
BLAS Comparison on FPGA, CPU and GPU
Srinidhi Kestur† John D. Davis‡ Oliver Williams‡

† Dept. of Computer Science and Engineering ‡ Microsoft Research
The Pennsylvania State University Mountain View, CA 94043

University Park, PA 16802 {john.d, olliew}@microsoft.com
kesturvy@cse.psu.edu

Abstract—High Performance Computing (HPC) or scientific
codes are being executed across a wide variety of computing
platforms from embedded processors to massively parallel GPUs.
We present a comparison of the Basic Linear Algebra Subrou-
tines (BLAS) using double-precision floating point on an FPGA,
CPU and GPU. On the CPU and GPU, we utilize standard
libraries on state-of-the-art devices. On the FPGA, we have
developed parameterized modular implementations for the dot-
product and Gaxpy or matrix-vector multiplication. In order to
obtain optimal performance for any aspect ratio of the matrices,
we have designed a high-throughput accumulator to perform an
efficient reduction of floating point values. To support scalability
to large data-sets, we target the BEE3 FPGA platform. We use
performance and energy efficiency as metrics to compare the
different platforms. Results show that FPGAs offer comparable
performance as well as 2.7 to 293 times better energy efficiency
for the test cases that we implemented on all three platforms.

I. INTRODUCTION

Recently, scientific computing or high performance comput-
ing (HPC) on non-traditional computing platforms, including
embedded processors and GPUs, has gained significant trac-
tion [1], [2]. One of the most essential libraries for HPC is
the Basic Linear Algebra Subroutines(BLAS) [3]. BLAS is
classified into levels based on the degree of complexity. BLAS
level 1 includes the Dot-product, which has O(N) complexity.
BLAS level 2 includes Gaxpy or matrix-vector multiplication,
which has O(N2) complexity. BLAS level 3 includes matrix-
matrix multiplication which has O(N3) complexity [4]. These
common matrix operations are fundamental to most compu-
tations in scientific applications and the BLAS libraries were
created to speed the implementation of these HPC codes. Thus,
the BLAS libraries serve as the basic building blocks for many
numerical linear algebra applications, including the solution
of linear systems of equations, linear least square problems,
eigenvalue problems and singular value problems [4].

Unlike CPUs, FPGAs are able to continue to ride the
Moore’s Law curve, providing more logic and memory re-
sources with each new generation of FPGAs. This increased
capacity has recently enabled mapping HPC applications [5]–
[7] to FPGAs. Likewise, GPUs, which are tuned for the graph-
ics pipeline, have grown considerably more programmable and
the combination of high floating point performance and a C-
like programming model has garnered wider acceptance by the
scientific computing community for HPC [2]. While modern
GPUs offer very high peak floating point performance, the true
strength of FPGAs lies in the fraction of the peak performance
that can be extracted for a particular application [8].

In this paper, we describe FPGA optimizations for BLAS
level 1. Using this as a basis for BLAS level 2, we compare
the performance and energy efficiency of the CPU, GPU, and
FPGA platforms. We use state-of-the-art off-the-shelf devices
and standard high performance libraries for the CPU and GPU

and all implementations use double-precision floating point
numbers. While there are many published works on BLAS
architectures for FPGAs and reported numbers for GPUs, our
implementation use double-precision floating, measures full
system power, and provides a systematic comparison of per-
formance and energy efficiency across these three platforms,
which does not exist.

We have developed a custom implementation for the dot-
product and Gaxpy for FPGAs. As both these operations
require a reduction of floating point values, we have designed a
novel reduction circuit using IEEE compliant double-precision
floating point units. Further, we introduce an efficient vector
memory and a novel matrix memory which support burst-read
and write and enable extraction of a high degree of parallelism
for matrix computations on FPGAs. We use the BEE3 [9]
as our FPGA platform though our design is portable to any
FPGA platform. We perform the comparison on small data-sets
initially to only consider computation time without memory
bottlenecks. This is done by varying the aspect ratio of the
matrix while maintaining the same overall size and complexity.
We use execution time, average power and energy efficiency
(iterations/joule) to compare the BLAS performance of the
FPGA, CPU, and GPU implementations.

