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Abstract. Unit tests of object-oriented code exercise particular sequences of
method calls. A key problem when automatically generating unit tests that achieve
high structural code coverage is the selection of relevant method-call sequences,
since the number of potentially relevant sequences explodes with the number of
methods. To address this issue, we propose a novel approach, calledDyGen, that
generates tests via mining dynamic traces recorded during program executions.
Typical program executions tend to exercise onlyhappypaths that do not include
error-handling code, and thus recorded traces often do not achievehigh structural
coverage. To increase coverage, DyGen transforms traces into parameterized unit
tests (PUTs) and uses dynamic symbolic execution to generate new unit tests for
the PUTs that can achieve high structural code coverage. In this paper, we show an
application of DyGen by automatically generating regression tests on a given ver-
sion of software. In our evaluations, we show that DyGen records≈1.5 GB (size
of corresponding C# source code) of dynamic traces and generates≈500,000 re-
gression tests, where each test exercises a unique path, on two core libraries of
.NET 2.0 framework. The generated regression tests covered 27,485 basic blocks,
which are 24.3% higher than the number of blocks covered by recorded dynamic
traces.4

Key words: object-oriented unit testing, regression testing, dynamic symbolic
execution

1 Introduction
Software testing is a common methodology used to detect defects in the code under
test. A major objective of unit testing is to achieve high structural coverage of the code
under test, since unit tests can only uncover defects in those portions of the code, which
are executed by those tests. Automatic generation of unit tests that achieve high struc-
tural coverage of object-oriented code requires method-call sequences (in short asse-
quences). These sequences help covertrue or false branches in a method under test
by creating desired object states for its receiver or arguments. We next present an exam-
ple for desired object state and explain how method-call sequences help achieve desired
object states using an illustrative example shown in Figure1a.

4 The majority of the work was done during an internship at Microsoft Research.
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Fig. 1. Sample code examples
Figure 1a shows anAdjacencyGraph class from the QuickGraph5 library. The

graph includes vertices and edges that can be added using themethodsAddVertex
andAddEdge, respectively. To reach Statement 20 in theCompute method, a desired
object state is that the graph object should include at leastone edge. Figure 1b shows
a sequence that generates the desired object state. It is quite challenging to generate
these sequences automatically from the implementation ofAdjacencyGraph due to
a large number of possible sequences and only a few sequencesare valid. In practice,
sequences required for generating desired object states often include multiple classes
leading to a large space of possible sequences that cannot beeffectively handled by
existing approaches [1][2][3][4][5][6][7] that are either random or based on class im-
plementations.

To address preceding issues, we propose a novel approach, called DyGen, that gen-
erates sequences from dynamic traces recorded during (typical) program executions. We
usedynamictraces as opposed tostatic traces, since dynamic traces are more precise
than static traces. These recorded dynamic traces include two aspects: realistic scenar-
ios expressed as sequences and concrete values passed as arguments to those method
calls. Since dynamic traces include both sequences and concrete argument values, these
traces can directly be transformed into unit tests. However, such a naive transformation
results in a large number ofredundantunit tests that often do not achieve high struc-
tural coverage due totwomajor issues. We next explain these two major issues of naive
transformation and describe how DyGen addresses those issues.

First, since dynamic traces are recorded during program executions, we identify that
many of the recorded traces are duplicates. The reason for duplicates is that the same
sequence can get invoked multiple times. Therefore, a naivetransformation results in a
large number of redundant unit tests. To address this issue,DyGen uses a combination
of static and dynamic analyses and filters out duplicate traces.

Second, unit tests generated with the naive transformationtend to exercise only
happy paths(such as paths that do not include error-handling code in thecode under
test) and often do not achieve high structural coverage of the code under test. To ad-
dress this issue, DyGen transforms recorded dynamic tracesinto Parameterized Unit

5 http://www.codeplex.com/quickgraph
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Tests (PUT) [8] rather than Conventional Unit Tests (CUT). PUTs are a recent advance
in software testing and generalize CUTs by accepting parameters. Figure 1d shows a
PUT for the CUT shown in Figure 1c, where concrete values in Statements 2 and 3
are replaced by the parametersx andy. DyGen uses Dynamic Symbolic Execution
(DSE) [9][10][11][12] to automatically generate a small set of CUTs that achieve high
coverage of the code under test defined by the PUT. Section 2 provides more details on
how DSE generates CUTs from PUTs. DyGen uses Pex [13], a DSE-based approach
for generating CUTs from PUTs. However, DyGen is not specificto Pex and can be
used with any other test-input generation engine.

