DyGen: Automatic Generation of High-Coverage Tests
via Mining Gigabytes of Dynamic Traces

Suresh Thummalapertalonathan de HalledxNikolai Tillmanr?, Scott Wadsworth

! Department of Computer Science, North Carolina State University, Ralsig
2 Microsoft Research, One Microsoft Way, Redmond, WA
3 Microsoft Corporation, One Microsoft Way, Redmond, WA
st humma}@csu. edu, 2{j hal | eux, nikol ait }@ri crosoft.com
Sbwadswor @ri cr osof t . com

Abstract. Unit tests of object-oriented code exercise particular sequences of
method calls. A key problem when automatically generating unit tests thiavach
high structural code coverage is the selection of relevant methodecplesces,
since the number of potentially relevant sequences explodes with theenainb
methods. To address this issue, we propose a novel approach, e that
generates tests via mining dynamic traces recorded during programtiexss.
Typical program executions tend to exercise dmypypaths that do not include
error-handling code, and thus recorded traces often do not adtigdvstructural
coverage. To increase coverage, DyGen transforms traces itmetarized unit
tests (PUTs) and uses dynamic symbolic execution to generate new tsfotes
the PUTs that can achieve high structural code coverage. In this papsiow an
application of DyGen by automatically generating regression tests onma\gve
sion of software. In our evaluations, we show that DyGen receri$ GB (size
of corresponding C# source code) of dynamic traces and gener&@#000 re-
gression tests, where each test exercises a unique path, on two cariedilof
.NET 2.0 framework. The generated regression tests covere82@asic blocks,
which are 24.3% higher than the number of blocks covered by redatygleamic
traces’

Key words: object-oriented unit testing, regression testing, dynamic symbolic
execution

1 Introduction

Software testing is a common methodology used to detecttiefie the code under
test. A major objective of unit testing is to achieve higlustural coverage of the code
under test, since unit tests can only uncover defects irethogions of the code, which
are executed by those tests. Automatic generation of ustg that achieve high struc-
tural coverage of object-oriented code requires methdidsequences (in short ae-
quencek These sequences help covewue or f al se branches in a method under test
by creating desired object states for its receiver or argusn&Ve next present an exam-
ple for desired object state and explain how method-caliseces help achieve desired
object states using an illustrative example shown in Fidare

* The majority of the work was done during an internship at Microsoft Ree

00:public class AdjacencyGraph { . 00:AdjacencyGraph g = new AdjacencyGraph();
01: private VertexEdgesDictionary vertices; 01:Vertex s = g.AddVertex();
02: private EdgeCollection edges; 02:Vertex d = g.AddVertex();
03: public IVertex AddVertex() { 03:Edge e = g.AddEdge(s, d);
04: IVertex v = Provider.ProvideVertex(); 04:9.Compute();
05: vertices.Add(v); "
06: return v; } b. A method-c.all sequence for generating a graph
o7 . instance with an edge.
08: public IEdge AddEdge(IVertex source, [Vertex target) { 00:void AddTest() {
09: if (Ivertices.ContainsKey(source)) 01: HashSet set = new HashSet();
10: throw new VertexNotFoundException("no vertex"); 02: set.Add(7);
11: if (Ivertices.ContainsKey(target)) 03: set.Add(3);
1%: throw new VertexNotFoundException("no vertex"); 04: Assert.IsTrue(set.Count == 2);
! 05:}
14: |Edge e = Provider.ProvideEdge(source,target); - "
15 edges.Add(e); c. An unit test
16: return e; } 00:void AddSpec(int x, int y) {
17: .. o1: HashSet set = new HashSet();
18: public void Compute() { 02: set. Add(x);
19: if(edges.Count > 0) { 03: set.Add(y);
20:) 04: Assert.AreEqual(x ==y, set.Count == 1);
22:y ..} 05: Assert.AreEqual(x =y, set.Count == 2);
06:}
a. AdjacencyGraph class from the QuickGraph library d. An example PUT

Fig. 1. Sample code examples

Figure 1a shows aAdj acencyG aph class from the QuickGrapHibrary. The
graph includes vertices and edges that can be added usingeti®dsAddVer t ex
andAddEdge, respectively. To reach Statement 20 in Guerput e method, a desired
object state is that the graph object should include at le@stedge. Figure 1b shows
a sequence that generates the desired object state. Ittésdpaillenging to generate
these sequences automatically from the implementatioxdpécencyG aph due to
a large number of possible sequences and only a few sequarecealid. In practice,
sequences required for generating desired object statas iotlude multiple classes
leading to a large space of possible sequences that canredfelatively handled by
existing approaches [1][2][3][4][5][6][7] that are eitheandom or based on class im-
plementations.

To address preceding issues, we propose a novel approdlel,[@pGen that gen-
erates sequences from dynamic traces recorded duringdtyprogram executions. We
usedynamictraces as opposed shatictraces, since dynamic traces are more precise
than static traces. These recorded dynamic traces inolmlagpects: realistic scenar-
ios expressed as sequences and concrete values passedrasrasgto those method
calls. Since dynamic traces include both sequences andaterazgument values, these
traces can directly be transformed into unit tests. Howetarh a naive transformation
results in a large number eédundantunit tests that often do not achieve high struc-
tural coverage due tiovo major issues. We next explain these two major issues of naive
transformation and describe how DyGen addresses thossissu

First, since dynamic traces are recorded during progracugies, we identify that
many of the recorded traces are duplicates. The reason fiicdies is that the same
sequence can get invoked multiple times. Therefore, a nawsformation results in a
large number of redundant unit tests. To address this i§yu@en uses a combination
of static and dynamic analyses and filters out duplicateetrac

Second, unit tests generated with the naive transformaénd to exercise only
happy pathgsuch as paths that do not include error-handling code ircdle under
test) and often do not achieve high structural coverageettude under test. To ad-
dress this issue, DyGen transforms recorded dynamic tiate$arameterized Unit

Shttp://ww. codepl ex. conf qui ckgr aph

Tests (PUT) [8] rather than Conventional Unit Tests (CUT)TB are a recent advance
in software testing and generalize CUTs by accepting patemha-igure 1d shows a
PUT for the CUT shown in Figure 1c, where concrete values @&iegtents 2 and 3
are replaced by the parametersandy. DyGen uses Dynamic Symbolic Execution
(DSE) [9][10][11][12] to automatically generate a small seCUTs that achieve high
coverage of the code under test defined by the PUT. Sectioov&eis more details on
how DSE generates CUTs from PUTs. DyGen uses Pex [13], a @S&dbapproach
for generating CUTs from PUTs. However, DyGen is not spetifi®ex and can be
used with any other test-input generation engine.

