementation details and runtime analysis



Let K′(> K) denote the number of itemsets mined by the FIM
algorithm in the Preprocessing step. A trivial lower bound on the
runtime of the FIM algorithm is Ω(K′n). This is because for every
itemset it mines, it has to go through the entire data set once to
compute its frequency. We show that FIM runtime is the dominant
term in the overall runtime of the algorithm. The Perturbation
step has a worst-case runtime of O(K · n). Next, we analyze the
complexity of the Sampling step.

In any particular round of sampling, let S1 be the collection of
itemsets with true frequencies > fK − γ and S2 be the collection
of itemsets with true frequencies ≤ fK − γ. Note that, we sam-
ple without replacement, hence, the sets change with each round
of sampling. For any itemset I ∈ S1, the associated probabil-
ity mass is 1

C
exp( εnf̂(I)

4K
), where the normalization constant C =∑

I∈S1
exp( εnf̂(I)

4K
) + |S2| exp( εn(fK−γ)

4K
). The total probability

mass associated with the itemsets in S2 is |S2|
C

exp( εn(fK−γ)
4K

).
A simple implementation of the Sampling step is to partition

the real number line [0, 1] into |S1| + 1 segments (one each for
an itemset in S1 and the last one for all itemsets in S2) according
to the probability masses defined above. We then sample a num-
ber uniformly at random within the interval [0, 1]. The partition in
which the random number falls decides the itemset that we pick. If
it falls in the partition corresponding to S2, we pick up an itemset
from S2 uniformly at random. This technique is inefficient because
every time an itemset is picked, one has to recompute the proba-
bility masses for all the itemsets. In fact the time complexity is
O(K · K′). One can, in fact, significantly improve the running
time.

LEMMA 1. The Sampling step of algorithm 1 can be imple-
mented to run in time O(K′ +K ln(K′)).

PROOF. (Sketch) The idea is to create a static, balanced binary
tree with |S1|+ 1 = K′+ 1 leaves. Each leaf is labeled by a set in
|S1| except for the last leaf which represents all the itemsets in S2.
The weight of a leaf is initially set to be its sampling weight. At
each internal node, we store the sum of the weights in the subtree
rooted at the node. This data structure can be built in linear time
O(K′). It allows one to sample from the exponential mechanism’s
distribution in time O(log(K′)), since one can descend the tree
from the root, at each step choosing a child with mass proportional
to its subtree weight. Once a leaf has been sampled, its weight can
be set to 0; updating the subtree wights on the path to the root also
takes time O(log(K′). Since we take K samples, the overall run
time is O(K′ +K log(K′)).

In our experiments, we used a simpler linked-list variant of the
data structure (figure: 1) from Lemma 1, which performed well on
our data sets though it has poor worst-case performance.

Let {1, · · · , U} denote a set of elements, where the probability
of picking the i-th element is proportional to Ai. We sort the ele-
ments by weight so that A1 ≥ A2 ≥ · · ·AU . We want to sample
K elements from this set without replacement. We create a linked
list, where the i-th node stores Pi = Ai∑

i≤j≤U Aj
. To pick an ele-

ment, we traverse the list starting at node 1. When at the i-th node,
we pick element i with probability Pi and stop or we move to node
i + 1 with probability 1 − Pi. Thus, the probability of picking an
element i in a traversal is equal to (1−P1) · · · (1−Pi−1)Pi, which
equals Ai∑

1≤j≤U Aj
. After we have picked an element i, we remove

that node from the linked list. We also recompute the Pi’s for nodes
1, · · · , i by removing Ai from their expressions. We start the next
round of sampling in an exactly same manner as the previous round

of sampling, but this time with the new linked list. We repeat this
process K times. If the Ai’s are highly skewed (i.e. the difference
between the consecutive Ai’s are quite large) then, effectively in
each round of sampling one has to go a small depth in the linked
list before an element is picked.

A1∑
1≤j≤U Aj

A2∑
2≤j≤U Aj

Ai∑
i≤j≤U Aj 1- - - - -- - - - --

Node 1 Node 2 Node i Node U

Figure 1: Link list for sampling without replacement

In our setting, U = |S1| + 1. We set each of the Ai’s (i ∈
[1, |S1|]) to exp( εnf̂(I)

4K
) sorted in descending order, where I ∈

S1. A|S1|+1 is set to |S2| ·exp( εn(fK−γ)
4K

). In our experiments, the
frequencies of the itemsets were highly skewed it was not necessary
to go far down the linked list (on average) before an itemset was
picked.

From Theorem 1, we know that the Sampling step can be im-
plemented in time O(K′ +K ln(K′)). Further, the Perturbation
step takes O(Kn) running time. Therefore, in total steps 2 and 3
of the algorithm runs in O(K′ + K ln(K′) + Kn). Earlier in the
analysis we saw that the Preprocessing of the algorithm takes time
Ω(K′n). Hence, we can conclude that for data sets with reasonably
large n, the Preprocessing step is the performance bottleneck.

3.1.2 Privacy Analysis
In this section, we prove that algorithm 1 is ε differentially pri-

vate. First, we claim that the sensitivity of truncated frequency of
any itemset is bounded

LEMMA 2. For any itemset I, the truncated frequency of I has
sensitivity 1

n
.

PROOF. Let T and T ′ be two transaction data sets with n trans-
actions differing in only one transaction. Let fT (I) and f̂T (I) rep-
resent the true frequency and the truncated frequency of an itemset
I in T respectively. We will represent the K-th highest frequency
in T as fTK and the K-th highest frequency in T ′ as fT

′
K . Note,

fTK = θ implies that no more than K − 1 itemsets have frequency
> θ in T , as well as, that atleast K itemsets (including the itemset
which has frequency exactly θ) have frequency ≥ θ.

