Toward Music Listening Interfaces in the Future

AIST (National Institute of Advanced Industrial Science and Technology)

Masataka Goto

2010/10/19 Microsoft Research Asia Faculty Summit 2010

Our Goal

Enrich end-users' music listening experiences
 by using music understanding,
 speech interaction, and
 humanoid robot technologies

Change music listening into
 a more active, immersive experience

Natural user interaction for music

can be enriched by

Music understanding technology
 Content-based analysis/visualization

Speech interaction technology
 Nonverbal interaction with speech recognition

Humanoid robot technology
 Rigidly-synchronous character

Natural user interaction for music

can be enriched by

Music understanding technology
 Content-based analysis/visualization

Speech interaction technology
 Nonverbal interaction with speech recognition

Humanoid robot technology
 Rigidly-synchronous character

Our Research Approach

Active Music Listening Interfaces

- Building Active Music Listening Interfaces
 that enable non-musician users
 to enjoy music in more active ways
- □ Two interfaces
 - SmartMusicKIOSK
 - LyricSynchronizer

- One of the easiest active interaction
 - Skip musical pieces of no interest by pressing the "NEXT TRACK" button

- More advanced active interaction?
 - Skip sections of no interest within a song

INTERFACE:

SmartMusicKIOSK:

Music listening station with a chorus-search function

TECHNOLOGY:

Automatic chorus-section detection method

INTERACTION:

Change playback position while viewing "music map"

SmartMusicKIOSK

[Goto, 2002-2006]

[Fujihara, Goto, Okuno, 2006-]

LyricSynchronizer

- Reading/singing lyrics during music playback
 - Refer to printed/displayed lyrics
 - Should keep track of the current playback position
- More advanced active interaction?
 - See/click the lyrics with the phrase being sung highlighted

LyricSynchronizer:

Synchronization of lyrics with music

TECHNOLOGY:

Automatic vocal extraction & synchronization method

INTERACTION:

Click on a word in the lyrics to listen from that word

LyricSynchronizer

[Fujihara, Goto, Okuno, 2006-]

The current playback position

You can listen from a clicked word

Natural user interaction for music

can be enriched by

Music understanding technology
 Content-based analysis/visualization

- Speech interaction technology
 Nonverbal interaction with speech recognition
- Humanoid robot technology
 Rigidly-synchronous character

Our Research Approach

Speech Recognition Interfaces

- Building hands-free music listening interfaces
 that enable users
 to find and play back a musical piece
- Two interfaces
 - Speech Completion
 - Speech Spotter

Speech Completion

[Goto, Itou, Hayamizu, 2000-2004]

□ What is Speech Completion?

Help a user enter an uncertain piece/artist name

by completing the missing part

of a partially uttered fragment

"Michael—" (Michael, uh...)

"Michael Jackson?"

Speech Completion

Video Demonstration of Speech Completion

Enter the Japanese names of musicians and songs

Speech Spotter

[Goto, Kitayama, Itou, Kobayashi, 2000-2004]

■ What is Speech Spotter?

"Shall we listen to the song `Black or While'?"

"Yeah! Uhm..., Black or White."

Speech Spotter

Video Demonstration of Speech Spotter

Enter voice commands for music-playback control

Speech Spotter

[Goto, Kitayama, Itou, Kobayashi, 2000-2004]

■ What is Speech Spotter?

This combination is quite unnatural

= This does not appear in natural conversation

The system can easily find this specially-designed unnatural utterance only

Natural user interaction for music

can be enriched by

Music understanding technology
 Content-based analysis/visualization

Speech interaction technology
 Nonverbal interaction with speech recognition

Humanoid robot technology
 Rigidly-synchronous character

Our Research Approach

Humanoid Robot Interfaces

Building immersive music listening interfaces
 that enable users
 to listen to a song while seeing a robot singer

- □ One example
 - HRP-4C + VocaListener
 - + VocaWatcher

HRP-4C + VocaListener + VocaWatcher

Two technologies to generate a natural singing voice and facial expressions by imitating a human singer

VocaListener

Technology to imitate the pitch and power of a human voice

VocaWatcher

Technology to imitate facial expressions of a human face

Natural user interaction for music

can be enriched by

Music understanding technology
 Content-based analysis/visualization

Speech interaction technology
 Nonverbal interaction with speech recognition

Humanoid robot technology
 Rigidly-synchronous character

Conclusion

□ Summary

Natural user interaction can be enriched by

Content-understanding technology

Content-based analysis/visualization

Speech interaction technology

Nonverbal interaction

Humanoid robot technology

Rigidly-synchronous character

Web interaction technology

User contributions

Panel Discussion

Thank You

- □ References (available at http://staff.aist.go.jp/m.goto/publications.html)
 - M. Goto: SmartMusicKIOSK: Music Listening Station with Chorus-Search Function, ACM UIST 2003.
 - M. Goto: A Chorus-Section Detection Method for Musical Audio Signals and Its Application to a Music Listening Station, IEEE TASLP, 14(5), 1783-1794, 2006.
 - M. Goto: Active Music Listening Interfaces Based on Signal Processing, IEEE ICASSP 2007. (Invited Paper)
 - H. Fujihara, M. Goto, et al.: Automatic Synchronization between Lyrics and Music CD Recordings Based on Viterbi Alignment of Segregated ..., IEEE ISM 2006.
 - M. Goto, K. Itou, K. Kitayama, and T. Kobayashi: Speech-Recognition Interfaces for Music Information Retrieval: ``Speech Completion" and ``Speech Spotter", ISMIR 2004.
 - M. Goto, K. Itou, and S. Hayamizu: *Speech Completion: On-demand Completion Assistance Using Filled Pauses for Speech Input Interfaces*, ICSLP 2002.
 - M. Goto, K. Kitayama, K. Itou, and T. Kobayashi: Speech Spotter: On-demand Speech Recognition in Human-Human Conversation ..., ICSLP 2004.
 - M. Goto, K. Itou, and T. Kobayashi: *Speech Interface Exploiting Intentionally-Controlled Nonverbal Speech Information*, ACM UIST 2005.

Acknowledgments

- ☐ **Hiromasa Fujihara** (for LyricSynchronizer)
- ☐ **Hiroshi G. Okuno** (for LyricSynchronizer)
- □ Katunobu Itou (for Speech Completion/Spotter)
- □ Satoru Hayamizu (for Speech Completion)
- □ **Koji Kitayama** (for Speech Spotter)
- □ **Tetsunori Kobayashi** (for Speech Spotter)
- □ Tomoyasu Nakano (for VocaListener, VocaWatcher)
- Shuuji Kajita, Yosuke Matsusaka, Shin'ichiro Nakaoka, Yoshio Matsumoto, and Kazuhito Yokoi (for VocaWatcher)
- □ JST CrestMuse Project (for research funding)

Please send me your comments:

E-mail: m.goto [at] aist.go.jp

URL: http://staff.aist.go.jp/m.goto/