DyGen addressesvo major challenges faced by existing DSE-based approaches
in effectively generating CUTs from PUTSs. First, DSE-baspgroaches face a chal-
lenge in generating concrete values for parameters thaireeqomplex values such
as floating point values or URLs. To address this challeng&dh uses naive trans-
formation on each trace to generate a CUT, which is effdgtiap instantiation of the
corresponding PUT. DyGen uses this CUT to seed the expborafithe corresponding
PUT, which DyGen generates as well. Using seed tests helpsnipto address the
preceding challenge in generating complex concrete vatugslso helps in increasing
the efficiency of DSE while exploring PUTs. Second, in ourlegtons (and also in
practice), we identify that even after minimization of dopte traces, the number of
generated PUTs and seed tests can still be large, and it iakeda long time (days
or months) to explore those PUTs with DSE on a single machAimeddress this chal-
lenge, DyGen uses a distributed setup that allows paradfgbeation of PUTs.

In this paper, we show an application of DyGen by automayicgénerating re-
gression tests on a given version of software. Regressgtimge an important aspect
of software maintenance, helps ensure that changes madsvimarsions of software
do not introduce any new defects, referred toeagession defectselative to the base-
line functionality. Rosenblum and Weyuker [14] describatttihe majority of software
maintenance costs is spent on regression testing. To oramgfenerated CUTSs into
regression tests, DyGen infers test assertions based ajivére version of software.
More specifically, DyGen executes generated CUTs on thengieesion of software,
captures the return values of method calls, and generatessigertions from these cap-
tured return values. These test assertions help deteassgn defects by checking
whether the new version of software also returns the sanuesal

In summary, this paper makes the following major contritnsi

— A scalable approach for automatically generating regragests (that achieve high
structural coverage of the code under test) via mining dyo#aces from program
executions and without requiring any manual efforts.

— Atechnique to filter out duplicate dynamic traces by ustatgjcsand dynamic anal-
yses, respectively.

— A distributed setup to address scalability issues viallghexploration of PUTs to
generate CUTSs.

— Three large-scale evaluations to show the effectivenfessrdyGen approach. In
our evaluations, we show that DyGen recorded5 GB C# source code (including
433,809 traces) of dynamic traces from applications usirgdore libraries of the
.NET framework. From these PUTs, DyGen eventually gendra®d,799 regres-
sion tests, where each test exercises a unique path, trethésgcovered 27,485

basic blocks, which represents an increase of 24.3% ovenuh#er of blocks
covered by the originally recorded dynamic traces.

The rest of the paper is structured as follows: Section 2emtssbackground on
a DSE-based approach. Section 3 describes key aspects approach. Section 4
presents our evaluation results. Section 5 discussesations of our approach and
future work. Section 6 presents related work. Finally, ®ect concludes.

2 Background

We next provide details of two major concepts used in theak#te paper: dynamic
symbolic execution and dynamic code coverage.

2.1 Dynamic Symbolic Execution

In our approach, we use Pex as an example state-of-the+zaidy symbolic execu-

tion tool. Pex [13] is an automatic unit-test-generatioal tdeveloped by Microsoft

Research. Pex accepts PUTs as input and generates CUTshieteahigh coverage
of the code under test. Initially, Pex executes the code nutedé with arbitrary inputs.

While executing the code under test, Pex collects conssraminputs from predicates
in branching statements along the exercised execution pathnext solves collected
constraints to generate new inputs that guide future ei@iblong new paths. Pex
uses a constraint solver and theorem prover, called Z3 {&@5kason about collected
constraints by faithfully encoding all constraints thasarn safe .NET programs. Z3
uses decision procedures for propositional logic, fixeddstait-vectors, tuples, arrays,
and quantifiers to reason about encoded constraints. Z®xipptes arithmetic con-

straints over floating point numbers by translating themat@mnal numbers. Pex also
implements various optimization techniques to reduce ibe af the formula that is

given to Z3.

2.2 Dynamic Code Coverage

In this paper, we present dynamic code coverage informatidacted by Pex. As Pex
performs code instrumentation dynamically at runtime, &dy knows about the code
that was already executed. In addition to code loaded framarkds on the disk, the
.NET environment in which we perform our experiments alldiesgeneration of addi-
tional code at runtime viReflection-Emit

3 Approach

Figure 2 shows the high-level overview of our DyGen appro&iGen includes three
major phasescapture minimize andexplore In the capture phase, DyGen records dy-
namic traces from (typical) program executions. DyGen traxtsforms these dynamic
traces into PUTs and seed tests. Among recorded tracesentfydhat there are many
duplicate traces, since the same sequence of method aatigetmvoked multiple times
during program executions. Consequently, the generatéits Rldd seed tests also in-
clude duplicates. For example, in our evaluations, we fahatl84% of PUTs and 70%
of seed tests are classified as duplicates by our minimizeepfi@ address this issue,

]
E ey
o

Pex

g

01: TagRegex tagex = new TagRegex();

02: Match mc = ((Regex)tagex).Match("<
%@Page..\u000a",108);

03: Capture cap = (Capture) mc;

04: int indexval = cap.Index;