We first prove that fTK and fT
′

K differ by at most 1
n

. Let fTK = θ

and fT
′

K = θ − 2
n

. If fTK = θ, then there are altleast K itemsets in
T with frequency≥ θ. TheseK itemsets have a frequency≥ θ− 1

n
in T ′. This violates the fact that no more than K − 1 itemsets have
a frequency > θ − 2

n
in T ′. A similar contradiction arises for any

fT
′

K < θ− 2
n

. Thus fT
′

K ≥ fTK− 1
n

. Let fTK = θ and fT
′

K = θ+ 2
n

.
If fTK = θ, then there are no more than K − 1 itemsets in T with
frequency > θ. Thus, there are no more than K − 1 itemsets with
frequency ≥ θ + 1

n
in T ′. This violates the fact that atleast K

itemsets have a frequency ≥ θ + 2
n

in T ′. A similar contradiction
arises for any fT

′
K > θ + 2

n
. Thus fT

′
K ≤ fTK + 1

n
.

Next we prove that f̂T (I) and f̂T ′(I) differ by at most 1
n

. For an
itemset I in T whose true frequency is≥ fTK−γ+ 2

n
, its truncated

frequency (in both T and T ′) is same as its true frequency. As
true frequencies differ by at most 1

n
between T and T ′, f̂T (I) and

f̂T ′(I) can differ by at most 1
n

. For an itemset I in T whose true
frequency is ≤ fTK − γ − 2

n
, its truncated frequency is fTK − γ in



fT
′

K − γ → fTK − γ − 1
n

fTK − γ fTK − γ + 1
n

fT ′(I) ↓
fTK − γ fTK − γ fTK − γ fTK − γ + 1

n

fTK − γ + 1
n

fTK − γ + 1
n

fTK − γ + 1
n

fTK − γ + 1
n

fTK − γ + 2
n

fTK − γ + 2
n

fTK − γ + 2
n

fTK − γ + 2
n

Table 1: Value of f̂T ′(I) as a function of fT ′(I) and fT
′

K

fT
′

K − γ → fTK − γ − 1
n

fTK − γ fTK − γ + 1
n

fT ′(I) ↓
fTK − γ − 2

n
fTK − γ − 1

n
fTK − γ fTK − γ + 1

n

fTK − γ − 1
n

fTK − γ − 1
n

fTK − γ fTK − γ + 1
n

fTK − γ fTK − γ fTK − γ fTK − γ + 1
n

Table 2: Value of f̂T ′(I) as a function of fT ′(I) and fT
′

K

T and fT
′

K − γ in T ′. Note that γ is identical in T and T ′. Thus,
f̂T (I) and f̂T ′(I) can differ by at most fTK − fT

′
K which is ≤ 1

n
.

For an itemset I, whose true frequency in T is exactly fTK −γ+
1
n

, the truncated frequency in T is fTK − γ + 1
n

. The truncated
frequency of I in T ′ depends on both the true frequency of I and
fT
′

K − γ in T ′. Table 1 shows the possible values of the truncated
frequency of I in T ′ as a function of fT ′(I) (along y-coordinate)
and fT

′
K − γ (along x-coordinate). As can be seen from the table,

|f̂T (I) − f̂T ′(I)| ≤ 1
n

. Similarly, for an itemset I with true fre-
quency in T exactly fTK − γ − 1

n
, the truncated frequency in T is

fTK − γ. Table 2 shows the possible values of the truncated fre-
quency of I in T ′ as a function of fT ′(I) (along y-coordinate) and
fT
′

K − γ (along x-coordinate). Again, |f̂T (I) − f̂T ′(I)| ≤ 1
n

. A
similar exercise for an itemset I with true frequency fTK − γ in T
shows that |f̂T (I) − f̂T ′(I)| ≤ 1

n
. Therefore, always f̂T (I) and

f̂T ′(I) can differ by at most 1
n

.

The Sampling step is essentially K successive applications of
the exponential mechanism. In each round of exponential mecha-
nism an itemset is sampled without replacement. The score func-
tion for an itemset I is n × truncated frequency of I. Hence, by
lemma 2 the sensitivity of the score function is one. From the
analysis of the exponential mechanism (explained in the begining
of section 3.1), each round of the Sampling step guarantees ε

2K
-

differential privacy. We use the composition lemma (defined be-
low) to guarantee ε

2
differential privacy for the Sampling step as a

whole.

LEMMA 3 (COMPOSITION LEMMA [9]). If a randomized
algorithm A runs K algorithms A1, · · · ,AK , where each algo-
rithm is εi-differentially private, and outputs (A1(T ), · · · ,AK(T )),
then A(T ) is

∑K
i=1 εi-differentially private. Here T is any trans-

action data set.

In the Perturbation step, we use the Laplace noise addtion tech-
nique (described in section 2) independently on the true frequencies
of theK itemsets chosen in the Sampling step. The scaling param-
eter for the Laplace distribution used is 2K

εn
. Each of the noise addi-

tion step guarantees ε
2K

-differential privacy. By the use of compo-
sition lemma, the Perturbation step as a whole is ε

2
-differentially

private.
We guarantee ε-differential privacy for algorithm 1 by apply-

ing composition lemma on the the Sampling and the Perturbation
step together.

THEOREM 1. Algorithm 1 is ε-differentially private.

3.1.3 Utility Analysis
In this section, we provide theoretical guarantees for the utility

of our algorithm. Intuitively, Theorem 2 guarantees that with high
probability, the K itemsets output by our algorithm are close to
the actual top K itemsets. Theorem 3 guarantees that with high
probability, the reported frequencies of the itemsets output are close
to their true frequencies. The main steps of the proof of Theorem 2
are stated here as Lemmas 4, 5, 6.

LEMMA 4. At each round of sampling during the Sampling
step, if there exists an unsampled itemset with true frequency ≥
f , then the probability of picking any itemset with true frequency
≤ f − γ is at most

(
m
`

)
exp

(
− εnγ

4K

)
.

PROOF. Conditioned on the fact that an itemset with true fre-
quency f is still present, the probability of picking an itemset with

true frequency ≤ f − γ is ≤ e
εn(f−γ)

4K

e
εnf
4K

= exp(− εnγ
4K

).

Since, there are at most
(
m
`

)
itemsets with true frequency≤ f−γ

therefore, by union bound the probability of picking an itemset with
true frequency ≤ f − γ is at most

(
m
`

)
exp(− εnγ

4K
).