DyGen addressestwo major challenges faced by existing DSE-based approaches
in effectively generating CUTs from PUTs. First, DSE-basedapproaches face a chal-
lenge in generating concrete values for parameters that require complex values such
as floating point values or URLs. To address this challenge, DyGen uses naive trans-
formation on each trace to generate a CUT, which is effectively an instantiation of the
corresponding PUT. DyGen uses this CUT to seed the exploration of the corresponding
PUT, which DyGen generates as well. Using seed tests helps not only to address the
preceding challenge in generating complex concrete values, but also helps in increasing
the efficiency of DSE while exploring PUTs. Second, in our evaluations (and also in
practice), we identify that even after minimization of duplicate traces, the number of
generated PUTs and seed tests can still be large, and it wouldtake a long time (days
or months) to explore those PUTs with DSE on a single machine.To address this chal-
lenge, DyGen uses a distributed setup that allows parallel exploration of PUTs.

In this paper, we show an application of DyGen by automatically generating re-
gression tests on a given version of software. Regression testing, an important aspect
of software maintenance, helps ensure that changes made in new versions of software
do not introduce any new defects, referred to asregression defects, relative to the base-
line functionality. Rosenblum and Weyuker [14] describe that the majority of software
maintenance costs is spent on regression testing. To transform generated CUTs into
regression tests, DyGen infers test assertions based on thegiven version of software.
More specifically, DyGen executes generated CUTs on the given version of software,
captures the return values of method calls, and generates test assertions from these cap-
tured return values. These test assertions help detect regression defects by checking
whether the new version of software also returns the same values.

In summary, this paper makes the following major contributions:
– A scalable approach for automatically generating regression tests (that achieve high

structural coverage of the code under test) via mining dynamic traces from program
executions and without requiring any manual efforts.

– A technique to filter out duplicate dynamic traces by using static and dynamic anal-
yses, respectively.

– A distributed setup to address scalability issues via parallel exploration of PUTs to
generate CUTs.

– Three large-scale evaluations to show the effectiveness of our DyGen approach. In
our evaluations, we show that DyGen recorded≈1.5 GB C# source code (including
433,809 traces) of dynamic traces from applications using two core libraries of the
.NET framework. From these PUTs, DyGen eventually generated 501,799 regres-
sion tests, where each test exercises a unique path, that together covered 27,485
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basic blocks, which represents an increase of 24.3% over thenumber of blocks
covered by the originally recorded dynamic traces.

The rest of the paper is structured as follows: Section 2 presents background on
a DSE-based approach. Section 3 describes key aspects of ourapproach. Section 4
presents our evaluation results. Section 5 discusses limitations of our approach and
future work. Section 6 presents related work. Finally, Section 7 concludes.

2 Background
We next provide details of two major concepts used in the restof the paper: dynamic
symbolic execution and dynamic code coverage.

2.1 Dynamic Symbolic Execution

In our approach, we use Pex as an example state-of-the-art dynamic symbolic execu-
tion tool. Pex [13] is an automatic unit-test-generation tool developed by Microsoft
Research. Pex accepts PUTs as input and generates CUTs that achieve high coverage
of the code under test. Initially, Pex executes the code under test with arbitrary inputs.
While executing the code under test, Pex collects constraints on inputs from predicates
in branching statements along the exercised execution path. Pex next solves collected
constraints to generate new inputs that guide future executions along new paths. Pex
uses a constraint solver and theorem prover, called Z3 [15],to reason about collected
constraints by faithfully encoding all constraints that arise in safe .NET programs. Z3
uses decision procedures for propositional logic, fixed sized bit-vectors, tuples, arrays,
and quantifiers to reason about encoded constraints. Z3 approximates arithmetic con-
straints over floating point numbers by translating them to rational numbers. Pex also
implements various optimization techniques to reduce the size of the formula that is
given to Z3.

2.2 Dynamic Code Coverage

In this paper, we present dynamic code coverage informationcollected by Pex. As Pex
performs code instrumentation dynamically at runtime, Pexonly knows about the code
that was already executed. In addition to code loaded from binaries on the disk, the
.NET environment in which we perform our experiments allowsthe generation of addi-
tional code at runtime viaReflection-Emit.

3 Approach

Figure 2 shows the high-level overview of our DyGen approach. DyGen includes three
major phases:capture, minimize, andexplore. In the capture phase, DyGen records dy-
namic traces from (typical) program executions. DyGen nexttransforms these dynamic
traces into PUTs and seed tests. Among recorded traces, we identify that there are many
duplicate traces, since the same sequence of method calls can get invoked multiple times
during program executions. Consequently, the generated PUTs and seed tests also in-
clude duplicates. For example, in our evaluations, we foundthat 84% of PUTs and 70%
of seed tests are classified as duplicates by our minimize phase. To address this issue,
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(a) (b)
Fig. 2. (a) A high-level overview of DyGen. (b) A dynamic trace and generated PUT and CUT
from the trace.
in the minimize phase, DyGen uses a combination of static anddynamic analyses to
filter out duplicate PUTs and seed tests, respectively. In the explore phase, DyGen uses
Pex to explore PUTs to generate regression tests that achieve high coverage of the code
under test.