Regression
Test:

1. An example trace recorded by the capture phase.

01:public static void F1(string val1, int val2, out int out1)

Minimized| Minimized
PUT: Seed Te:
Trace T
Recorder
02: TagRegex tagex = new TagRegex();

Dynamic
e Analyzer
Dynamic T“‘C“II 03: Match mc = ((Regex)tagex).Match(val1, val2);
04: Capture cap = (Capture) mc;

T
— 05: out1 = cap.Index;
U

erall
01: public static void T1() {
ﬂ 02:

int index;
==t

03: F1("<%@ Page..\u000a", 108, out index);
Capture Phase

2. APUT generated from the trace.

Static
Analyzer

04:}

Minimize Phase 3. A seed test generated from the trace.
(@ (b)
Fig. 2. (a) A high-level overview of DyGen. (b) A dynamic trace and gener&eT and CUT
from the trace.
in the minimize phase, DyGen uses a combination of staticdgmaémic analyses to
filter out duplicate PUTs and seed tests, respectively.dreitplore phase, DyGen uses
Pex to explore PUTSs to generate regression tests that adhigh coverage of the code
under test.

Explore Phase

3.1 Capture Phase

In the capture phase, DyGen records dynamic traces fronrgrogxecutions. The
capture phase uses a profiler that records method callséoviok the program during
execution. The capture phase records both the method natlked and the concrete
values passed as arguments to those method calls. Figurehdlaks an example dy-
namic trace recorded by the capture phase. Statement 2 shewsncrete value<%
Page. . \u0O0Oa” passed as an argument for thiet ch method.

DyGen uses a technique similar to Saff et al. [16] for trarmmefog recorded traces
into PUTs and seed tests. To generate PUTs, DyGen identiifiesnstant values and
promotes those constant values as parameters. FurtherBy®en identifies return
values of method calls in the PUT and promotes those retdunesaout parameters
for the PUT. In C#, theseut parameters represent the return values of a method. Dy-
Gen next generates seed tests that include all concretesviihm the dynamic traces.
Figures 2b2 and 2b3 show the PUT and the seed test, respedererated from the
dynamic trace shown in Figure 2b1.

The generated PUT includes two parameters andoaneparameter. Theut pa-
rameter is the return value of the meth@abt ur e. | ndex. Theseout parameters are
later used to generate test assertions in regression &=tiqn 3.3). The figure also
shows a seed test generated from the dynamic trace. The esteddludes concrete
values of the dynamic trace and invokes the generated PUiltlise concrete values.

3.2 Minimize Phase

In the minimize phase, DyGen filters out duplicate PUTs aradl dests. The primary
reason for filtering out duplicates is that exploration oplitate PUTs or execution of
duplicate seed tests is redundant and can also lead to gitaiabues while generating
regression tests. We use PUTs and seed tests shown in Figai#ustrative examples

00:Class A{ 00:void PUT1(int arg1, int arg2, int arg3) {
01: public void foo(int arg1, int arg2, int arg3) { 01: Aa=newA();

02: if (arg1 > 0) 02: a.foo(arg1, arg2, arg3); }

03: Console.WriteLine("arg1 > 0");

04: else 03:public void SeedTest1() {

05: Console.WriteLine("arg1 <= 0"); 04: PUT1(1,1,1);}

06: if (arg2 > 0)

07: Console.WriteLine("arg2 > 0"); 05:void PUT2(int arg1, int arg2, int arg3) {
08: else 06: Aa=newA();

09: Console.WriteLine("arg2 <= 0"); 07: a.foo(arg1, arg2, arg3); }

10: for (intc = 1; c <= arg3; c++) {

11 Console.WriteLine("loop"); 08:public void SeedTest2() {

12 } 09: PUT2(1, 10, 1); }

13: }

143} 10:public void SeedTest3() {

11: PUT1(5, 8, 2); }
Fig. 3. Two PUTs and associated seed tests generated by the capture phase.

to explain the minimize phase. The figure shows a method uedé#froo, two PUTS,
and three seed tests. We use these examples primarily ftaimixg our minimize
phase. Our actual PUTs are much more complex than thestatiue examples with
an average PUT size of 21 method calls (Section 4.4). We fiesemt our criteria for a
duplicate PUT and a seed test and next explain how we filtesueh duplicate PUTs
and seed tests.

Duplicate PUT: We consider a PUT, sal;, as a duplicate of another PUT, sRy,
if both P, and P, have the same sequence of Microsoft Intermediate Langhagk |°
instructions.

Duplicate Seed TestWe consider a seed test, ssy; as a duplicate of another seed
test, saysS,, if both S; and S, exercise the same execution path. This execution path
refers to the path that starts from beginning of the PUT thatlled by the seed test,
and goes through all (transitive) method calls performethieyPUT.

DyGen uses static analysis to identify duplicate PUTs. @emshe method bodies
of PUT1 andPUT2. DyGen considerBUT2 as a duplicate ofuUT1, since both the PUTs
include the same sequence of MSIL instructions. SIPGE2 is a duplicate ofPUT1,
DyGen automatically replaces thelT2 method call inSeedTest 2 with PUT1.

After eliminating duplicate PUTs, DyGen uses dynamic asialyor filtering out
duplicate seed tests. To identify duplicate seed tests gbygXecutes each seed test and
monitors its execution path in the code under test. For el@spedTest 1 follows
the path “3— 7 — 11" in thef oo method. DyGen consideBgedTest 2 as a duplicate
of SeedTest 1, sinceSeedTest 2 also follows the same path “3 7 — 11" in thef oo
method. Consider another unit testedTest 3 shown in Figure 3. DyGen does not
considerSeedTest 3 as a duplicate ofeedTest 1, sinceSeedTest 3 follows the path
“3 —-7— 11— 11" (sinceSeedTest 3 iterates the loop in Statement 10 two times).