LEMMA 5. Let S be the collection of itemsets sampled in the
Sampling step. For all ρ > 0, with probability at least 1 − ρ, the
true frequencies of all the itemsets in S are > fK − γ, where γ =
4K
εn

(
ln K

ρ
+ ln

(
m
`

))
. When ρ is constant, γ = O

(
K·lnK+`·lnm

εn

)
.

PROOF. By lemma 4, in any round of sampling the probability
of choosing a particular itemset with true frequency ≤ fK − γ is
at most exp(− εnγ

4K
). This is because in each round of sampling

we are guaranteed to have at least one itemset with true frequency
≥ fK which has not been sampled yet. Since, there are at most

(
m
`

)
itemsets, therefore by union bound, in any round of sampling the
probability of choosing any itemset with true frequency ≤ fK − γ
is at most

(
m
`

)
exp(− εnγ

4K
).

Further by union bound, in the Sampling step the probability
of choosing any itemset with true frequency ≤ fK − γ is at most
K ·

(
m
`

)
e−

εnγ
4K .

Let ρ ≥ K ·
(
m
`

)
e−

εnγ
4K . Then,

−γεn
4K

≤ ln

(
ρ

K
(
m
`

))

⇔ γεn

4K
≥ ln

(
K
(
m
`

)
ρ

)

⇔ γ ≥ 4K

εn

(
ln
K

ρ
+ ln

(
m

`

))

For constant ρ, γ = O
(
K(lnK+`·lnm)

εn

)
will suffice.

LEMMA 6. For all ρ > 0, with probability at least 1 − ρ, all
length ` itemsets with true frequency > fK + γ are present in
S, where γ = 4K

εn

(
ln K

ρ
+ ln

(
m
`

))
. When ρ is constant, γ =

O
(
K(lnK+`·lnm)

εn

)
.

PROOF. If any one of the itemsets with true frequency > fK +
γ is not present in S then, by lemma 4, probability of picking
any itemset with true frequency ≤ fK is at most

(
m
`

)
exp(− εnγ

4K
).



Therefore, the probability of not picking any itemset with true fre-
quency ≤ fK in any of the K rounds of sampling is at least(

1−
(
m
`

)
e−

εγn
4K

)K
≥
(
1−K ·

(
m
`

)
exp(− εγn

4K
)
)
.

From the analysis of lemma 5, γ ≥ 4K
εn

(
ln K

ρ
+ ln

(
m
`

))
. When

ρ is constant, γ = O
(
K(lnK+`·lnm)

εn

)
will suffice.

THEOREM 2. For all ρ > 0, with probability at least 1 − ρ,
all output itemsets have their true frequencies > fK − γ, and all
itemsets with true frequency > fK + γ are output, where γ =
4K
εn

(
ln 2K

ρ
+ ln

(
m
`

))
. When ρ is constant,

γ = O
(
K(lnK+`·lnm)

εn

)
.

PROOF. From the proof of lemma 5, we know that w.p. at least
1−K ·

(
m
`

)
e−

εγn
4K all itemsets in S have true frequencies> fK−γ.

From the proof of lemma 6, we know that w.p. at least
1 − K ·

(
m
`

)
e−

εγn
4K all the length ` itemsets with true frequency

> fK + γ are present in S.
By union bound, w.p at least

1− 2K ·
(
m
`

)
e−

εγn
4K all itemsets output have their true frequencies

> fK−γ and all itemsets with true frequency> fK+γ are output.
Using analysis analogous to Lemma 5, we get

γ ≥ 4K
εn

(
ln 2K

ρ
+ ln

(
m
`

))
. For constant ρ, γ = O

(
K(lnK+`·lnm)

εn

)
will suffice.

THEOREM 3. For all ρ > 0, with probability at least 1− ρ, all
noisy frequencies differ by at most η from their corresponding true
frequencies, where η = 2K

nε
ln
(
K
ρ

)
.

PROOF. Let the true frequency of an itemset be f . In the pertur-
bation stage we add Lap

(
2K
εn

)
noise to f . Therefore, the probabil-

ity of the noisy frequency deviating by ≥ η from f is ≥
2 ·
(
nε
4K

∫∞
f+η

exp
(
− (x−f)nε

2K

)
dx
)
. = exp

(
− ηnε

2K

)
Since we add Laplace noise to K true frequencies, therefore, by

union bound the probability of any of the noisy frequencies differ-
ing by more than η from their corresponding true frequencies is
at most K · exp

(
− ηnε

2K

)
. Setting, ρ = K · exp

(
− ηnε

2K

)
, we get

η = 2K
nε

ln K
ρ

.

3.2 Laplace Mechanism based algorithm
The second algorithm we present is easier to implement and un-

derstand than the first. The accuracy (utility) bound γ we obtain for
the second algorithm slightly worse (by a factor of roughly 2) than
the guarantee for the first algorithm. Nevertheless, the second algo-
rithms’ simplicity may make it preferable in some settings. More-
over, the anlysis of privacy requires a new proof technique which
may be of independent interest.

The basic idea of the algorithm is to add independent Laplace
noise to the frequencies of all itemsets and select the K itemsets
with the highest perturbed frequencies. A naive sensitivity analysis
suggests that we must add noise proportional to

(
m
`

)
/ε for this to

be ε-differentially private. However, we show that it suffices to add
noise only O(K/ε) to the frequencies. Additional work is required
to get an efficient implementation; in particular, we use the idea of
truncated frequencies from the previous algorithm.

3.2.1 Implementation details and runtime analysis
Steps 1 and 3 of the algorithm are straight forward. The Noise

addition and sampling step requires some thought in order to per-
form it in a computationally efficient manner. Clearly, it is not com-
putationally feasible to add noise to the truncated frequencies of all

Algorithm 2 Laplace Mechanism based FIM
Input: Transaction data set T , privacy parameter ε, itemset length

`, K, fK , and error parameter γ.
1: Preprocessing: Using FIM algorithm, find all length ` item-

sets with frequencies > ψ = fK − γ. Assume all unknown
frequencies to be ψ. Call these frequencies as truncated fre-
quencies.