3.1 Capture Phase

In the capture phase, DyGen records dynamic traces from program executions. The
capture phase uses a profiler that records method calls invoked by the program during
execution. The capture phase records both the method calls invoked and the concrete
values passed as arguments to those method calls. Figure 2b1shows an example dy-
namic trace recorded by the capture phase. Statement 2 showsthe concrete value “<%
Page..∖u000a” passed as an argument for theMatch method.

DyGen uses a technique similar to Saff et al. [16] for transforming recorded traces
into PUTs and seed tests. To generate PUTs, DyGen identifies all constant values and
promotes those constant values as parameters. Furthermore, DyGen identifies return
values of method calls in the PUT and promotes those return values asout parameters
for the PUT. In C#, theseout parameters represent the return values of a method. Dy-
Gen next generates seed tests that include all concrete values from the dynamic traces.
Figures 2b2 and 2b3 show the PUT and the seed test, respectively, generated from the
dynamic trace shown in Figure 2b1.

The generated PUT includes two parameters and oneout parameter. Theout pa-
rameter is the return value of the methodCapture.Index. Theseout parameters are
later used to generate test assertions in regression tests (Section 3.3). The figure also
shows a seed test generated from the dynamic trace. The seed test includes concrete
values of the dynamic trace and invokes the generated PUT with those concrete values.

3.2 Minimize Phase

In the minimize phase, DyGen filters out duplicate PUTs and seed tests. The primary
reason for filtering out duplicates is that exploration of duplicate PUTs or execution of
duplicate seed tests is redundant and can also lead to scalability issues while generating
regression tests. We use PUTs and seed tests shown in Figure 3as illustrative examples
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Fig. 3.Two PUTs and associated seed tests generated by the capture phase.

to explain the minimize phase. The figure shows a method undertestfoo, two PUTs,
and three seed tests. We use these examples primarily for explaining our minimize
phase. Our actual PUTs are much more complex than these illustrative examples with
an average PUT size of 21 method calls (Section 4.4). We first present our criteria for a
duplicate PUT and a seed test and next explain how we filter outsuch duplicate PUTs
and seed tests.

Duplicate PUT: We consider a PUT, sayP1, as a duplicate of another PUT, sayP2,
if bothP1 andP2 have the same sequence of Microsoft Intermediate Language (MSIL)6

instructions.
Duplicate Seed Test:We consider a seed test, sayS1, as a duplicate of another seed

test, sayS2, if both S1 andS2 exercise the same execution path. This execution path
refers to the path that starts from beginning of the PUT that is called by the seed test,
and goes through all (transitive) method calls performed bythe PUT.

DyGen uses static analysis to identify duplicate PUTs. Consider the method bodies
of PUT1 andPUT2. DyGen considersPUT2 as a duplicate ofPUT1, since both the PUTs
include the same sequence of MSIL instructions. SincePUT2 is a duplicate ofPUT1,
DyGen automatically replaces thePUT2 method call inSeedTest2 with PUT1.

After eliminating duplicate PUTs, DyGen uses dynamic analysis for filtering out
duplicate seed tests. To identify duplicate seed tests, DyGen executes each seed test and
monitors its execution path in the code under test. For example, SeedTest1 follows
the path “3→ 7→ 11” in thefoo method. DyGen considersSeedTest2 as a duplicate
of SeedTest1, sinceSeedTest2 also follows the same path “3→ 7→ 11” in thefoo
method. Consider another unit testSeedTest3 shown in Figure 3. DyGen does not
considerSeedTest3 as a duplicate ofSeedTest1, sinceSeedTest3 follows the path
“3 → 7→ 11→ 11” (sinceSeedTest3 iterates the loop in Statement 10 two times).

3.3 Explore Phase

In the explore phase, DyGen uses Pex to generate regression tests from PUTs. Al-
though seed tests generated in the capture phase can be considered as regression tests,
most seed tests tend to exercise common happy paths such as paths that do not include
error-handling code in the code under test. In only a few rarescenarios, seed tests may
exercise the paths related to error-handling code, if such scenarios happen during the
recorded program executions. Therefore, these seed tests do not achieve high coverage
of the corner cases and error handling of the code under test.