3.3 Explore Phase

In the explore phase, DyGen uses Pex to generate regressienftom PUTs. Al-
though seed tests generated in the capture phase can béeredsis regression tests,
most seed tests tend to exercise common happy paths sucthadshzd do not include
error-handling code in the code under test. In only a few saemarios, seed tests may
exercise the paths related to error-handling code, if saeharios happen during the
recorded program executions. Therefore, these seed tests dchieve high coverage
of the corner cases and error handling of the code under test.

Shttp://msdn. microsoft.conl en-us/library/c5tkafsi(VS.71).aspx

00:[PexRaisedException(typeof(ArgumentNullEx))] 00:[PexRaisedException(typeof(ArgumentOutOfRangeEx))]
01:public static void F102() { 01: public static void F110() {
02: int i = default(int); 02: int i = default(int);
03: F1 ((string)null, 0, out i); 03: F1("™, 1, out i);
04:} 04:}
a. Regression Test 1 b. Regression Test 2

00: public static void F103() {

01: int i = default(int);

02: F1 ("\0\0\0\0\0\0\0<\u013b\0", 7, out i);
03: PexAssert.AreEqual<int>(0, i);

04:}

c. Regression Test 3
Fig. 4. Regression tests generated by Pex by exploring the PUT shown in Figwre 2

To address this issue, DyGen uses Pex to explore generatéd. Mspired by
Patrice et al. [17], Pex can leverage seed inputs in the féroomventional unit tests.
Using seed tests increases the effectiveness of Pex, ardtipdlyy any other DSE-
based approaches, in two major ways. First, with seed t@stsgxecutes those seed
tests and internally builds an execution tree with nodesllazonditional control-flow
statements executed along the paths exercised by the stedRex starts exploration
from this pre-populated tree. In each subsequent iteratidhe exploration, Pex tries
to extend this tree as follows: a formula is constructediatesents the conjunction of
the branch conditions of an already known path prefix, comjdiwith the negation of
a branch condition of a known suffix; the definitions of allided values are expanded
so that conditions only refer to the test inputs as variabbfeke formula is satisfiable,
and test inputs can be computed by the constraint solver, lifieexecuting the PUT
with those test inputs, Pex learns a new feasible path amsh@stthe execution trees
with nodes for the suffix of the new path. Without any seedstd3tx starts exploration
with an empty execution tree, and all nodes are discovera@nmentally. Therefore,
using seed tests significantly reduces the amount of timeinetjin generating a va-
riety of tests with potentially deep execution paths fromlBUSecond, seed tests can
help cover reach certain paths that are hard to be coverbdutitising those tests. For
example, it is quite challenging for Pex or any other DSEedaspproach to generate
concrete values for variables that require complex valuek as IP addresses, URLs,
or floating point values. In such scenarios, seed tests darphavide desired concrete
values to reach those paths.

Pex generatesl6 regression tests for the PUT shown in Figure 2b2. Figure wsho
three sample regression tests generated by Pex. In Regrassts 1 and 2, Pex auto-
matically annotated the unit tests with expected exceptiogunment Nul | Except i on
andAr gunent Qut OF RangeExcept i on, respectively. Since the PUT (Figure 2b2) in-
cludes amout parameter, Pex generated assertions in regression tashsss Statement
3in Regression test 3) based on actual values captured génkerating the test. These
expected exceptions or assertions serve as test oracksgrassion tests.

When a PUT invokes code containing loops, an exhaustive extja of all execu-
tion paths via DSE may not terminate. While Pex employs sestralegies to achieve
high code coverage quickly even in the presence of loopspPary other DSE-based
approaches may still take a long time (days or months) tooegpPUTs with DSE
on a single machine. To address this issue, DyGen uses ancathdistributed setup
originally proposed in our previous work [13]. Our distribd setup allows to launch
multiple Pex processes on several machines. Once stattedistributed setup is de-
signed to run forever in iterations. Each subsequent iteraiincrease bounds imposed

.NET libraries Short nameKLOC [# public|# public
‘ i ‘ cIasseJmethodJ
mscorlib mscorlib 178 | 1316 | 13199
System System 149 947 8458
System.Windows.Forms Forms 226 | 1403 | 17785
System.Drawing Drawing 24 223 2823
System.Xml Xml 122 270 5426
System.Web.RegularExpressifRegEx 10 16 162
System.Configuration Config 17 105 773
System.Data Data 126 298 5464
System.Web Web 202 | 1140 | 11487
System.Transactions Trans 9.5 39 405
TOTAL 1063 | 5757 | 65982

Table 1. Ten .NET framework base class libraries used in our evaluations

on the exploration to guarantee termination. For examplesider theimeoutparam-
eter that describes when to stop exploring a PUT. In the festtion, DyGen sets three
minutes for the timeout parameter. This value indicatesEly&en terminates explo-
ration of a PUT after three minutes. In the first iteration,G&n explores all PUTs
with these bounded parameters. In the second iterationebByddubles the values of
these parameters. For example, DyGen sets six minutesddinteout parameter in
the second iteration. Doubling the parameters gives more fior Pex in exploring new
paths in the code under test. To avoid Pex exploring the sathes that were explored
in previous iterations, DyGen maintains a pool of all getextdests. DyGen uses the
tests in the pool generated by previous iterations as seefte further iterations. For
example, tests generated in Iteration 1 are used as segthtédstation 2. Based on the
amount of time available for generating tests, tests carehergted in further iterations.

4 Evaluations

We conducted three evaluations to show the effectiveneByGfen in generating re-
gression tests that achieve high coverage of the code uesteiQur empirical results
show that DyGen is scalable and can automatically geneggtession tests for large
real-world code bases without any manual efforts. In ouluateons, we use two core

.NET 2.0 framework librari€sas main subjects. We next describe the research ques-

tions addressed in our evaluation and present our evatugdsults.

