SensorWeb And Its Extension to Support Mobile Sensing

Jacky Shen Microsoft Research Asia

Sensors Everywhere

Many sensing applications

Sensing Trends

- Generation 1: Remote sensing
 - Collect data to a central server

- Generation 2: In-situ sensing + processing
 - Transmit processed information only

Generation 3: World-wide Sensor Web

Example: Swiss Experiments

Many isolated sensor deployments

Put all data together for better understanding Share with other scientists

Temperature Humidity

Snow

Streams

Similar deployments: USGS, NASA, SeaMonster (Alaska), DOT, Community sensors

Cyber-physical System Challenges

Programmability

Real-time control Performance

Prediction Data management

Privacy

Networking

Fault-tolerance

Localization

Security

Information extraction Scalability

Extensibility

Modeling

Energy-efficiency

We built a **vertical system** to address challenges faced by environmental scientists

SenseWeb: Wikipedia of Sensors

- SenseWeb: Bring live data to the Web
 - Overlay live data on an interactive map, SensorMap
- Unique set of features
 - Peer production: Anyone can publish his sensors
 - Larger spatio-temporal coverage
 - Amortized cost
 - Extensible: new sensor types and data processing
 - Geospatial data exploration: Search sensors, aggregate and visualize data over interactive map

SensorMap

http://msra.cn/sensormap/

Sensors as Icons Show real-time data

Search sensors based on geography, type, keywords

Aggregate live data at different zoom levels

SensorMap

- Visualize sensor data over space and time
 - Charts
 - Time traveller
 - Overlaid contour maps

SensorMap

- Support mobile sensing:
 - Tracks (sensory data, and motion states)
 - Spatio-temporal visualization of tracks

<u>coeniliooon rescai</u>Ch

Outline

- Context
- SenseWeb Architecture
- Data publishing
- Extensibility
- Scalability
- Mobile sensing support
- Conclusion

Design Challenges

Data publishing

 Must make the tasks of acquisition, cleaning, publishing, naming, etc. simple

Extensibility

Must support new sensor types, new data types, new processing, new visualization, ...

Scalability

- Must support a large number of sensors
- Must support expensive processing tasks interactively

Outline

- Context
- SenseWeb Architecture
- Data publishing
- Extensibility
- Scalability
- Mobile sensing support
- Conclusion

MSRSense: Data Publishing Toolkit

- Programming abstraction
 - Service oriented programming at gateway

- Automate using standards
- Syntax: markup language
- Semantics: ontology
- Interface: web service

Sensors

MSRSense

Sensor Data

Publishing Toolkit

SenseWeb

Office Tools

Data Publishing

- Register sensor with metadata
 - <u>Identity:</u> Publisher, sensor name, desc, etc
 - <u>Physicality</u>: Location, report period, etc
 - Connectivity: URL: External or DataHub URL
 - Semantics:
 - Sensor type: thermometer, camera, etc.
 - Data format: HTML, Scalar number, XML, Multimedia (image, audio, video, etc.)
 - Unit

Outline

- Context
- SenseWeb Architecture
- Data publishing
- Extensibility
- Scalability
- Mobile sensing support
- Conclusion

Supporting new sensor types

- Sensor types are used for query processing and visualization
- Basic Idea: Let user compose new types on basic data types

Handling divergence

Challenge: redundant user-defined types

Solution: Use semantic relationship among types

Type Semantics

Use ideas from Semantic Web

Outline

- Context
- SenseWeb Architecture
- Data publishing
- Extensibility
- Scalability
- Mobile sensing support
- Conclusion

Scalability

Visualization

Data mining

Query processing

Storage

Storage scalability

Compress sensor data

Group similar streams and compress together

Answer queries on compressed data

Data mining queries in frequency domains

Scalable Query Processing

Data acquisition expensive Sensors disconnected Solution: Sample and Cache

Challenges:

- Unbiased sampling
- Caching aggregates

COLR-Tree

Scalable Visualization

Contour maps are expensive

Solution: Cache and reuse contour matrices

- Challenge 1: queries partially overlap
 - Crop cached matrices and combine them

- Challenge 2: queries have different zoom levels
 - Normalize zoom levels

Outline

- Context
- SenseWeb Architecture
- Data publishing
- Extensibility
- Scalability
- Mobile sensing support
- Conclusion

Continuous localization (1)

- Key challenge: energy, energy!
- Localization means, and characteristics

Localization means	Accuracy	Coverage	Battery Lifetime
GPS	~10m	Full, outdoor	2-4hours
WiFi	~30m	Spotted	4-5hours
Cellular	~150m	Full	4hrs/Free

Continuous localization (2)

- Solution idea:
 - Resolve the track first, perform point location via interpolation
 - Leverage cheap or free resources:
 - Free radio info: CellID (public WS API)
 - Cheaper sensors: accelerometer, compass (motion and direction)
 - Road map

Data Privacy

- Protect privacy of data from people
 - E.g., Location, health-info, driving habit, etc.
- Solutions: let user publish
 - Noisy data
 - Encrypted data
 - Irreversible features
- Guarantee: cannot infer anything about an individual, but answer aggregate queries
 - Average speed at 520 bridge on Monday morning
 - Correlation of weight increase with medicine intake

Outline

- Context
- SenseWeb Architecture
- Data publishing
- Extensibility
- Scalability
- Mobile sensing support
- Conclusion

Application Scenarios

Marc, a hydrologist, utilizes SensorMap during

Experiment Planning

To view sensor layout and visualize measurements in real-time to decide the placement of sensors

Deployment Monitoring

To inspect real-time output of sensors, and to discover and fix broken sensors

Data Analysis

To visualize dependencies among different measurements and correlations with topological

Summary

- SenseWeb is an open platform to share sensor data
 - Scalable, Easy-to-use, Extensible
- Live at http://msra.cn/sensormap/ for AP-area researchers
 - http://research.microsoft.com/en-us/projects/senseweb/

Call for collaboration on top of SenseWeb, and esp.,
 mobile sensing systems and applications

THANKS!