6 http://msdn.microsoft.com/en-us/library/c5tkafs1(VS.71).aspx
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Fig. 4. Regression tests generated by Pex by exploring the PUT shown in Figure 2b2.
To address this issue, DyGen uses Pex to explore generated PUTs. Inspired by

Patrice et al. [17], Pex can leverage seed inputs in the form of conventional unit tests.
Using seed tests increases the effectiveness of Pex, and potentially any other DSE-
based approaches, in two major ways. First, with seed tests,Pex executes those seed
tests and internally builds an execution tree with nodes forall conditional control-flow
statements executed along the paths exercised by the seed tests. Pex starts exploration
from this pre-populated tree. In each subsequent iterationof the exploration, Pex tries
to extend this tree as follows: a formula is constructed thatrepresents the conjunction of
the branch conditions of an already known path prefix, conjoined with the negation of
a branch condition of a known suffix; the definitions of all derived values are expanded
so that conditions only refer to the test inputs as variables. If the formula is satisfiable,
and test inputs can be computed by the constraint solver, then by executing the PUT
with those test inputs, Pex learns a new feasible path and extends the execution trees
with nodes for the suffix of the new path. Without any seed tests, Pex starts exploration
with an empty execution tree, and all nodes are discovered incrementally. Therefore,
using seed tests significantly reduces the amount of time required in generating a va-
riety of tests with potentially deep execution paths from PUTs. Second, seed tests can
help cover reach certain paths that are hard to be covered without using those tests. For
example, it is quite challenging for Pex or any other DSE-based approach to generate
concrete values for variables that require complex values such as IP addresses, URLs,
or floating point values. In such scenarios, seed tests can help provide desired concrete
values to reach those paths.

Pex generated86 regression tests for the PUT shown in Figure 2b2. Figure 4 shows
three sample regression tests generated by Pex. In Regression tests 1 and 2, Pex auto-
matically annotated the unit tests with expected exceptionsArgumentNullException
andArgumentOutOfRangeException, respectively. Since the PUT (Figure 2b2) in-
cludes anout parameter, Pex generated assertions in regression tests (such as Statement
3 in Regression test 3) based on actual values captured whilegenerating the test. These
expected exceptions or assertions serve as test oracles in regression tests.

When a PUT invokes code containing loops, an exhaustive exploration of all execu-
tion paths via DSE may not terminate. While Pex employs searchstrategies to achieve
high code coverage quickly even in the presence of loops, Pexor any other DSE-based
approaches may still take a long time (days or months) to explore PUTs with DSE
on a single machine. To address this issue, DyGen uses an enhanced distributed setup
originally proposed in our previous work [13]. Our distributed setup allows to launch
multiple Pex processes on several machines. Once started, our distributed setup is de-
signed to run forever in iterations. Each subsequent iterations increase bounds imposed
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.NET libraries Short nameKLOC # public # public
classesmethods

mscorlib mscorlib 178 1316 13199
System System 149 947 8458
System.Windows.Forms Forms 226 1403 17785
System.Drawing Drawing 24 223 2823
System.Xml Xml 122 270 5426
System.Web.RegularExpressionsRegEx 10 16 162
System.Configuration Config 17 105 773
System.Data Data 126 298 5464
System.Web Web 202 1140 11487
System.Transactions Trans 9.5 39 405
TOTAL 1063 5757 65982

Table 1.Ten .NET framework base class libraries used in our evaluations

on the exploration to guarantee termination. For example, consider thetimeoutparam-
eter that describes when to stop exploring a PUT. In the first iteration, DyGen sets three
minutes for the timeout parameter. This value indicates that DyGen terminates explo-
ration of a PUT after three minutes. In the first iteration, DyGen explores all PUTs
with these bounded parameters. In the second iteration, DyGen doubles the values of
these parameters. For example, DyGen sets six minutes for the timeout parameter in
the second iteration. Doubling the parameters gives more time for Pex in exploring new
paths in the code under test. To avoid Pex exploring the same paths that were explored
in previous iterations, DyGen maintains a pool of all generated tests. DyGen uses the
tests in the pool generated by previous iterations as seed tests for further iterations. For
example, tests generated in Iteration 1 are used as seed tests in Iteration 2. Based on the
amount of time available for generating tests, tests can be generated in further iterations.

4 Evaluations
We conducted three evaluations to show the effectiveness ofDyGen in generating re-
gression tests that achieve high coverage of the code under test. Our empirical results
show that DyGen is scalable and can automatically generate regression tests for large
real-world code bases without any manual efforts. In our evaluations, we use two core
.NET 2.0 framework libraries7 as main subjects. We next describe the research ques-
tions addressed in our evaluation and present our evaluation results.

4.1 Research Questions
We address the following three research questions in our evaluations.

– RQ1: Can DyGen handle large real-world code bases in automatically generating
regression tests that achieve high coverage of the code under test?