The rest of the paper is organized as follows - Section II
discusses related work, Section III discusses the BLAS level 1
FPGA implementation and optimizations, Section IV describes
the BLAS level 2 implementation using novel banked memory
systems, Section V presents the experimental setup, Section VI
provides the evaluation of BLAS level 2 implementations on
the FPGA, CPU and GPU platforms. Section VII concludes
the paper.

II. RELATED WORK

BLAS has been a topic of considerable interest since it was
first introduced in Fortran [3]. As a result, BLAS has been
used as a benchmark by the industry to compare performance
of new devices [5], [6].

There are several works which focus solely on the floating
point summation/reduction on Reconfigurable platforms (RC),
which is a critical component in BLAS. Zhuo et al. [10], [11]
propose techniques such as Dual-Strided Adder and Single-
Strided Adder using IEEE compliant pipelined floating point
units. Some other works suggest modifying traditional floating
point arithmetic to achieve low-latency addition, simplifying
the reduction circuit. Examples are delayed addition [12],
group-alignment based summation [13] and parameterized
accumulation [14]. In this work, we design a custom reduction
circuit that uses IEEE compliant double-precision floating
point arithmetic to cater to the entire range of numerical
values, and a variety of vector lengths and matrix aspect ratios
that might appear in scientific applications.



There has been substantial interest in implementing BLAS
levels 2 and 3 on RC platforms. Zhuo et al. have proposed
a parallel implementation for matrix multiplication [15] and
have mapped it to the SRC MAP platform [16], which
has 2 FPGAS with SRAM and DRAM. They also suggest
hardware/software co-design frameworks for RC platforms
such as SRC MAP in [17], [18]. Smith et al. proposed a
simple partitioning strategy for multi-FPGA implementation
[7] on the SRC Map platform. Kumar et al. have implemented
matrix multiplication using rank-1 update algorithm [19].
In this work, while we concentrate on the BLAS Level 2
or Gaxpy, each module is designed to be used for matrix
computations in general. The most relevant work for Gaxpy
is [16] which describes an interleaved reduction circuit to
provide high throughput matrix-vector multiplications. This
design uses custom floating-point cores and thrives on the
high bandwidth of the SRAM external memory on the SRC
Map platform. However, the interleaving is not practical,
since floating-point adders are deeply pipelined and memory
bandwidth would seriously limit the ability to sustain the
interleaved computation. This would result in stalling when
the input buffers are not filled.

In our FPGA implementation, we load a portion of data
into the local memory on the FPGA, which is used as a
scratch-pad/cache memory and complete the computation on
the cached data, similar to [19]. However, our design exploits
the data locality better than [19] by using novel local memory
design and offers similar throughput for the entire range of
matrix dimensions owing to the novel accumulator design.
In the future, we are going to overlap the computation with
memory access and maximize data reuse. While data reuse is
minimal for Gaxpy, matrix-multiplication has significant reuse.
Our approach is to build a design whose parallelism can scale
with resource availability.

III. BLAS LEVEL 1 ON FPGA
The dot-product forms the basic operation for many matrix

computations. The dot-product, a = X · Y , of 2 vectors
of length N is a sum-of-products operation with N mul-
tiplications and N − 1 additions. While the multiplications
can be done in parallel, their products must be accumulated
to provide a scalar result. The accumulation is achieved
by a reduction circuit/accumulator. The accumulator has the
challenge of adding the sequentially delivered N floating-point
values to provide a scalar result. Since floating-point additions
are deeply pipelined, the result of an addition is available at
the output, a few cycles after the operands were input. We first
develop a naive implementation for the accumulator and then
perform architectural optimizations to maximize throughput
and minimize stalling and buffer requirement as described in
the following sub-sections.

A. Single-Accumulator
The intuitive implementation of the accumulator consists of

an adder whose output is fed-back to the input and an input
FIFO buffer as shown in Figure 1(a). The accumulator state
machine is shown in Figure 1(b). In the Fill state, the adder
input pin A is tied to zero and the input pin B is fed with
the first p values to be accumulated, where p is the pipeline
depth of the adder. When the result of the first addition is
ready (after p cycles), the accumulator moves to the Steady
state, in which the sum of the adder appears at A and input

element p + i is added with input i. This continues until all
the n values in the input set are fed into the accumulator, after
which the accumulator moves into Coalesce state.