2: Noise addition and sampling: Add Lap
(

4K
εn

)
to the trun-

cated frequencies of all
(
m
`

)
itemsets to obtain the noisy fre-

quencies. Pick the top K itemsets in terms of the noisy fre-
quencies. Let this set be denoted as S. {We will discuss later
how to perform this step in a computationally efficient man-
ner.}

3: Perturbation: Perturb the true frequencies of the itemsets in
S with fresh Lap

(
2K
εn

)
noise to obtain the noisy frequencies

for the itemsets in S.
4: return The set S and the corresponding noisy frequencies.

(
m
`

)
itemsets as the number of itemsets to be dealt with is large.

However, the number of itemsets with true frequencies > fK − γ
is within computable limit. Hence, we can add noise to the trun-
cated frequencies of these itemsets. Using the same notation of
the previous subsection, S1 represents itemsets with true frequen-
cies > fK − γ and S2 represents itemsets with true frequencies
≤ fK − γ. We only need a special strategy for S2.

Let l̂freqS1
be the Kth largest noisy frequency in the set S1.

Let ψ = fK − γ. Now, an itemset whose true frequency is ≤ ψ, if
it has to make it to the final output then its noisy frequency should
be greater than l̂freqS1

. Therefore, the probability of it making

to the final output is < 1
2
e−
|ψ−l̂freqS1 |nε

4K if l̂freqS1
≥ ψ and

< 1 − 1
2
e−
|ψ−l̂freqS1 |nε

4K if l̂freqS1
< ψ. Let us denote this

probability as p. Thus, the number of itemsets with true frequency
< fK − γ which has noisy frequency > l̂freqS1

follows a Bino-
mial distribution with parameters

(
m
`

)
− |S1| and p.

We now pick a random number X according to the Binomial
distribution mentioned above and pickX itemsets uniformly at ran-
dom from the set S2. For now let us assume that l̂freqS1

≥ ψ. In
fact almost all the time this will be true. Conditioned on the fact that
there are X itemsets with true frequencies ≤ ψ, whose noisy fre-
quencies are greater than l̂freqS1

, the distribution of theseX item-

sets follow an exponential distribution with mean l̂freqS1
+ 4K

εn

and standard deviation 4K
εn

. This follows from the memorylessness
property of exponential distribution. Thus, the noisy frequencies of
these X itemsets are picked i.i.d. from the mentioned exponential
distribution. We call the set of these noisy frequencies and the cor-
responding itemsets V . In the unlikely event of l̂freqS1

≤ ψ, we
can get a similar distribution using Bayes’ Theorem.

Now, we pick the top K itemsets in terms of the noisy frequen-
cies from the set S1 ∪ V and pass them on to the the Perturbation
step. We next discuss about the running time of the algorithm. Let
ρ be the confidence parameter (defined earlier). We set the error

parameter γ = 8K
εn

(
ln

(
(m` )
ρ

))
. We will see in section 3.3.2, the

utility guarantee requires γ to be set to this value. For this value of
γ, the following theorem holds true.

THEOREM 4. With probability at least 1 − ρ, steps 2 and 3 of
algorithm 2 runs in time O(K′ +Kn), where K′ is the number of
itemsets mined by the FIM algorithm.



PROOF. To prove this claim, we will use the result from the-
orem 6. Theorem 6 is stated and proved in section 3.3.2. From
the statement of theorem 6 we know that with probability at least
1 − ρ, no itemset from S2 is present in the final output. This im-
plies, with probability at least 1− ρ the value of the random num-
berX (which denotes the number of itemsets from S2 whose noisy
frequencies are greater than l̂freqS1

) is zero. Therefore, in such
a situation the Noise addition and sampling step will take time
O(K′). Clearly, the Perturbation step takes time O(Kn). Hence,
with probability at least 1− ρ, steps 2 and 3 of algorithm 2 runs in
time O(K′ +Kn).

In the runtime analysis of algorithm 1, we have seen that the step
that involves the Apriori algorithm is usually the performance bot-
tleneck. From the theorem above, we know that with high proba-
blity steps 2 and 3 of algorithm 2 runs in time O(K′ +Kn). And
earlier we saw that runtime of FIM algorithm is Ω(K′n). Hence,
with high probability even for the present algorithm, Apriori algo-
rithm is the performance bottleneck.

3.3 Privacy and Utility Analysis

3.3.1 Privacy guarantee

THEOREM 5. The algorithm is ε-differentially private.

PROOF. Let Dn be the domain of data sets of n transactions
where each transaction is a subset of M . Let
ST = {〈I1, fT (I1)〉, · · · , 〈IK , fT (IK)〉} represent the output
of the algorithm A running on data set T ∈ Dn. Similar to that in
the proof of theorem 1, Ii ⊆ U represents the itemsets and fT (Ii)
represent the corresponding noisy frequencies. We prove the pri-
vacy guarantee in two parts. First, we prove that the collection ofK
itemsets (i.e. {I1, · · · , IK}) sampled after step two of algorithm
2 preserves ε

2
-differential privacy. Then we prove the ε

2
differen-

tial privacy for the noisy frequencies output for these particular K
itemsets after step three of the algorithm 2. We then argue that by
the composability property from lemma 3, the algorithm as a whole
is ε-differentially private.

LetW denote the collection of theK itemsets output by the algo-
rithm A. Let T, T ′ ∈ Dn be any two data sets differing in exactly
one transaction. We want to first show that Pr [A(T ) = W ] ≤
e
ε
2 Pr [A(T ) = W ]. This is an abuse of notation as the output of
A is actually the collection of itemsets and their frequencies. For
now we will consider just the collection of itemsets it outputs. To
denote the intermediate noisy frequency for an itemset I in step
two of the algorithm, we use f̃T (I).

Now,

Pr[A(T ) = W ] =

∫
v1∈R

· · ·
∫
vK∈R

pdfT [f̃I1 = v1] · pdfT [f̃IK = vK ]∏
I∈2U−W,|I|=`

Pr
T

[f̃I < min{v1, v2, · · · , vk}]

We use the notation pdfT [·], PrT [] to parameterize the probability
density function and the probability mass function on data set T .