4.1 Research Questions
We address the following three research questions in oluatia@ns.
— RQ1: Can DyGen handle large real-world code bases in atittatip generating
regression tests that achieve high coverage of the code texde
— RQ2: Do seed tests help achieve higher coverage of the cafge test than without

using seed tests?
— RQ3: Can more machine power help generate new regressisritiat can achieve
more coverage of the code under test?

4.2 Subject Code Bases

We used two core .NET 2.0 framework base class librarieseamtin subjects in our
evaluations. Since these libraries sit at the core of thel.iM&mnework, it is paramount

"http://msdn. microsoft.conf en-us/library/ ns229335. aspx

Mode #of | #of |% ofincr
Machine Configuration # of|# of Tests |blocks/from base
MC| Pr | |WithoutSeed®48,30621,920 0%
Xeon 2 CPU @ 2.50 GHz, 1| 7| [teration1

8 cores, 16 GB RAM WithoutSeed412,92&3,176 4.8%
Quadcore2CPU @ 1.90GHZ | 7 Iteration 2
8 cores, 8 GB RAM WithSeeds [376,36726,939 21.8%
Intel Xeon CPU @2.40 GHz,| 6 | 1 Iteration 1
2 cores, 1 GB RAM WithSeeds [501,79927,485 24.3%
[€)) Iteration 2
(b)

Fig.5. (@) Three categories of machine configurations used in our evaluaf{lon&enerated
regression tests.

for the .NET product group to maintain and continually enr&c comprehensive re-
gression test suite, in order to ensure that future prodersions preserve the existing
behavior, and to detect breaking changes. Table 1 showswvthditiraries (mscorlib
and System) used in our evaluations and their charactaristich as the number of
classes and methods. Column “Short name” shows short ndorezath library) that
are used to refer to those libraries. The table also showist&ta of eight other libraries
of .NET 2.0 framework. Although these other eight librai@es not our primary targets
for generating regression tests, they were exercised dwéhe recorded program
executions. In our evaluations, we use these additionat diloraries also while pre-
senting our coverage results. The table shows that theseiéib include 1,063 KLOC
with 5,757 classes and 65,982 methods.

4.3 Evaluation Setup

In our evaluations, we used nine machines that can be ctbgifio three configura-
tion categories. On each machine, we launched multiple IPasepses. The number
of processes launched on a machine is based on the configucdtihe machine. For
example, on an eight core machine, we launched seven Peagsesx Each Pex pro-
cess was exploring one class (including multiple PUTSs) ame.t Table 5(a) shows
all three configuration categories. Columns “# of mc¢” and f#03 show the number
of machines of each configuration and the number of Pex psesdaunched on each
machine, respectively.

Since we used .NET framework base class libraries in ouwmatiahs, the gen-
erated tests may invoke method calls that can cause ext@deakffects and change
the machine configuration. Therefore, while executing th&ecduring exploration of
PUTs or while running generated tests, we created a sandwiitbxthe “Internet”
security permission. This permission represents the ttgfalicy permission set for
the content from an unknown origin. This permission blocksoperations that in-
volve environment interactions such as file creations oistggaccesses by throwing
Securit yExcept i on. We adopted sand-boxing after some of the Pex generated test
had corrupted our test machines. Since we use a sand-box evaluwations, the re-
ported coverage is lower than the actual coverage that caotdeved by our generated
regression tests.

10

To address our research questions, we first created a bada tierms of the code
coverage achieved by the seed tests, referredii@ses coveragdn our evaluations, we
use block coverage (Section 2.2) as a coverage criteriaejddetrour coverage in terms
of the number of blocks covered in the code under test. We @il an approximate
upper bound on the number of reachable basic blocks, sincgowet know which
blocks are actually reachable from the given PUTSs for séveasons: we are executing
the code in a sand-box, existing code is loaded from the diskwhen it is used and
new code may be generated at runtime.

We next generated regression tests in four different mddedode “WithoutSeeds
Iteration 1’, we generated regression tests without using seed testmtiteration.

In Mode “WithoutSeeds Iteration’2we generated regression tests without using seed
tests for two iterations. The regression tests generatitbde “WithoutSeeds Iteration

2" are a super set of the regression tests generated in ModkdWSeeds Iteration 1”.

In Mode “WithSeeds lteration”l we generated regression tests with using seed tests
for one iteration. Finally, in ModeWithSeeds Iteration”2we generated regression
tests with using seed tests for two iterations. Modes “WitBeeds Iteration 1" and
“WithSeeds Iteration 1" took one and half day for generatiests, whereas Modes
“WithoutSeeds Iteration 2” and “WithSeeds Iteration 2" kawearly three days, since
these modes correspond to Iteration 2.

4.4 RQL: Generated Regression Tests

We next address the first research question of whether Dy&erhandle large real-
world code bases in automatically generating regressiis.t&his research question
helps show that DyGen can be used in practice and can add@sbibty issues in
generating regression tests for large code bases. We fastipirthe statistics after each
phase in DyGen and next present the number of regressisrgestrated in each mode.

In the capture phase, DyGen recorded 433,809 dynamic teamkpersisted them
as C# source code, resulting4#iL.5 GB of C# source code. The average trace length
includes 21 method calls and the maximum trace length ied&@ method calls. Since
our capture phase transforms each dynamic trace into a P& seed test, the capture
phase resulted in 433,809 PUTs and 433,809 seed tests.

In the minimize phase, DyGen uses static analysis to filtérdogplicate PUTSs.
Our static analysis took 45 minutes and resulted in 68,57§uenPUTs. DyGen uses
dynamic analysis to filter out duplicate seed tests. Our ahyo@nalysis took 5 hours
and resulted in 128,185 unique seed tests. These resulistbhb there are a large
number of duplicate PUTs and seed tests, and show the sagrgéoof our minimize
phase. We next measured the block coverage achieved by 1B8sE5 unique seed
tests in the code under test and used this coveralgasescoveragel hese tests covered
22,111 blocks in the code under test.