(a)

(b)

Fig. 1. Single Accumulator (a) circuit and (b) state machine

In the Coalesce state, the p partial sums in the pipeline
are reduced to a single value by a staggered addition. Pipeline
registers are enabled at one of the input pins of the adder. Each
cycle, a partial sum is flushed out of the adder pipeline and is
fed into the adder which is buffered in pipeline registers until
the next partial sum arrives. When both input pins of the adder
have partial sums, they are fed into the adder. The reduction of
the partial sums to a single value requires flushing the adder
pipeline log2p times.

The circuit then moves into the Wait state where it waits for
a new input set to arrive. Hence, the accumulator has to be
stalled for p×log2p cycles which results in a large input buffer
requirement when there are multiple sets to be accumulated in
sequence. The overall time taken by the Single-Accumulator
to reduce m sets of length n is L = m[n+ (plog2p)]. In our
implementation, the adder is generated using Xilinx coregen
[20] with p = 8.

B. Double-Accumulator
A simple optimization to minimize the effective latency of

the accumulator is to‘ have two identical accumulators A and
B with a common input buffer, similar to the Dual-strided
adder (DSA) in [10]. At the end of an input set, A enters
the Coalesce state and B can begin accepting a new input set.
When B enters the Coalesce state, if A is in Wait it can accept
a new input set. If neither accumulator is ready, the input set
is buffered until one of them enters the Wait state. Hence, A
and B alternate to reduce successive sets of inputs, hiding the
latency of the accumulator whenever the length of the input
set n ≥ plog2p. However, if successive input sets of shorter
length are to be reduced, stalling is still required for each set,
which increases the input buffer requirement. The overall time
taken by the Double-Accumulator to reduce m sets of length
n is given by L = (n ≥ plog2p)?[mn+plog2p] : [m(plog2p)];

C. Dual-stage Accumulator
The accumulator coalesce latency is the performance bot-

tleneck. The ideal optimization is to separate the coalesce
operation from the accumulator, having an additional adder
stage to perform the coalescing. The adder stage has to be
a feed-forward circuit, eliminating pipeline stalls completely.
The dual-stage accumulator circuit which implements the
above modifications is shown in Figure 2. It consists of
a Feedback adder stage which is the original accumulator
implementing the Fill and Steady states and the Feed-forward



adder stage, which implements the staggered addition for
coalescing and removes the need for a coalesce state in the
state machine. At the end of an input set, the Feedback adder
stage goes into the Wait state and Feed-forward adder stage
takes over the coalesce operation.

Fig. 2. Dual-stage accumulator circuit

The Feed-forward adder stage consists of log2p adders in
sequence, each having pipeline registers at their input pins.
This stage effectively implements a binary adder tree to reduce
the p partial sums. Each cycle, a partial sum is fed into the
first adder which is buffered in pipeline registers until the next
partial sum arrives. When both input pins of the adder have
partial sums, they are fed into the adder. Successive adders
also implement a similar buffer-and-add strategy where the
buffer depth for the ith adder is 2i−1 cycles.

The accumulator can accept a new input set right on the
next cycle, and eliminates the stalling and the input buffer
requirement, for any length of the input set. The overall time
taken by the Dual-stage Accumulator to reduce m sets of
length n is given by L = [mn + plog2p]. Hence, successive
sets of vectors, irrespective of their lengths can be reduced
with no latency and memory bottlenecks.

IV. BLAS LEVEL 2 ON FPGA
Gaxpy or matrix-vector multiplication for a matrix A and

vectors X and Y is given as, Ŷ = A · X + Y . It can be
computed efficiently by performing a dot-product on a row
of the matrix A and the vector X and repeating over all
rows of A. This is a row-major Gaxpy using dot-product
as the primitive. We exploit two levels of parallelism in this
Gaxpy core. Inter-row parallelism in which multiple pipelines
can perform the dot-product on different rows of the matrix
concurrently because each dot-product in the Gaxpy is an
independent operation; and intra-row parallelism: within each
dot-product the multiplications are independent of one another,
several multiplications can be performed concurrently and
their results can be accumulated.