We want to upper bound the ratio Pr[A(T )=W ]
Pr[A(T ′)=W ]

by e
ε
2 . In order

to upper bound the ratio by e
ε
2 , we will minimize the denomina-

tor. To minimize Pr[A(T ′) = W ], ∀I ∈ 2U , |I| = `, we can
either increase or decrease f̂I(T ) by 1

n
to obtain f̂I(T ′), since∣∣∣f̂I(T )− f̂I(T ′)

∣∣∣ can be at most 1
n

(as discussed in the proof of

theorem 1). f̂I(T ) represent the truncated frequency of an item-
set I in data set T . Thus, to minimize Pr[A(T ′) = W ], one has
to have f̂I(T ′) − f̂I(T ) = 1

n
for all I ∈ 2U − W, |I| = `.

For all the itemsets I ∈ W , depending on the value of f̂I(T )

one has either f̂I(T ′) − f̂I(T ) = 1
n

or f̂I(T ) − f̂I(T ′) = 1
n

in order to minimize Pr[A(T ′) = W ]. This is because for any

I ∈ 2U and for any v ∈ R, pdfT [f̃I = v] = 1
2λ
e−
|v−f̂I(T )|

λ .

Similarly, PrT [f̃I < v] = 1
2
e−
|v−f̂I(T )|

λ , when v < f̂I(T ), and

Pr[f̃I < v] = 1 − 1
2
e−
|v−f̂I(T )|

λ , when v ≥ f̂I(T ). Note that
Pr[f̃I < v] decreases when f̃I increases.

One critical observation is that algorithm A behaves the same
(in terms of outputting the itemsets) on a data set T ′′ ∈ Dn as it
behaves on T ∈ Dn if all the truncated frequencies of itemsets in
T are shifted by 1

n
in the same direction (i.e. either increase all

or decrease all) to form T ′′, since all that matters are the differ-
ences in the truncated frequencies. This property is also known as
translation invariance.

Therefore, instead of following the previous procedure, if one
increases f̂I for all I ∈ W which were increased in the previ-
ous procedure but this time with 2

n
, increase f̂I for all I ∈ W

which were kept constant in the previous procedure by 1
n

and for
all I ∈ W, |I| = ` whose truncated frequencies were decreased
in the previous procedure, keep the same. Also keep the truncated
frequencies of I ∈ 2U −W, |I| = ` same. In this way the two pro-
cedures of obtaining Pr[A(T ′) = W ] are exactly identical. Thus,
when we obtain Pr[A(T ′) = W ], we need to only know about the
change of f̂I for all I ∈ W, |I| = `. As we saw in the previous
step, this change can be at max 2

n
.

For an itemset I ∈ W , pdfT [f̃I=v]

pdfT ′ [f̃I=v]
is at most e

2
nλ (since we

are changing f̂I by at most 2
n

). Since, in each term in the inte-
gration of the expression for Pr[A(T ′) = W ] there are exactly K
terms which has I ∈ W , therefore, when we change from T to
T ′ each term in the integration changes by at most 2K

nλ
. Therefore,

Pr[A(T )=W ]
Pr[A(T ′)=W ]

is upper bounded by 2K
nλ

.
Hence, setting λ = 4K

nε
guarantees ε

2
-differential privacy for the

Noise addition and sampling step of the algorithm.
Since, the Perturbation step of both the algorithms 1 and 2 are

same hence, the privacy guarantees for this step in both are also
same. The Perturbation step assures that the set of the noisy fre-
quencies output for the itemsets sampled in the Noise addition and
sampling step is ε

2
-differentially private.

Hence by the composition lemma 3 , the algorithm as a whole is
ε-differentially private.

3.3.2 Utility guarantee
In this subsection we provide utility guarantees which are anal-

ogous to the ones presented in the exponential mechanism based
approach. The utility guarantee in theorem 6 is at most two times
worse than the utility guarantee in theorem 2.

THEOREM 6. For all ρ > 0: with probability at least 1 − ρ,
all itemsets output have their true frequencies > fK − γ, and all
itemsets with true frequency > fK + γ are output, where γ =

8K
εn

(
ln

(
(m` )
ρ

))
. When ρ is constant, γ = O

(
K` ln(m)

εn

)
.

PROOF. Since, we are adding Lap
(

4K
nε

)
noise to all the trun-

cated frequencies, it can be shown that with probability at least
1 −

(
m
`

)
· e−

εΓn
4K all itemsets of length ` have their noisy frequen-

cies within γ margin of their truncated frequencies.



Data set n m |t|
accidents 340183 469 34.81
chess 3196 76 38
connect 67557 130 44
kosarak 990002 41270 8.09
mushroom 8124 120 24
pumsb 49046 2114 75
pumsb-star 49046 2089 51.48
retail 88162 16471 11.31
T10I4D100K 100000 871 11.1
T40I10D100K 100000 943 40.61

Table 3: Data sets characteristics: Number of transactions N ,
size of alphabet m, average size of transaction, |t|.

Therefore, if we set γ = 2Γ, then with probability at least 1 −(
m
`

)
·e−

εγn
8K , all itemsets output have their true frequencies> fK−

γ and all itemsets with true frequencies> fK +γ are output. Thus

if we set ρ =
(
m
`

)
· e−

εγn
8K , then γ = 8K

εn

(
ln

(
(m` )
ρ

))
suffices.

For constant ρ, γ = O
(
K` ln(m)

εn

)
.

THEOREM 7. For all ρ > 0, with probability at least 1− ρ, all
noisy frequencies differ by at most η from their corresponding true
frequencies, where η = 2K

nε
ln
(
K
ρ

)
.

PROOF. The proof is exactly the same as that for theorem 3.

4. EXPERIMENTS
In this section, we present the results of several experiments we

performed to evaluate the performance of the above proposed al-
gorithms. We first describe the data sets on which we ran our al-
gorithms. Then we present the relationships between the different
parameters (eg. ε, γ, ρ, η) that we obtain by applying the theoreti-
cal results to these data sets. We also study extensively the utility of
our algorithms for these data sets under a wide range of parameters.

For the evaluation of our experiments we use data sets publically
available at the FIMI repository http://fimi.helsinki.fi.
These data sets are listed in Table 4. This collection of data sets
contain both real-world and synthetic data sets, and also have widely
varying characteristics like number of transactions n, number of
items m and average transaction length |t|.