– RQ2: Do seed tests help achieve higher coverage of the code under test than without
using seed tests?

– RQ3: Can more machine power help generate new regression tests that can achieve
more coverage of the code under test?

4.2 Subject Code Bases

We used two core .NET 2.0 framework base class libraries as the main subjects in our
evaluations. Since these libraries sit at the core of the .NET framework, it is paramount

7 http://msdn.microsoft.com/en-us/library/ms229335.aspx
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Machine Configuration # of # of
mc pr

Xeon 2 CPU @ 2.50 GHz, 1 7
8 cores, 16 GB RAM
Quad core 2 CPU @ 1.90 GHz,2 7
8 cores, 8 GB RAM
Intel Xeon CPU @2.40 GHz, 6 1
2 cores, 1 GB RAM

(a)

Mode # of # of % of incr
Tests blocks from base

WithoutSeeds248,30621,920 0%
Iteration 1
WithoutSeeds412,92823,176 4.8%
Iteration 2
WithSeeds 376,36726,939 21.8%
Iteration 1
WithSeeds 501,79927,485 24.3%
Iteration 2

(b)
Fig. 5. (a) Three categories of machine configurations used in our evaluations. (b) Generated
regression tests.

for the .NET product group to maintain and continually enrich a comprehensive re-
gression test suite, in order to ensure that future product versions preserve the existing
behavior, and to detect breaking changes. Table 1 shows the two libraries (mscorlib
and System) used in our evaluations and their characteristics such as the number of
classes and methods. Column “Short name” shows short names (for each library) that
are used to refer to those libraries. The table also shows statistics of eight other libraries
of .NET 2.0 framework. Although these other eight librariesare not our primary targets
for generating regression tests, they were exercised as well by the recorded program
executions. In our evaluations, we use these additional eight libraries also while pre-
senting our coverage results. The table shows that these libraries include 1,063 KLOC
with 5,757 classes and 65,982 methods.

4.3 Evaluation Setup

In our evaluations, we used nine machines that can be classified into three configura-
tion categories. On each machine, we launched multiple Pex processes. The number
of processes launched on a machine is based on the configuration of the machine. For
example, on an eight core machine, we launched seven Pex processes. Each Pex pro-
cess was exploring one class (including multiple PUTs) at a time. Table 5(a) shows
all three configuration categories. Columns “# of mc” and “# of pr” show the number
of machines of each configuration and the number of Pex processes launched on each
machine, respectively.

Since we used .NET framework base class libraries in our evaluations, the gen-
erated tests may invoke method calls that can cause externalside effects and change
the machine configuration. Therefore, while executing the code during exploration of
PUTs or while running generated tests, we created a sand-boxwith the “Internet”
security permission. This permission represents the default policy permission set for
the content from an unknown origin. This permission blocks all operations that in-
volve environment interactions such as file creations or registry accesses by throwing
SecurityException. We adopted sand-boxing after some of the Pex generated tests
had corrupted our test machines. Since we use a sand-box in our evaluations, the re-
ported coverage is lower than the actual coverage that can beachieved by our generated
regression tests.
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To address our research questions, we first created a base line in terms of the code
coverage achieved by the seed tests, referred to asbase coverage. In our evaluations, we
use block coverage (Section 2.2) as a coverage criteria. We report our coverage in terms
of the number of blocks covered in the code under test. We giveonly an approximate
upper bound on the number of reachable basic blocks, since wedo not know which
blocks are actually reachable from the given PUTs for several reasons: we are executing
the code in a sand-box, existing code is loaded from the disk only when it is used and
new code may be generated at runtime.

We next generated regression tests in four different modes.In Mode “WithoutSeeds
Iteration 1”, we generated regression tests without using seed tests for one iteration.
In Mode “WithoutSeeds Iteration 2”, we generated regression tests without using seed
tests for two iterations. The regression tests generated inMode “WithoutSeeds Iteration
2” are a super set of the regression tests generated in Mode “WithoutSeeds Iteration 1”.
In Mode “WithSeeds Iteration 1”, we generated regression tests with using seed tests
for one iteration. Finally, in Mode “WithSeeds Iteration 2”, we generated regression
tests with using seed tests for two iterations. Modes “WithoutSeeds Iteration 1” and
“WithSeeds Iteration 1” took one and half day for generatingtests, whereas Modes
“WithoutSeeds Iteration 2” and “WithSeeds Iteration 2” took nearly three days, since
these modes correspond to Iteration 2.

4.4 RQ1: Generated Regression Tests

We next address the first research question of whether DyGen can handle large real-
world code bases in automatically generating regression tests. This research question
helps show that DyGen can be used in practice and can address scalability issues in
generating regression tests for large code bases. We first present the statistics after each
phase in DyGen and next present the number of regression tests generated in each mode.