A. Vector Memory
FPGAs have a small amount of local memory called Block

RAMs, which are used as scratchpad memories (RAMs) or
as FIFOs. The typical dual-port RAM available on platform
FPGAs has two ports and each port can be configured as a
read or write port. However, for parallel vector computations,
multiple vector elements need to be accessed concurrently,
requiring multiple read and write ports. To support this,
we have implemented a vector memory by utilizing bank
interleaving.

The contents of the local memory are interleaved into B
banks as shown in Figure 3(a), where each bank is a standard
dual-port RAM. This enables the memory to support B reads
and B writes per cycle as long as the read and write addresses
access different banks each cycle. If care is taken to make sure
no two reads and no two writes per cycle access the same
bank, then the memory read/write bandwidth is B. The width

and depth of each bank is a HDL parameter and B must be a
power of two.

Each port has an address and data bus. A B × B switch
serves as a bank assignment module and uses the least-
significant log2(B) bits of the read/write address to assign
a bank-ID for port p. If the operation was a read, the output
data from the corresponding bank is assigned to output port p
by an output-port assignment module. The additional control
logic results in higher latency (L > 1 cycles) for the vector
memory. However, the control logic is completely pipelined so
that the vector memory can sustain a throughput of B reads
and writes every cycle.

This vector memory is used as local memory for the vectors
X and Y in our implementation and the number of banks, B,
is set to 4. This enables 4 concurrent reads and writes for
vector computations.

(a) (b)

Fig. 3. (a) Vector memory (b) Matrix memory

B. Matrix Memory
For matrix computations, we use a two-dimensional mem-

ory to simultaneously access the matrix elements using the
row and column indices. Further, to enable parallel matrix
computations, it is ideal if a two-dimensional sub-block of
the matrix can be accessed concurrently. In order to support
the above, we extend the concept of bank interleaving to 2
dimensions by introducing a novel matrix memory.

The matrix memory can be visualized as an array of V
vector memory elements called row banks. Each row-bank is
a vector memory itself having B banks. As shown in Figure
3(b), a matrix is organized in the matrix memory such that
rows of the matrix are interleaved into the V row banks,
where row i of the matrix is mapped to row bank r where
r = mod(r, V ). Within each row, the columns are interleaved
within the banks of that particular row bank. For simplicity,
we choose V to be a power of two.

The access to the matrix memory is a two-dimensional
burst access. The external interface to the matrix memory has
read and write data bus of width V × B, a read and a write
enable signal and a row and column index. Each cycle the
matrix memory accepts a row index and column index and
internally generates the V ×B addresses which correspond to
a 2D sub-block of the matrix. The read and write datapaths
are independent pipelines and hence the matrix memory can
sustain a throughput of V ×B reads and writes per cycle.

This matrix memory has the advantage that it provides a
2D memory and allows easy access to matrix elements. While
the vector memory supports access to any B (non-contiguous)
elements of the vector stored, the matrix memory operates on
the burst-access feature, which limits memory accesses to a



contiguous sub-block of the matrix. This is because the vector
memory implements a bank assignment switch to perform
dynamic bank assignment, whereas the matrix memory has
no such control overhead. Moreover, matrix accesses in BLAS
are usually in bursts, whereas vector accesses can be isolated.
Hence, this is a very efficient technique to improve local
memory bandwidth for matrix computations with minimal
control overhead.

The matrix memory is used to store the matrix A and we
have chosen the number of row banks, V = 4, with each row
bank having B = 4. This allows a 4×4 sub-matrix to be read
and written each cycle.

C. Gaxpy Architecture
A Gaxpy pipeline, PIPE, as shown in Figure 4, is the

implementation of the dot-product of a row of the matrix A
with the vector X . As mentioned before, the multiplications
within the dot-product are independent and can be done in
parallel. The PIPE can perform P multiplications in parallel,
provided the inputs to P multipliers can be generated per
cycle. Since P represents the maximum number of values that
can be read per cycle from the vector memory X and a row
bank of the matrix memory, P = B. Each cycle, the PIPE
accepts P values of vector X and P values from a row of
matrix A. The PIPE performs P multiplications in parallel
and accumulates the results through an adder tree followed
by the accumulator. Once the accumulator result is ready, the
corresponding value in vector memory Y is read and added
to the accumulated result. The final result is written back into
vector memory Y at the same address.