Summary of the results:
a) Theoretical guarantees result in useful parameter ranges on

these data sets - We show that our theorems about privacy and util-
ity, when applied to these data sets yield a useful range for all the
parameters of the system. In particular, the efficiency of our al-
gorithms greatly depends on the threshold at which the underlying
frequent itemset mining (FIM) algorithm runs. The threshold we
provide to the FIM algorithm is fK − γ. A small γ implies that
the privacy overhead in terms of the running time of the FIM al-
gorithm is not too high. We plot γ

fK
as a function of ε

2
, ` and K.

These plots tell us how low a threshold we have to provide to the
FIM algorithm for various choices of other parameters. Our plots
show that for most data sets, at typical values of the parameters
( ε
2

= 0.7, ρ = 0.1, l = 3, k = 10), γ is a small fraction of fK .
The other theoretical guarantee that we provide is about η, which is
the difference between the reported frequencies of the output item-
sets and their true frequencies. For these data sets, we show that
the actual value of η obtained is a small fraction of fK . Note that
we plot variation of γ and η against ε

2
to emphasize that the final
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Figure 2: Variation of γ
fK

with the privacy parameter ε
2

privacy parameter is ε when both the patterns and their frequency
are output.

b) For a wide range of parameters, the algorithms give good
utility on these data sets - For the same set of parameter ranges as
in (a), we run our algorithm on these data sets and plot the False
Negative Rate (FNR) for the output. Note that False Positive Rate
(FPR) is essentially small for this output as the number of infre-
quent patterns are typically high compared to the total number of
frequent patterns (sinceK <<

(
m
l

)
). In these data sets, the highest

possible FPR that can be achieved is 0.03 (this is assuming that all
the top K itemsets are false positives). Our plots show that, again
for typical values of the parameters, FNR is under 0.2 for eight data
sets (while for 6 of them it is close to 0.02).

In our first set of experiments, we study the behaviour of γ
fK

and
η
fK

as other parameters ε, K and ` vary. For these experiments, ε
2

varies from 0.04-2, K varies from 10-100 and ` varies from 2-6. In
an experiment, while one parameter varies, the other three remain
fixed. These fixed values are ε

2
= 0.7, ρ = 0.1, K = 10 and

l = 3. Figure 2(a) shows the plot of γ
fK

as ε
2

varies from 0.04 - 2
(note x axis is in log scale) for Algorithm 1. We clamp the y-axis
at 1, as γ

fK
greater than 1 implies a negative FIM threshold, that is,

fK−γ < 0. Whenever the theoretical requirement causes fK−γ to

http://fimi.helsinki.fi


become negative, one of the utility guarantees (namely, soundness)
becomes trivial. Also note, that when γ

fK
becomes greater than

1
fK
−1, fK+γ becomes greater than 1. In this case, the other utility

guarantee (namely, completeness) becomes trivial. Thus whenever
γ
fK

is less than min(1, 1
fK
−1), both the utility guarantees are non-

trivial. In the figures, the arrowhead on the y-axis indicate 1
fK
− 1

for each data set. For some data sets, 1
fK
− 1 is greater than 1, thus

it does not show up in the plots. For algorithm 1, at ε
2

= 0.7, for all
data sets except chess and T10I4D100K, both the utility guarantees
(soundness and completeness) are non-trivial as the obtained γ

fK

is less than min(1, 1
fK
− 1). As expected, the ratio γ

fK
decreases

as the privacy requirement (ε) is relaxed. Figure 3(b) shows the
variation of γ

fK
as K varies from 10-100. It can be observed that

γ
fK

rises rapidly for data sets which have either a large alphabet size
m (eg. retail) or a low fK (eg. T10I4D100K and T40I10D100K)
or a small n (eg. chess and mushroom). Note that for kosarak the
rise is not that rapid despite having a big m as n is also quite large
for it. Figure 3(c) shows the variation of γ

fK
as ` varies from 2-6.

The trend in this plot is quite similar to the one in 3(b).
In the same set of experiments we also study the noise added to

the frequencies of the output items. We show the variation of η
fK

with ε
2

. In figure 4(a), we see that at ε
2

= 0.7, the ratio η
fK

goes
below 0.1 for all data sets. We skip the plots of η

fK
v/s ρ and η

fK
v/s K due to lack of space.

In our next set of experiments we study the False Negative Rates
produced in the output as we vary the parameters over the same
ranges as in the earlier set of experiments. The underlying FIM al-
gorithm employed was the "fp-growth" version of Ferenc Bodon’s
implementation (http://www.cs.bme.hu/ bodon/en/apriori/). It was
run on a machine with an Intel(R) Xeon(R) CPU E5345 @2.33
GHz with 16 GB of RAM. In our experiments, we found the run-
ning time of the underlying FIM algorithm as the dominant term in
the overall running time. Thus, to have a reasonable check on the
running time of the complete experiment, we decided to discard
all experiment runs in which the underlying FIM algorithm ran for
more than 5 minutes or produced a pattern output file of size greater
than 5GB. Thus, if for a certain choice of parameters, the fK − γ
value was such that the FIM algorithm run violated the above con-
straints, we don’t report the FNR. This does not mean that our algo-
rithms fail to terminate for that choice of parameters. Infact, under
such stringent computational constraints, the algorithms continue
to provide good results for a wide range of parameters. Each FNR
reading reported in this set of experiments is averaged over 10 runs
of the experiment. The standard deviation in the FNR was always
under 0.15 for all data sets.except for the T10I4D100K data set in
the FNR v/s ρ plot, where it was 0.2. We don’t show the standard
deviations to make the plots more readable.

Figure 5(a) shows the plot of FNR against ε
2

. At ε
2

= 0.7, except
data sets chess and T10I4D100K, all others have a FNR of under
0.2. In fact for most data sets (6 of them) the FNR is close to 0.02.
We skip FNR v/s ρ plot due to lack of space. In Figs. 6(a)-6(b)
the FNR seems to rise with increasing K or `. Note, for some
data sets including T10I4D100K, T40I10D100K, chess and retail,
there are a lot of missing points as the underlying FIM algorithm
run violated our computational constraints often. For all other data
sets, the FNR continues to remain low.