Table 5(b) shows the number of regression tests generasatinmode along with
the number of covered blocks. The table also shows the pagermnf increase in the
number of blocks compared to the base coverage. As showsluitgein Mode “With-
Seeds lteration 2", DyGen achieved 24.3% higher coverage the base coverage.
Table 2 shows more detailed results of coverage achievedlliften .NET libraries.
Column “.NET libraries” shows libraries under test. Colurfivaximum Coverage”

11

.NET libraries [Maximum| Base WithOutSeeds WithOutSeeds WithSeeds WithSeeds

Coverage|Coverag Iteration 1 Iteration 2 Iteration 1 Iteration 2

blocks | # blocks [# block$% increasg# blockg% increasg# blockg% increasef blockg% increasg
mscorlib 20437 12827 | 13063 1.84 13620 6.18 14808 | 15.44 | 15018| 17.08
System 7786 4651 | 4062 | -12.67 | 4243 | -8.77 5907 | 27.00 | 6039 | 29.84
Forms 2815 1730 1572 -9.13 1774 2.54 1782 3.01 1865 7.80
Drawing 850 570 580 1.75 591 3.68 618 8.42 625 9.65
Xml 2770 1229 1390 13.10 1462 18.96 1959 59.40 2045 66.40
RegEx 854 351 330 -5.98 520 48.15 754 114.81 771 119.66
Config 392 263 297 12.93 297 12.93 302 14.83 306 16.35
Data 865 301 380 26.25 422 40.20 562 86.71 569 89.04
Web 253 154 211 37.01 212 37.66 212 37.66 212 37.66
Trans 59 35 35 0.00 35 0.00 35 0.00 35 0.00
TOTAL/AVG 37081 | 22111 | 21920 <0 23176 4.80 | 26939| 21.80 | 27485| 24.30

Table 2. Comparison of coverage achieved for ten .NET libraries used in @uaion.

With Seeds Iteration 2 N Without Seeds Iteration 2

DA

Y

AN

-
A\

7 ‘ Y

mscorlib System Forms Drawing Xml RegEx Config Data Web Trans

Fig. 6. Comparison of coverage achieved by Mode “WithSeeds Iteration 2Mouk “Without-
Seeds Iteration 2.

shows an approximation of the upper bound (in terms of nurabblocks) of achiev-
able coverage in each library under test. In particulas, ¢blumn shows the sum of all
blocks in all methods that are (partly) covered by any gderdrgest. However, we do
not present the coverage results of our four modes as pagEstelative to these up-
per bounds, since these upper bounds are only approxinlatsyahereas the relative
increase of achieved coverage can be measured precisélyn€6Base Coverage”
shows the number of blocks covered by seed tests for eaemfiColumn “WithOut-
Seeds lteration 1” shows the number of blocks covered (“#kd9) and the percentage
of increase in the coverage (“% increase”) with respect tolithse coverage in this
mode. Similarly, Columns “WithOutSeeds lIteration 2", “W&eeds Iteration 1", and
“WithSeeds Iteration 2” show the results for the other thresles.

Since we use seed tests during our exploration in Modes ‘S¢igldls Iteration 1" or
“WithSeeds Iteration 27, the coverage achieved is eithestime or higher than the base
coverage. However, DyGen has achieved significant higharage than base coverage
for libraries mscorlib and System (in terms of the numberdafisonal blocks covered).
The primary reason is that most of the classes in theseiisrare stateless and do not
require environment interactions. The results show thad&ycan handle large real-
world code bases and can generate large number of regressisrthat achieve high
coverage of the code under test.

4.5 RQ2: Using Seed Tests

We next address the second research question of whetheteséztelp achieve higher
code coverage compared to without using seed tests. Tosadthis question, we com-

12

Without Seeds Iteration1 N Without Seeds Iteration 2

N A
7N M7\ 7\ \. N/ \B/\N |

mscorlib System Forms Drawing Xml RegEx Config Data Web Trans

A

7N\
%

N

Fig. 7. Comparison of code coverage achieved by Modes “WithoutSeedtidtedd and “With-
outSeeds lteration 2”.

pare the coverage achieved by generated tests in ModesdW&beds Iteration 2” and
“WithSeeds Iteration 2”. Figure 6 shows comparison of theecage achieved in these
two modes. The x-axis shows the library under test and y-sixisvs the percentage
of increase in the coverage with respect to the base covetagehown, Mode “With-
Seeds Iteration 2" always achieved higher coverage thareMéfithoutSeeds Iteration
2". On average “WithSeeds Iteration 2" achieved 18.6% higlowerage than “With-
outSeeds lteration 2”. The table also shows that there igrfigiant increase in the
coverage achieved for thgyst em Web. Regul ar Expr essi ons (RegEx) library. In
Section 3.3, we described one of the major advantages oftestis that seed tests
can help cover certain paths that are hard to be covered wtitiging those tests. The
Syst em Web. Regul ar Expr essi ons library is an example for such paths since this
library requires complex regular expressions to covera@efaths in the library. It is
quite challenging for Pex or any other DSE-based approaghrierate concrete values
that represent regular expressions. The increase in trexage for this library shows
that concrete values in the seed tests help achieve higtierage. In summary, the re-
sults show that seed tests help achieve higher coverageatechip without using seed
tests.

4.6 RQ3: Using More Machine Power

We next address the third research question of whether machime power helps
achieve more coverage. This research question helps slabdadtitional coverage can
be achieved in further iterations of DyGen. To address théstjon, we compare cover-
age achieved in Mode “WithoutSeeds lIteration 1” with ModeithwutSeeds Iteration
2", and Mode “WithSeeds Iteration 1” with Mode “WithSeedsrttion 2” (shown in
Table 2).