Fig. 4. Gaxpy Pipeline, PIPE

In our implementation, P = B = 4. The multipliers and
adders are double-precision floating point Xilinx IP cores [20],
which are generated using the Xilinx core generator.

The overall architecture for Gaxpy is shown in Figure 5.
It includes multiple PIPEs in parallel, each operating on a
different row of the matrix A. The vector X output data
is broadcast to all the PIPEs. The number of PIPEs, Q,
is determined by the number of rows that can be accessed
in parallel from the matrix memory and is limited by the
availability of FPGA resources. Since the maximum number
of rows that can be accessed at a time is equal to the number
of row banks, Q ≤ V . In our implementation V = 4 and
hence Q ≤ 4.

Each cycle, the control logic generates a pair of (row, col)
indices for the matrix memory and addresses corresponding
to (col : col + B − 1) of the vector memory X . The matrix
memory returns a read burst of V × B sub-matrix elements
corresponding to indices (row : row+V −1, col : col+B−1).
The read values from each row bank of the matrix memory are
mapped to one of the Q PIPEs. The vector memory X returns
B values which are broadcast to all the PIPEs. Each PIPE
computes the dot-product and updates an element of the vector

Fig. 5. Overall Gaxpy Implementation

Ŷ . The control logic generates Q addresses corresponding to
(row : row + Q − 1) into the vector memory Y which are
used to read from, and then write into the vector memory Y .
If the number of PIPEs, Q = V , then the design is optimal
with Degree of parallelism, DoP = Q× P = V ×B. In our
implementation, the DoP = 4× 4 = 16.

V. EXPERIMENTAL SETUP

The BLAS level 2 kernels were evaluated on the FPGA,
CPU, and GPU platforms for performance and energy ef-
ficiency. We developed and validated the kernels, verifying
that all platforms generate the same result for the BLAS
computations. The BLAS kernels are run at least three times
consecutively and each run has between 100,000 to 1 million
iterations of the kernel. This reduces the initialization overhead
and provides a sustained kernel run that is long enough to
measure the full system AC power using the WattsUp? Pro
digital power meter.

A. CPU, GPU and FPGA platforms
For evaluating the naive C, Intel Math Kernel library

(MKL) [21] and CUDA BLAS kernels [22] we use an HP
xw4600 workstation with a 3.16 GHz Intel Core 2 Duo E8500
processor with 4 MB of L2 cache and 4 GB of DDR2-800
RAM, running a 64-bit version Windows Server 2008. We
installed an Nvidia 9500 GT as the primary graphics card
when running the C and MKL kernels. The idle system power
for this configuration is about 70 Watts. We provide results
for both a single threaded MKL implementation and a parallel
MKL implementation for comparison. For the GPU evaluation
an Nvidia Tesla C1060 [23] was added. This increased the
idle power of the system to just under 128 Watts. The CUDA
BLAS library CUBLAS 2.2 was used to implement the BLAS
kernel [22] on the GPU. The Nvidia Tesla C1060 has 240
streaming processor cores running at 1.3 GHz. The Tesla
C1060 has 4 GB of GDDR3 operating at 800 MHz.

We compare these systems to the BEE3 FPGA platform [9]
running a Verilog BLAS kernel. This FPGA platform has four
Virtex5 LX155T FPGAs [24] and each FPGA has 24320 logic
slices, 212 Block RAMs and 128 DSP48E units. Each FPGA
has two DRAM channels with two DIMM slots per channel
and a maximum capacity of 16 GB of DDR2-400 DRAM (64
GB per BEE3 platform). The matrix dimensions are provided
as parameters to the Verilog design and Xilinx ISE 11.1
[25] was used to generate the bitstream. The bitstreams are
downloaded onto all four FPGAs on the BEE3 board and
executed. Once the FPGAs are programmed, we use the global
reset push button to synchronously start the BLAS kernel on
all four FPGAs. The BLAS kernel has an operating frequency



of 100 MHz. A operating frequency is possible [19], but
requires longer bit file generation times.These kernels are run
for 1 million iterations to provide sufficient time to measure
power consumption. We instrumented the BLAS kernel with
performance counters to measure the execution time and used
Chipscope [25] to read the counters at run-time. The FPGA
resource utilization for the BLAS kernel is shown in Table I.