In the capture phase, DyGen recorded 433,809 dynamic tracesand persisted them
as C# source code, resulting in≈1.5 GB of C# source code. The average trace length
includes 21 method calls and the maximum trace length includes 52 method calls. Since
our capture phase transforms each dynamic trace into a PUT and a seed test, the capture
phase resulted in 433,809 PUTs and 433,809 seed tests.

In the minimize phase, DyGen uses static analysis to filter out duplicate PUTs.
Our static analysis took 45 minutes and resulted in 68,575 unique PUTs. DyGen uses
dynamic analysis to filter out duplicate seed tests. Our dynamic analysis took 5 hours
and resulted in 128,185 unique seed tests. These results show that there are a large
number of duplicate PUTs and seed tests, and show the significance of our minimize
phase. We next measured the block coverage achieved by these128,185 unique seed
tests in the code under test and used this coverage asbase coverage. These tests covered
22,111 blocks in the code under test.

Table 5(b) shows the number of regression tests generated ineach mode along with
the number of covered blocks. The table also shows the percentage of increase in the
number of blocks compared to the base coverage. As shown in results, in Mode “With-
Seeds Iteration 2”, DyGen achieved 24.3% higher coverage than the base coverage.
Table 2 shows more detailed results of coverage achieved forall ten .NET libraries.
Column “.NET libraries” shows libraries under test. Column“Maximum Coverage”
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.NET libraries Maximum Base WithOutSeeds WithOutSeeds WithSeeds WithSeeds
Coverage Coverage Iteration 1 Iteration 2 Iteration 1 Iteration 2
# blocks # blocks # blocks% increase# blocks% increase# blocks% increase# blocks% increase

mscorlib 20437 12827 13063 1.84 13620 6.18 14808 15.44 15018 17.08
System 7786 4651 4062 -12.67 4243 -8.77 5907 27.00 6039 29.84
Forms 2815 1730 1572 -9.13 1774 2.54 1782 3.01 1865 7.80
Drawing 850 570 580 1.75 591 3.68 618 8.42 625 9.65
Xml 2770 1229 1390 13.10 1462 18.96 1959 59.40 2045 66.40
RegEx 854 351 330 -5.98 520 48.15 754 114.81 771 119.66
Config 392 263 297 12.93 297 12.93 302 14.83 306 16.35
Data 865 301 380 26.25 422 40.20 562 86.71 569 89.04
Web 253 154 211 37.01 212 37.66 212 37.66 212 37.66
Trans 59 35 35 0.00 35 0.00 35 0.00 35 0.00
TOTAL/AVG 37081 22111 21920 <0 23176 4.80 26939 21.80 27485 24.30

Table 2.Comparison of coverage achieved for ten .NET libraries used in our evaluation.

Fig. 6. Comparison of coverage achieved by Mode “WithSeeds Iteration 2” andMode “Without-
Seeds Iteration 2”.

shows an approximation of the upper bound (in terms of numberof blocks) of achiev-
able coverage in each library under test. In particular, this column shows the sum of all
blocks in all methods that are (partly) covered by any generated test. However, we do
not present the coverage results of our four modes as percentages relative to these up-
per bounds, since these upper bounds are only approximate values, whereas the relative
increase of achieved coverage can be measured precisely. Column “Base Coverage”
shows the number of blocks covered by seed tests for each library. Column “WithOut-
Seeds Iteration 1” shows the number of blocks covered (“# blocks”) and the percentage
of increase in the coverage (“% increase”) with respect to the base coverage in this
mode. Similarly, Columns “WithOutSeeds Iteration 2”, “WithSeeds Iteration 1”, and
“WithSeeds Iteration 2” show the results for the other threemodes.

Since we use seed tests during our exploration in Modes “WithSeeds Iteration 1” or
“WithSeeds Iteration 2”, the coverage achieved is either the same or higher than the base
coverage. However, DyGen has achieved significant higher coverage than base coverage
for libraries mscorlib and System (in terms of the number of additional blocks covered).
The primary reason is that most of the classes in these libraries are stateless and do not
require environment interactions. The results show that DyGen can handle large real-
world code bases and can generate large number of regressiontests that achieve high
coverage of the code under test.