Figure 7 shows the comparison of coverage achieved in Mod&thoutSeeds It-
eration 1” and “WithoutSeeds Iteration 2”. On average, MaffighoutSeeds Iteration
2" achieved 5.73% higher coverage than Mode “WithoutSettation 1”. This result
shows that DyGen can achieve additional coverage in fuitestions. However, the
coverage from Mode “WithoutSeeds Iteration 1” to Mode “VéithiSeeds Iteration 1”
is not doubled. The primary reason is that it gets harder vercoew blocks in further
iterations.

Figure 8 shows the comparison of coverage achieved in MoléhSeeds Iteration
1" and “WithSeeds Iteration 2”. On average, Mode “WithSekldgation 2" achieved
2.0% higher coverage than Mode “WithSeeds Iteration 1”. ifioeease in coverage

13

With Seeds Iteration 1 N With Seeds Iteration 2

140
120

100 Z
7

80
60
40

= m%ﬁwm

T
mscorlib System Forms Drawing Xml RegEx Config

Web Trans

Fig. 8. Comparison of code coverage achieved by Modes “WithSeeds Iteddtard “Withseeds
Iteration 2.

from Mode “WithSeeds Iteration 1” to Mode “WithSeeds Itévat2” is less than the

increase in the coverage from Mode “WithoutSeeds Iterdtido Mode “WithoutSeeds

Iteration 2”. This difference is due to seed tests that heltpexve higher coverage dur-
ing Mode “WithSeeds lteration 1”7, leaving more harder b®bk be covered in Mode
“WithSeeds lteration 2”. In summary, the results show thathier iterations can help
generate new regression tests that can achieve more ceverag

5 Discussion and Future Work

Although our generated tests achieved higher coveragd8¥@4han the seed tests, we
did not achieve full overall coverage of our subject codeebgge. 100% coverage of
all methods stored in the code bases on disk). There are ha@a reasons for not
achieving full coverage. First, using a sand-box reducesithount of executable code.
Second, our recorded dynamic traces do not invoke all puldithods of the libraries
under analyses. In future work, we plan to address this ibgwgenerating PUTSs for
all public methods that are not covered. Third, the code utes# includes branches
that cannot be covered with the test scenarios recordedglprogram executions. To
address this issue, we plan to generate new test scenasinseitisting scenarios by
using evolutionary techniques [4].

We did not find any previously unknown defects while genagptegression tests.
We did not expect to find defects, since our subject code basewvell tested both
manually and by automated tools, including research taotd s Randoop [7] and
Pex [13]. Although regression testing is our ultimate goabur current approach, we
primarily focused on generating regression tests thataehiigh code coverage of the
given version of software. In future work, we plan to applggh regression tests on
further versions of software in order to detect regressieieats. Furthermore, in our
evaluation, we used two libraries as subject applicatiblosvever, our approach is not
specific for libraries and can be applied to any applicatiopractice.

6 Related Work

Our approach is closely related to two major research aregsession testing and
method-call sequence generation.

Regression testing.There exist approaches [18][19][16] that use a capture-and
replay strategy for generating regression tests. In theuoajphase, these approaches
monitor the methods called during program execution andthisge method calls in
the replay phase to generate unit tests. Our approach asaustrategy similar to the

14

capture-and-replay strategy, where we capture dynantgegrduring program execu-
tion and use those traces for generating regression testge\dr, unlike existing ap-
proaches that replay exactly the same captured behavioappuoach replays beyond
the captured behavior by using DSE in generating new regresssts.

Another existing approach, called Orstra [20], augmentexasting test suite with
additional assertions to detect regression faults. To addet additional assertions,
Orstra executes a given test suite and collects the retlwas/and receiver object states
after the execution of methods under test. Orstra geneadiditonal assertions based
on the collected return values or receiver object statesa@proach also uses a similar
strategy for generating assertions in the regression. t&ststher category of existing
approaches [21][22][23] in regression testing primardyget at using regression tests
for effectively exposing the behavioral differences betwéwno versions of a software.
For example, these approaches target at selecting thasssemn tests that are relevant
to portions of the code changed between the two versionsfofae. However, all
these approaches require an existing regression testwhiteh is the primary focus of
our current approach.

Method-call sequence generationTo test object-oriented programs, existing test-
generation approaches [5][6][24][2] accept a class unelgtrdnd generate sequences
of method calls randomly. These approaches generate ranaloes for arguments of
those method calls. Another set of approaches [3] replamesete values for method
arguments with symbolic values and exploits DSE technif@i§s0][11][12] to regen-
erate concrete values based on branching conditions inétigogh under test. However,
all these approaches cannot handle multiple classes aimdribthods due to a large
search space of possible sequences.

Randoop [7] is a random testing approach that uses an inatairegpproach for
constructing method-call sequences. Randoop randondgtsed method call and finds
arguments required for these method calls. Randoop usés st constructed method-
call sequences to generate arguments for the newly selewd¢itbd call. Randoop
may also pick values for certain primitive randomly, or fraxfixed manually sup-
plied pool of values. Randoop incorporates feedback obtafrom previously con-
structed method-call sequences while generating new segseAs soon as a method-
call sequence is constructed, Randoop executes the segaedwerifies whether the
sequence violates any contracts and filters. Since Randuepribt symbolically ana-
lyze how the code under test uses arguments, Randoop iswoftdie to cover data-
dependent code paths. On the other hand, DyGen is dependentiiod-call se-
quences obtained via dynamic traces, and so DyGen is ofedrleito cover code paths
that cannot be covered from the scenarios described by gexpeences. Therefore,
Randoop and DyGen are techniques with orthogonal goalsféerts In our previous
approach [13], we applied Pex on a core .NET component farctiag defects. Un-
like our new approach that uses realistic scenarios redatdeng program executions,
our previous approach generates individual PUTs for eatiigopmethod of all pub-
lic classes. There, we could not cover portions of the coderequire long scenarios.
Our new approach complements our previous approach by tesitigtic scenarios for
covering such code portions.