TABLE I
RESOURCE UTILIZATION FOR GAXPY ON VIRTEX5 LX155T

Num PEs Slice Reg Slice LUT BRAM/Fifo DSP48E
8 29600 (30%) 24900 (25%) 137 (64%) 72 (56%)

16 61977 (63%) 52900 (54%) 138 (65%) 108 (84%)

B. Power Measurement

Fig. 6. Power measurement setup

The full system power is measured using a Wattsup? Pro
[26] power meter. Our measurement infrastructure has three
main components: the system under test (SUT), the digital
power meter used to collect the full AC power consumption,
and the computer that collects the AC power data from the
meter (PC). Figure 6 illustrates the connections between these
components. We interpose the WattsUp? Pro digital power
meter between the SUT and the wall power to capture the
AC power and power factor once per second. We connect this
meter to a separate PC over USB to capture and log the power
measurements once every second. The SUT is either the BEE3
or the PC in two different configurations, one with the Nvidia
Tesla card running the CUDA BLAS code or without the Tesla
card running the naive C or MKL implementations.

VI. RESULTS

Fig. 7. Performance impact of accumulator circuit on Gaxpy implementation

We verified the results of all the implementations to ensure
a fair comparison between the naive C, single thread Intel
Math Kernel Library (MKL-ST) and parallel Intel Math Kernel
Library (MKL-PAR), CUDA, and FPGA Gaxpy implementa-
tions. Due to the on-chip memory limitations of the FPGA, the
Gaxpy implementations are evaluated using a set of relatively
small matrix sizes to measure on-chip computation time on
the 3 platforms without considering the I/O impact of main
memory access, which is the focus of our future work. We
use linear feedback shift registers to generate a known and
repeatable sequence of values for the input matrix and vector

for all the kernel implementations. The total on-chip memory
requirement for Gaxpy is M × N + N + M and this is a
constant for any aspect ratio of the matrices used in our study.
On the Virtex5 FPGA, the largest square matrix whose size is
a power of 2 that can be stored in local memory is 256×256.
Hence, we choose various aspect ratios for a total matrix size
of 216 elements as our test cases. Different matrix aspect ratios
are used as inputs to test robustness in handling a range of
short to long vectors for the dot-product calculation. On the
CPU platform, the on-chip L2 cache is big enough to hold
the matrix and vectors and the same is applicable on the GPU
platform.

We implemented multiple FPGA solutions for the BLAS
level 2 kernel using the dot product. Section III described the
optimization of the FPGA dot-product pipeline, which reduced
pipeline latency and enabled near-perfect pipelining of the
computation. Figure 7 illustrates the performance impact of
these changes on the execution time of this Gaxpy kernel. The
single-accumulator implementation suffers due to the latency
of the accumulator coalesce operation for each set. For short
and fat matrices(N ≫ M ), this impact is nominal but for
long and thin matrices (M ≫ N ) the performance degradation
is high. This is synonymous with short vector operations on
vector machines because we are performing row-major oper-
ations. The double-accumulator implementation performance
curve shows similar trends: short vector lengths of less than
p log2 p stall the pipeline.

Our goal was to build a flexible FPGA platform for Gaxpy
and this is demonstrated by the relatively flat curve of the dual-
stage accumulator. There is some performance degradation
due to the 1 cycle state machine refresh required for correct
operation as can be seen in the figure for short vectors. As
Figure 7 illustrates, the dual-stage accumulator is the the
best design for the FPGA Gaxpy implementation. Further
optimizations to this design would improve timing and not
change the Gaxpy architecture.