4.5 RQ2: Using Seed Tests

We next address the second research question of whether seedtests help achieve higher
code coverage compared to without using seed tests. To address this question, we com-
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Fig. 7. Comparison of code coverage achieved by Modes “WithoutSeeds Iteration 1” and “With-
outSeeds Iteration 2”.

pare the coverage achieved by generated tests in Modes “WithoutSeeds Iteration 2” and
“WithSeeds Iteration 2”. Figure 6 shows comparison of the coverage achieved in these
two modes. The x-axis shows the library under test and y-axisshows the percentage
of increase in the coverage with respect to the base coverage. As shown, Mode “With-
Seeds Iteration 2” always achieved higher coverage than Mode “WithoutSeeds Iteration
2”. On average “WithSeeds Iteration 2” achieved 18.6% higher coverage than “With-
outSeeds Iteration 2”. The table also shows that there is a significant increase in the
coverage achieved for theSystem.Web.RegularExpressions (RegEx) library. In
Section 3.3, we described one of the major advantages of seedtests is that seed tests
can help cover certain paths that are hard to be covered without using those tests. The
System.Web.RegularExpressions library is an example for such paths since this
library requires complex regular expressions to cover certain paths in the library. It is
quite challenging for Pex or any other DSE-based approach togenerate concrete values
that represent regular expressions. The increase in the coverage for this library shows
that concrete values in the seed tests help achieve higher coverage. In summary, the re-
sults show that seed tests help achieve higher coverage compared to without using seed
tests.

4.6 RQ3: Using More Machine Power

We next address the third research question of whether more machine power helps
achieve more coverage. This research question helps show that additional coverage can
be achieved in further iterations of DyGen. To address this question, we compare cover-
age achieved in Mode “WithoutSeeds Iteration 1” with Mode “WithoutSeeds Iteration
2”, and Mode “WithSeeds Iteration 1” with Mode “WithSeeds Iteration 2” (shown in
Table 2).

Figure 7 shows the comparison of coverage achieved in Modes “WithoutSeeds It-
eration 1” and “WithoutSeeds Iteration 2”. On average, Mode“WithoutSeeds Iteration
2” achieved 5.73% higher coverage than Mode “WithoutSeeds Iteration 1”. This result
shows that DyGen can achieve additional coverage in furtheriterations. However, the
coverage from Mode “WithoutSeeds Iteration 1” to Mode “WithoutSeeds Iteration 1”
is not doubled. The primary reason is that it gets harder to cover new blocks in further
iterations.

Figure 8 shows the comparison of coverage achieved in Modes “WithSeeds Iteration
1” and “WithSeeds Iteration 2”. On average, Mode “WithSeedsIteration 2” achieved
2.0% higher coverage than Mode “WithSeeds Iteration 1”. Theincrease in coverage
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Fig. 8.Comparison of code coverage achieved by Modes “WithSeeds Iteration1” and “Withseeds
Iteration 2”.

from Mode “WithSeeds Iteration 1” to Mode “WithSeeds Iteration 2” is less than the
increase in the coverage from Mode “WithoutSeeds Iteration1” to Mode “WithoutSeeds
Iteration 2”. This difference is due to seed tests that help achieve higher coverage dur-
ing Mode “WithSeeds Iteration 1”, leaving more harder blocks to be covered in Mode
“WithSeeds Iteration 2”. In summary, the results show that further iterations can help
generate new regression tests that can achieve more coverage.

5 Discussion and Future Work

Although our generated tests achieved higher coverage (24.3%) than the seed tests, we
did not achieve full overall coverage of our subject code bases (i.e. 100% coverage of
all methods stored in the code bases on disk). There are threemajor reasons for not
achieving full coverage. First, using a sand-box reduces the amount of executable code.
Second, our recorded dynamic traces do not invoke all publicmethods of the libraries
under analyses. In future work, we plan to address this issueby generating PUTs for
all public methods that are not covered. Third, the code under test includes branches
that cannot be covered with the test scenarios recorded during program executions. To
address this issue, we plan to generate new test scenarios from existing scenarios by
using evolutionary techniques [4].

We did not find any previously unknown defects while generating regression tests.
We did not expect to find defects, since our subject code basesare well tested both
manually and by automated tools, including research tools such as Randoop [7] and
Pex [13]. Although regression testing is our ultimate goal,in our current approach, we
primarily focused on generating regression tests that achieve high code coverage of the
given version of software. In future work, we plan to apply these regression tests on
further versions of software in order to detect regression defects. Furthermore, in our
evaluation, we used two libraries as subject applications.However, our approach is not
specific for libraries and can be applied to any application in practice.

6 Related Work

Our approach is closely related to two major research areas:regression testing and
method-call sequence generation.

Regression testing.There exist approaches [18][19][16] that use a capture-and-
replay strategy for generating regression tests. In the capture phase, these approaches
monitor the methods called during program execution and usethese method calls in
the replay phase to generate unit tests. Our approach also uses a strategy similar to the
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capture-and-replay strategy, where we capture dynamic traces during program execu-
tion and use those traces for generating regression tests. However, unlike existing ap-
proaches that replay exactly the same captured behavior, our approach replays beyond
the captured behavior by using DSE in generating new regression tests.