5. GENERAL RANKING
The algorithms 1 and 2 proposed for FIM naturally extends to

any generic problem on ranked list. Following [20], a ranked list
is a list of elements ordered according to some measure of interest.

Instead of considering a universe of itemsets of length ` drawn from
an item base of size m, we can consider an universe of U elements
where each element has a score associated with it. Let the universe
of elements be represented as S = {E1, · · · , EU}. Let T ∈ Dn be
a transaction database of n transactions, where each row is a subset
of S. Let q : S × Dn.→ R be a function which assigns score to
each element. The score function is analogous to the frequency of
an itemset in FIM. The goal in this abstract setting is to output the
top K elements in terms of the scores assigned by the function q.
As in the case of differentially private FIM, here also we have the
error parameters γ and η, and the confidence parameter ρ. Let ∆q
be the sensitivity of the function q, i.e. the amount by which the
function changes if one row of the database T is changed. Recall
that the sensitivity of the frequency function in the case of FIM is
1
n

. In the algorithms and the associtated privacy and utility guaran-
tees in section 3, if we replace the size of the universe of itemsets
(i.e.

(
m
`

)
) by the size of the universe of elements (i.e. |S| = U ),

replace the frequency function by q and replace the sensitivity of
the frequency function (i.e. 1

n
) by ∆q, we obtain algorithms and

their associated privacy and utility guarantees for the problem on
ranked lists. Note that, the privacy guarantees will remain exactly
the same as that of FIM.

6. RELATED WORK

Randomized response.
One approach to Privacy Preserving Data Mining is randomized

response. In this approach each entry in the data set is indepen-
dently randomized before allowing the data mining algorithm to
access it. Evfimievski et al. [10] and Agrawal et al. [3] consid-
ered randomized response in the context of FIM. They consider
the threshold variant where the goal is to return all the itemsets of
length ` whose frequencies are greater than a predefined threshold
θ. They define the term amplification factor which quantifies the
privacy guarantee of the mining algorithm. The amplification fac-
tor directly corresponds to eε, where ε is the differential privacy
parameter. The work of [3] is an improvement over the work of
[10].

We compare our algorithms 1 and 2 to the algorithms of [3] on
the same CENSUS data set used by [3] from the UCI repository
http://archive.ics.uci.edu/ml/. To enable compari-
son, we set the parameters of our algorithms as follows: First, we
set K so that fK equals the threshold θ used by [3]. Second, they
use amplification factor eε = 19, where as we set it to eε = e2

(that is, we impose an even stronger privacy guarantee). Third, we
set the confidence parameter ρ for our algorithms to 0.05; there is
no analogous parameter in [3].

To measure utility, [3] used the false negative rate (FNR). We
compared the FNR of our algorithms to those of the two best-
performing algorithms from [3] (RAN-GD and DET-GD) for vari-
ous itemset lengths; the results are plotted in Figure 7. We find that
both of our algorithms have consistently lower FNR. The FNR for
RAN-GD and DET-GD were taken from Agrawal et al. [3, Figures
1(a) and 2(a)].

Privacy preserving search log release.
Götz et al. [14] and Korolova et al. [18] independently presented

algorithms for releasing search log statistics in a differentially pri-
vate manner. Both the algorithms are very similar to each other. We
can adapt the algorithms to provide differentially private algorithms
for FIM.

It is difficult to compare the performance of these two algorithms

http://archive.ics.uci.edu/ml/


against our algorithms because they were optimized for the search
log setting.

Specifically, the algorithms add Lap(λ) noise to frequencies of
the itemsets present in the data set and outputs all the noisy fre-
quencies and their corresponding itemsets which exceed a speci-
fied threshold τ ′. (In contrast, we output the top-K itemsets and
add noise independently.)

If we consider the FIM setting, a single transaction can poten-
tially change the frequencies of

(
m
`

)
length-` itemsets. In the ex-

perimental settings we consider, the value of
(
m
`

)
is far higher than

the maximum value ω (i.e., the number of elements whose scores
change by changing one users data) used by [14] and [18]. In order
to make their assumption reasonable for FIM, we impose a bound
t on the length of any transaction in the data set. (The length of a
transaction is the number of items present in it.) A single transac-
tion can potentially change the frequencies of

(
t
`

)
length-` itemsets.

We can map the parameter ω from the search log setting to
(
t
`

)
in

our setting.
Götz et al. [14, Theorem 1] state the value of λ (i.e. the scaling

parameter of Laplace noise) and τ ′ sufficient to guarantee (ε, δ)-
differential privacy for algorithms by [14] and [18] respectively.
((ε, δ)-differential privacy is a relaxation to the definition of
ε-differential privacy allowing a small additive error of δ.) Adapt-

ing this theorem to our setting we get, λ =
2(t`)
nε

and
τ ′ ≥ 1

n

(
t
`

) (
1− 1

ε
ln
(
2δ/
(
t
`

)))
. Table 4 shows the requirement on

τ ′ for the different data sets we have considered in our experiments.
We have set ε = 1, δ = 0.05 and ` = 3.

Data set n `′ τ ′ ≥
Accident 340183 52 0.8644
Chess 3196 38 32.5796
Connect 67557 44 2.5081
Kosarak 990002 2498 6.55E+04
Mushroom 8124 24 2.7194
Pumsb-star 49046 64 11.8418
Pumsb 49046 75 19.8569
Retail 88162 77 12.0333

Table 4: Required values for τ ′

We find that in all but for the accident data set, τ ′ is greater than
one. In order to output the K most frequent itemsets, we would
like to have τ ′ be at most fK . This makes the algorithms by Götz
et al. and Korolova et al. unreasonable for our experimental setup.
Note that in cases where t and ` are small, their approach might
indeed work well. However, in terms of privacy guarantee they
provide (ε, δ)-differential privacy guarantee which is strictly worse
than the guarantee we provide.