Figure 8(a) reports the execution times of the kernels for a
variety of matrix dimension combinations running on the three
platforms. We provide both the single thread (MKL-ST) and
parallel implementation (MKL-PAR) results for MKL, which
provides the best performance results. MKL-PAR is 67%-88%
faster than the MKL-ST implementation. It is 165% - 265%
better than the dual-stage accumulator FPGA implementation
and 3.3 to 4.3 times faster than the naive C implementation.
It should be noted that the FPGA is operated at a nominal
frequency of 100 MHz; several optimizations are possible to
allow higher operating frequencies with marginal increase in
power consumption. Finally, MKL-PAR is 1.8 to 88.4 times
faster than the CUDA implementation. However, it should be
noted that the CUDA BLAS implementation is dominated
by the system and driver overhead for short and fat matrix
dimensions and short vector effects for long and thin matrices.

Our FPGA implementation for Gaxpy offers a peak of 3.1
GFLOPS which is superior to the closest FPGA implemen-
tation [16] by a factor of 2.3. The peak GFLOPS and the
variance over the matrix aspect ratios is given in Table II.

TABLE II
FLOPS VARIATION FOR GAXPY

MKL-ST MKL-PAR CUDA FPGA
Peak GFLOPS 5.812 9.818 3.023 3.113
Max Variance 29.35% 21.1% 97.1% 32.28%



(a)

(b)

Fig. 8. Comparison of Gaxpy kernel on naive C, MKL-single thread,
MKL-parallel, CUDA BLAS and our FPGA implementation in terms of (a)
Execution time and (b) Average number of iterations per Joule

Power measurements are omitted for brevity. However, it
should be noted that we run the same Gaxpy kernel on all four
of the BEE3 FPGAs. We take the measured power and divide
it by four to get the average per FPGA power. Approximate
power values can be derived from Figure 8.

Given the average power and the runtime of the iteration,
we can calculate energy efficiency which we report as the
average number of iterations of Gaxpy that can be completed
per Joule. Figure 8(b) reports the results. Even though the
FPGA implementation is not the fastest, it uses an order of
magnitude lower average power. Even if we used a computer
with a quad core processor and the same power envelope as
the dual core system, the BEE3 platform would still be more
energy efficient than the general-purpose CPU. Future work
will investigate larger problem sizes across all platforms.

VII. CONCLUSION

We present a comparison of BLAS Level 2 on CPU, FPGA
and GPU platforms in terms of performance and energy effi-
ciency. On the FPGA, we developed a custom implementation
for Gaxpy (matrix-vector multiplication), which can be easily
extended to matrix-matrix multiplication. We have introduced
a bank-interleaved vector memory and a novel matrix memory
which can support 2 dimensional burst access. The Gaxpy
implementation consists of a parallel pipeline to compute the
dot-product and support for several parallel pipelines to ob-
tain both coarse-grain and fine-grain parallelism. Performance
results for small matrix sizes show that FPGA has similar
performance at higher energy efficiency when compared to the
CPU and GPU platforms. Furthermore, the FPGA architecture
was able to provide a flexible platform that could handle a va-
riety of matrix aspect ratios without performance degradation.
Finally, the BEE3 platform provides the opportunity to expand
the data foot print up to 16 GB for one FPGA and partition the
computation across four FPGAs and up to 64 GB, increasing

the computational capacity, making an even more compelling
customizable platform with a large memory footprint.

REFERENCES

[1] L. Oliker, “Green flash: Designing an energy efficient climate super-
computer,” in IPDPS ’09: IEEE International Symposium on Parallel
Distributed Processing, may 2009.

[2] “Supercomputing at 1/10th the cost.” [Online]. Available: http:
//www.nvidia.com/object/tesla computing solutions.html

[3] “BLAS (basic linear algebra subprograms).” [Online]. Available:
http://www.netlib.org/blas/

[4] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore, USA: Johns Hopkins University Press, 1996.

[5] K. Underwood and K. Hemmert, “Closing the gap: CPU and
FPGA trends in sustainable floating-point blas performance,” in Field-
Programmable Custom Computing Machines, 2004. IEEE Symposium
on, 2004, pp. 219–228.

[6] “FPGA coprocessing evolution: Sustained performance approaches peak
performance,” Altera White Paper, 2009.