Another existing approach, called Orstra [20], augments anexisting test suite with
additional assertions to detect regression faults. To add these additional assertions,
Orstra executes a given test suite and collects the return values and receiver object states
after the execution of methods under test. Orstra generatesadditional assertions based
on the collected return values or receiver object states. Our approach also uses a similar
strategy for generating assertions in the regression tests. Another category of existing
approaches [21][22][23] in regression testing primarily target at using regression tests
for effectively exposing the behavioral differences between two versions of a software.
For example, these approaches target at selecting those regression tests that are relevant
to portions of the code changed between the two versions of software. However, all
these approaches require an existing regression test suite, which is the primary focus of
our current approach.

Method-call sequence generation.To test object-oriented programs, existing test-
generation approaches [5][6][24][2] accept a class under test and generate sequences
of method calls randomly. These approaches generate randomvalues for arguments of
those method calls. Another set of approaches [3] replaces concrete values for method
arguments with symbolic values and exploits DSE techniques[9][10][11][12] to regen-
erate concrete values based on branching conditions in the method under test. However,
all these approaches cannot handle multiple classes and their methods due to a large
search space of possible sequences.

Randoop [7] is a random testing approach that uses an incremental approach for
constructing method-call sequences. Randoop randomly selects a method call and finds
arguments required for these method calls. Randoop uses previously constructed method-
call sequences to generate arguments for the newly selectedmethod call. Randoop
may also pick values for certain primitive randomly, or froma fixed manually sup-
plied pool of values. Randoop incorporates feedback obtained from previously con-
structed method-call sequences while generating new sequences. As soon as a method-
call sequence is constructed, Randoop executes the sequence and verifies whether the
sequence violates any contracts and filters. Since Randoop does not symbolically ana-
lyze how the code under test uses arguments, Randoop is oftenunable to cover data-
dependent code paths. On the other hand, DyGen is dependent on method-call se-
quences obtained via dynamic traces, and so DyGen is often unable to cover code paths
that cannot be covered from the scenarios described by thosesequences. Therefore,
Randoop and DyGen are techniques with orthogonal goals and effects. In our previous
approach [13], we applied Pex on a core .NET component for detecting defects. Un-
like our new approach that uses realistic scenarios recorded during program executions,
our previous approach generates individual PUTs for each public method of all pub-
lic classes. There, we could not cover portions of the code that require long scenarios.
Our new approach complements our previous approach by usingrealistic scenarios for
covering such code portions.
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Our approach is also related to another category of approaches based on mining
source code [25][26] [27]. These approaches statically analyze code bases and use min-
ing algorithms such as frequent itemset mining [28] for extracting frequent patterns.
These frequent patterns are treated as programming rules ineither assisting program-
mers while writing code or for detecting violations as deviations from these patterns.
Unlike these existing approaches, our approach mines dynamic traces recorded during
program executions and uses those traces for generating regression tests. Our previous
work [27] also mines method-call sequences from existing code bases. Our previous
work uses these method-call sequences to assist random or DSE-based approaches. Our
new approach is significantly different from our previous work in three major aspects.
First, our new approach is a complete approach for automatically generating regression
tests from dynamic traces, whereas, our previous work minesmethod-call sequences
to assist random or DSE-based approaches. Second, our new approach uses dynamic
traces, which are more precise compared to the static tracesused in our previous work.
Third, our new approach includes additional techniques such as seed tests and dis-
tributed setup for assisting DSE-based approaches in effectively generating CUTs from
PUTs.

7 Conclusion

Automatic generation of method-call sequences that help achieve high structural cover-
age of object-oriented code is an important and yet a challenging problem in software
testing. Unlike existing approaches that generate sequences randomly or based on anal-
ysis of the methods, we proposed a novel scalable approach that generates sequences
via mining dynamic traces recorded during (typical) program executions. In this paper,
we showed an application of our approach by automatically generating regression tests
for two core .NET 2.0 framework libraries. In our evaluations, we showed that our ap-
proach recorded≈1.5 GB (size of corresponding C# source code) of dynamic traces
and eventually generated≈500,000 regression tests, where each test exercised a unique
path. The generated regression tests covered 27,485 basic blocks, which represents an
improvements of 24.3% over the number of blocks covered by the original recorded dy-
namic traces. These numbers show that our approach is highlyscalable and can be used
in practice to deal with large real-world code bases. In future work, we plan to eval-
uate the effectiveness of generated regression tests in detecting behavioral differences
between two versions of software.
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