Synthetic data sets.
Blum et al. [5] provided a method to output a synthetic data set

T̃ , which provides near accurate answers for frequency queries
(i.e. close to the frequencies in the original data set T ). This
data set can be output in a ε-differentially private manner. For
γ ≥ Õ

(
(m`)1/3

(εn)1/3

)
, the utility guarantees for the algorithm due to

Blum et al. and our algorithms 1 and 2 are similar. Recall that that
in our algorithms, we need γ ≥ Õ

(
K`
εn

)
. In the experimental set-

tings we consider, nε is far larger thanK, hence the lower bound on
γ in our case is better. However, in settings where K is larger than
m

1
3 (nε)

2
3 , the [5] algorithm gives a better bound on γ. Even in

these settings, our approach may be preferable for efficiency. The

only known implementation of [5] runs in time 2
Õ

(
m2

ε2

)
, which is

impractical with the current computational resources available.

7. CONCLUSIONS
In this paper we presented two efficient differentially private al-

gorithms for top-K frequent pattern mining. In our algorithms we
adapted the Exponential Mechanism and the Laplace noise-addtion
mechanism by introducing techniques that are efficient in the con-
text of frequent pattern mining. We introduced a new notion of
utility for top-K pattern mining and provided theoretical analysis
of our methods under this criterion. We also presented extensive
experimental results that demonstrate the effectiveness of our meth-
ods on the FIMI benchmark data sets. Though we present our algo-
rithms for the problem of frequent pattern mining, our techniques
are applicable in the general problem of private ranking as well.
For example, our algorithms can be used in the settings of [14] and
[18], where they analyze the problem of releasing search log statis-
tics privately.

The utility guarantees we provide in theorems 2 and 6 are de-
pendent on the size of the universe of items. In some cases, the
universe of items can be large, resulting in large run-times as well
as loose utility guarantees. A possible future direction is to devise
techniques that remove this dependency on the size of the universe
of items, thereby extending the applicability of the algorithms to
bigger and more complex data sets.
Acknowledgements. A.S. and A.T. are partly supported by NSF
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APPENDIX
A. PSEUDOCODES OF SAMPLING STEP

FOR ALGORITHMS 1 AND 2
Let S>fK−γ be the set of itemsets and their corresponding true fre-

quencies output by the Apriori algorithm. Let S>fK−γ(i) represent the
i-th itemset in the set S>fK−γ and let freq

(
S>fK−γ(i)

)
represent its

frequency. We follow this notation for both the algorithms. First we present
the pseudocode of the Sampling step of Exponential Mechanism based FIM
in algorithm 3.

Next we present the pseudocode for Noise addition and sampling step in
algorithm 4

Algorithm 3 Sampling step of Exponential Mechanism based FIM
Input: Set S>fK−γ , database size n, privacy parameter ε, itemset

length `, K, fK , and error parameter γ.
1: N ← |S>fK−γ |+ 1
2: for i = 1 to N − 1 do
3: Ai.itemset← S>fK−γ(i)
4: Ai.freq ← freq(S>fK−γ(i))

5: Ai.expData← exp
(
εn·freq(S>fK−γ(i))

4K

)
6: end for
7: AN .itemset← lowFreqItems

8: AN .expData←
((
m
`

)
− |S>fK−γ |

)
exp

(
εn(fK−γ)

4K

)
9: Sort the array A[1, · · · , N − 1] in descending order on the

member variable expData
10: Create a doubly linked list L with N nodes such that any node

Li stores Ai and Xi =
∑
i≤j≤N Aj .expData

11: FORBIDDEN ← ∅
12: OUTPUT ← ∅ {Initialize the Output set}
13: for i = 1 to K do
14: flag ← FALSE
15: j ← 1
16: while flag == FALSE do
17: Generate Y ∼ Bernoulli(Aj .expData

Xj
)

18: if N == j then
19: flag ← TRUE
20: Sample uniformly at random an itemset I from

Universe − (S>fK−γ ∪ FORBIDDEN), where
Universe is the collection of all length ` itemsets

21: FORBIDDEN ← FORBIDDEN ∪ I
22: OUTPUT.itemset← I
23: OUTPUT.freq ← fK − γ
24: Update AN ← AN − exp

(
εn(fK−γ)

4K

)
25: Update ∀1 ≤ q ≤ N,Xq ← Xq − exp

(
εn(fK−γ)

4K

)
26: else if 1 == Y then
27: OUTPUT.itemset← Aj .itemset
28: OUTPUT.freq ← Aj .freq
29: Update ∀1 ≤ q < j,Xq ← Xq −Aj .expData
30: Remove Node Lj and decrease N by 1
31: flag ← TRUE
32: end if
33: j ← j + 1
34: end while
35: end for
36: return The set OUTPUT



Algorithm 4 Noise addition and sampling step of Laplace Mecha-
nism based FIM
Input: Set S>fK−γ , database size n, privacy parameter ε, itemset

length `, K, fK , and error parameter γ.
1: N ← |S>fK−γ |
2: X ← ∅
3: ψ ← fK − γ
4: for i = 1 to N do
5: Xi.itemset← S>fK−γ(i)
6: Xi.freq ← freq(S>fK−γ(i))
7: Xi.noisyFreq ← Xi.freq + Lap

(
4K
εn

)
8: end for
9: lF req ←K-th highest noisy frequency in X

10: if lF req ≥ ψ then
11: p← 1

2
e−
|ψ−lFreq|nε

4K

12: else
13: p← 1− 1

2
e−
|ψ−lFreq|nε

4K

14: end if
15: Y ∼ Binom

((
m
`

)
−N, p

)
16: FORBIDDEN ← ∅
17: for i = N + 1 to N + 1 + Y do
18: Sample uniformly at random an itemset I fromUniverse−

(S>fK−γ ∪ FORBIDDEN), where Universe is the
collection of all length ` itemsets

19: FORBIDDEN ← FORBIDDEN ∪ I
20: Xi.itemset← I
21: Xi.freq ← ψ
22: Xi.noisyFreq ∼ Exponential distribution with mean

lF req + 4K
εn

and standard deviation 4K
εn

23: end for
24: Set OUTPUT to top−K of the elements from X in terms of

the noisy frequency
25: return The set OUTPUT
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