[7] M. Smith, J. Vetter, and S. Alam, “Scientific computing be-
yond CPUs:FPGA implementations of common scientific kernels,” in
MAPLD, 2005.

[8] B. Sukhwani, M. Chiu, M. A. Khan, and M. C. Herbordt, “Effective
floating point applications on FPGAs: Examples from molecular mod-
eling,” in HPEC ’09: Proc. of the Workshop on High Performance
Embedded Computing, 2009.

[9] J. Davis, C. Thacker, and C. Chang, “Bee3: Revitalizing computer
architecture research,” Microsoft Research, Tech. Rep. MSR-TR-2009-
45, 2009.

[10] L. Zhuo, G. R. Morris, and V. K. Prasanna, “High-performance reduction
circuits using deeply pipelined operators on FPGAs,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, pp. 1377–1392, 2007.

[11] L. Zhuo, G. R. Morris, and V. K. Prasanna, “Designing scalable FPGA-
based reduction circuits using pipelined floating-point cores,” in IPDPS
’05: Proc. of the 19th IEEE International Parallel and Distributed
Processing Symposium. IEEE Computer Society, 2005, p. 147.1.

[12] Z. Luo and M. Martonosi, “Accelerating pipelined integer and floating-
point accumulations in configurable hardware with delayed addition
techniques,” IEEE Trans. Comput., vol. 49, no. 3, pp. 208–218, 2000.

[13] C. He, G. Qin, M. Lu, and W. Zhao, “Group-alignment based accurate
floating-point summation on FPGAs,” in ERSA ’06: Proc. of the 6th
International Conference on Engineering of Reconfigurable Systems and
Algorithms, 2006, pp. 136–142.

[14] F. de Dinechin, B. Pasca, O. Cret, and R. Tudoran, “An FPGA-specific
approach to floating-point accumulation and sum-of-products,” in FPT
’08: International Conference on Field Programmable Technology,
December 2008, pp. 33–40.

[15] L. Zhuo and V. K. Prasanna, “Scalable and modular algorithms for
floating-point matrix multiplication on FPGAs,” in IPDPS ’04: Proc.
of the 18th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’04). IEEE Computer Society, 2004.

[16] L. Zhuo and V. Prasanna, “High performance linear algebra operations
on reconfigurable systems,” in SC ’05: Proc. of the 2005 ACM/IEEE
conference on Supercomputing. IEEE Computer Society, 2005, p. 2.

[17] L. Zhuo and V. Prasanna, “Scalable hybrid designs for linear algebra on
reconfigurable computing systems,” IEEE Transactions on Computers,
vol. 57, no. 12, pp. 1661–1675, 2008.

[18] L. Zhuo and V. Prasanna, “Hardware/software co-design for matrix com-
putations on reconfigurable computing systems,” in IPDPS ’07: Proc.
of IEEE International Parallel and Distributed Processing Symposium,
2007, pp. 1–10.

[19] V. B. Y. Kumar, S. Joshi, S. B. Patkar, and H. Narayanan, “FPGA based
high performance double-precision matrix multiplication,” in VLSID ’09:
Proc. of the International Conference on VLSI Design. IEEE Computer
Society, 2009, pp. 341–346.

[20] “Xilinx floating point operator v5.0.” [Online]. Avail-
able: http://www.xilinx.com/support/documentation/ip documentation/
floating point ds335.pdf

[21] “Intel math kernel library.” [Online]. Available: http://software.intel.
com/en-us/intel-mkl/

[22] “Nvidia CUBLAS.” [Online]. Available: http://developer.download.
nvidia.com/compute/cuda/sdk/website/samples.html#simpleCUBLAS

[23] “Nvidia tesla C1060 computing processor.” [Online]. Available:
http://www.nvidia.com/object/product tesla c1060 us.html

[24] “Virtex-5 FPGA user gude,” 2009. [Online]. Available: http://www.
xilinx.com/support/documentation/user guides/ug190.pdf

[25] [Online]. Available: http://www.xilinx.com/
[26] “Electronic educational devices, operators manual: Wattsup? and

wattsup? pro.” [Online]. Available: https://www.wattsupmeters.com/
secure/downloads/manual rev 9 corded0812.pdf