15

Our approach is also related to another category of appesalsased on mining
source code [25][26] [27]. These approaches staticalllyaeaode bases and use min-
ing algorithms such as frequent itemset mining [28] for &sting frequent patterns.
These frequent patterns are treated as programming ruksthier assisting program-
mers while writing code or for detecting violations as déweias from these patterns.
Unlike these existing approaches, our approach mines dgraasces recorded during
program executions and uses those traces for generatiresséon tests. Our previous
work [27] also mines method-call sequences from existindedoases. Our previous
work uses these method-call sequences to assist randonmEeb&s&d approaches. Our
new approach is significantly different from our previousrkvim three major aspects.
First, our new approach is a complete approach for autoaitigenerating regression
tests from dynamic traces, whereas, our previous work nimethod-call sequences
to assist random or DSE-based approaches. Second, our pepaep uses dynamic
traces, which are more precise compared to the static ttesaekin our previous work.
Third, our new approach includes additional technique$ aas seed tests and dis-
tributed setup for assisting DSE-based approaches irtieffgcgenerating CUTs from
PUTs.

7 Conclusion

Automatic generation of method-call sequences that hdligae high structural cover-
age of object-oriented code is an important and yet a clgifigrproblem in software
testing. Unlike existing approaches that generate seg@seaodomly or based on anal-
ysis of the methods, we proposed a novel scalable approatly¢herates sequences
via mining dynamic traces recorded during (typical) progexecutions. In this paper,
we showed an application of our approach by automaticalhegsing regression tests
for two core .NET 2.0 framework libraries. In our evaluaspmwe showed that our ap-
proach recorded-1.5 GB (size of corresponding C# source code) of dynamiegfac
and eventually generategb00,000 regression tests, where each test exercised auniqu
path. The generated regression tests covered 27,485 hasks bwhich represents an
improvements of 24.3% over the number of blocks covered éythyinal recorded dy-
namic traces. These numbers show that our approach is Hgalgble and can be used
in practice to deal with large real-world code bases. Inritwork, we plan to eval-
uate the effectiveness of generated regression testseantitet behavioral differences
between two versions of software.

References

1. Khurshid, S., Pasareanu, C.S., Visser, W.: Generalized dimaxecution for model check-
ing and testing. In: Proc. TACAS. (2003) 553-568

2. Xie, T., Marinov, D., Notkin, D.: Rostra: A framework for detectingdundant object-
oriented unit tests. In: Proc. ASE. (2004) 196—205

3. Inkumsah, K., Xie, T.: Improving structural testing of object-ot@ehprograms via integrat-

ing evolutionary testing and symbolic execution. In: Proc. ASE. (2098)-306

Tonella, P.: Evolutionary testing of classes. In: Proc. ISSTA.42009-128

Csallner, C., Smaragdakis, Y.: JCrasher: An automatic robisstester for Java. Softw.

Pract. Exper34(11) (2004) 1025-1050

o s

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

. Parasoft: Jtest manuals version 5.1. Online manual (2006p: / / www. par asof t .

com

. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedbackel@d random test generation.

In: Proc. ICSE. (2007) 75-84

. Tillmann, N., Schulte, W.: Parameterized unit tests. In: Proc. ESEE/R2005) 253-262
. Clarke, L.: A system to generate test data and symbolically execujeqons. IEEE Trans.

Softw. Eng.2(3) (1976) 215-222

Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automatattom testing. In: Proc.
PLDI. (2005) 213-223

King, J.C.: Symbolic execution and program testing. Communicatibtiee ACM 19(7)
(1976) 385-394

Koushik, S., Darko, M., Gul, A.: CUTE: A concolic unit testing ergiior C. In: Proc.
ESEC/FSE. (2005) 263-272

Tillmann, N., de Halleux, J.: Pex: White box test generation for .NETProc. TAP. (2008)
134-153

Rosenblum, D.S., Weyuker, E.J.: Predicting the cost-effers of regression testing
strategies. SIGSOFT Softw. Eng. NoZK6) (1996) 118-126

Z3: An efficient SMT solver (201Mtt p: //research. m crosoft. conl en- us/
um r ednond/ pr oj ect s/ z3/ .

Saff, D., Artzi, S., Perkins, J.H., Ernst, M.D.: Automatic testdaing for Java. In: Proc.
ASE. (2005) 114-123

Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuesting. In: Proc. NDSS.
(2008)

Elbaum, S., Chin, H.N., Dwyer, M.B., Dokulil, J.: Carving diffetial unit test cases from
system test cases. In: Proc. FSE. (2006) 253—264

Orso, A., Kennedy, B.: Selective capture and replay of progneecutions. SIGSOFT Softw.
Eng. Notes30(4) (2005) 1-7

Xie, T.: Augmenting automatically generated unit-test suites with reigresracle checking.
In: Proc. ECOOP. (2006) 380-403

DeMillo, R.A., Offutt, A.J.: Constraint-based automatic test dateggion. IEEE Trans.
Softw. Eng.17(9) (1991) 900-910

Taneja, K., Xie, T.. DiffGen: Automated regression unit-test gatien. In: Proc. ASE.
(2008) 407-410

Evans, R.B., Savoia, A.: Differential testing: A new approacthemge detection. In: Proc.
ESEC/FSE. (2007) 549-552

Pacheco, C., Ernst, M.D.: Eclat: Automatic generation and classificof test inputs. In:
Proc. ECOOP. (2005) 504-527

Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugslaviant behavior: A general
approach to inferring errors in systems code. In: Proc. SOSPL{B13-72

Wasylkowski, A., Zeller, A., Lindig, C.: Detecting object usage raabes. In: Proc.
ESEC/FSE. (2007) 35-44

Thummalapenta, S., Xie, T., Tillmann, N., de Halleux, J., Schulte, M&eqGen: Object-
oriented unit-test generation via mining source code. In: Proc. ESEEC(2809) 193-202
Wang, J., Han, J.: BIDE: Efficient mining of frequent closequamces. In: Proc. ICDE.
(2004) 7988

