Inferable Object-Oriented Typed Assembly Language

Ross Tate

University of California, San Diego
rtate@cs.ucsd.edu

Abstract

A certifying compiler preserves type information through compi-
lation to assembly language programs, producing typed assembly
language (TAL) programs that can be verified for safety indepen-
dently so that the compiler does not need to be trusted. There
are two challenges for adopting certifying compilation in prac-
tice. First, requiring every compiler transformation and optimiza-
tion to preserve types is a large burden on compilers, especially
when adopting certifying compilation into existing optimizing
non-certifying compilers. Second, type annotations significantly
increase the size of assembly language programs.

This paper proposes an alternative to traditional certifying com-
pilers. It presents iTalX, the first inferable TAL type system that
supports existential types, arrays, interfaces, and stacks. We have
proved our inference algorithm is complete, meaning if an assem-
bly language program is typeable with iTalX then our algorithm
will infer an iTalX typing for that program. Furthermore, our algo-
rithm is guaranteed to terminate even if the assembly language pro-
gram is untypeable. We demonstrate that it is practical to infer such
an expressive TAL by showing a prototype implementation of type
inference for code compiled by Bartok, an optimizing C# compiler.
Our prototype implementation infers complete type annotations for
98% of functions in a suite of realistic C# benchmarks. The type
inference time is about 8% of the compilation time. We needed to
change only 2.5% of the compiler code, mostly adding new code
for defining types and for writing types to object files. Most trans-
formations are untouched. Type annotation size is only 17% of the
size of pure code and data, reducing type annotations in our previ-
ous certifying compiler [4] by 60%. The compiler needs to preserve
only essential type information such as method signatures, object
layout information, and types for static data and external labels.
Even non-certifying compilers have most of this information avail-
able.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.4 [Programming
Languages): Processors—Compilers

General Terms Languages, Theory, Verification

Keywords Type inference, Typed assembly language (TAL),
Object-oriented compiler, Existential quantification, Certifying
compiler

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’'10, June 5-10, 2010, Toronto, Ontario, Canada.

Copyright © 2010 ACM 978-1-4503-0019/10/06. .. $10.00

Juan Chen

Microsoft Research
juanchen@microsoft.com

Chris Hawblitzel

Microsoft Research
chrishaw@microsoft.com

1. Introduction

Internet users regularly download and execute safe, untrusted code,
in the form of Java applets, JavaScript code, Flash scripts, and
Silverlight programs. In the past, browsers have interpreted much
of this code, but the desire for better performance has recently
made just-in-time compilation more common, even for scripting
languages. However, compilation poses a security risk: users must
trust the compiler, since a buggy compiler could translate safe
source code into unsafe assembly language code. Therefore, Nec-
ula and Lee [17] and Morrisett et al. [15] introduced proof-carrying
code and typed assembly language (TAL). These technologies an-
notate assembly language with proofs or types that demonstrate the
safety of the assembly language, so that the user trusts a small proof
verifier or type verifier, rather than trusting an entire compiler.

Before a verifier can check the annotated assembly code, some-
one must produce the annotations. Morrisett ef al. [15] proposed
that a compiler generate these annotations: the compiler preserves
enough typing information at each stage of the compilation to gen-
erate types or proofs in the final compiler output. The types may
evolve from stage to stage; for example, local variable types may
change to virtual register types, and then to physical register types
and activation record types [15] or stack types [16]. Nevertheless,
each stage derives its types from the previous stage’s types, and all
compiler stages must participate in producing types. Furthermore,
typical typed intermediate languages include pseudo-instructions,
such as pack and unpack, that coerce one type to another. The com-
piler stages must also preserve these pseudo-instructions.

Implementing type preservation in a compiler may require sub-
stantial effort. In our previous work, we modified about 19,000
lines of a 200,000-line compiler to implement type preservation [4].
Even a 10% modification may pose an obstacle to developers trying
to retrofit large legacy compilers with type preservation, especially
when these modifications require developers to interact with the
complex type systems that are typical in typed compiler interme-
diate languages [4, 10, 14-16]. As a result, programmers currently
face a trade-off: use a popular existing compiler that does not cer-
tify the safety of its output, or use one of the few available exper-
imental type-preserving compilers, which are less optimizing, less
documented, and less supported.

This paper proposes another approach to building certifying
compilers—a type inference system called iTalX. Instead of hav-
ing each stage explicitly track the type of each variable/register, our
type inference algorithm will infer the types of the assembly lan-
guage after all stages finish. This eases the implementation of both
new certifying compilers and those retrofitted from legacy compil-
ers, and vastly reduces the number of type annotations that com-
pilers pass from stage to stage. iTalX requires only two kinds of
annotation for instructions: the types of null-pointer literals and the
length of jump tables. Null literals and jump tables appear only oc-
casionally in code anyway. All other required type annotations are
coarser-grained metadata: function signatures, object layout infor-

mation, and types of static data and external labels. Furthermore,
there are no special pseudo-instructions, such as pack and unpack.

This paper makes the following contributions. First, we define
a practical type system, iTalX, for assembly language, supporting
classes, arrays, interfaces, casts, stacks, structs, by-reference argu-
ments, and code pointers. We believe this to be the most extensive
type system for object-oriented assembly language code at present.

Second, we prove that inference for iTalX is decidable and
complete: if a fully-annotated program is well-typed, we can erase
the type annotations on basic blocks, and the inference algorithm
can still infer valid types for the basic blocks.

It is very difficult to infer a type system with general existential
quantification. First-class quantification easily leads to undecidable
type inference [22, 23]. To make type inference decidable, we re-
strict quantification to class variables and integer variables. Never-
theless, our type system still supports expressive subclassing and
integer constraints, making it suitable for typing realistic compiled
object-oriented code.

Third, we implement type inference for x86 assembly language,
and show that our implementation can completely infer types for
98% of functions compiled from real, large C# benchmarks by the
Bartok optimizing compiler. As far as we know, no other systems
are able to infer types for real-world x86 benchmarks at a similar
scale. Furthermore, omitting basic block types reduces the size of
type annotations in the generated TAL files by 60%. Type inference
takes about 8% of the compilation time.

2. Language iTal

We first present iTal, a small inferable typed assembly language
which is a stripped down version of iTalX. Although iTal is too
small to be directly usable on real-world code, it illustrates the
main features of our inference system, such as the treatment of
type variables, subtyping, and joins. Section 3 shows how the full-
fledged type system iTalX supports real-world features.

For many class-based, object-oriented languages without quan-
tified types, type inference is straightforward. For example, Java
bytecode omits type annotations from local variables, and uses a
forward dataflow analysis to infer these types [12]. The analysis
must be able to join types that flow into merge points in the byte-
code: if one branch assigns a value of type 7 to variable x, and
another branch assigns a value of type 72 to variable x, then where
the two paths merge, x will have type 7 LI 72, where 71 LI 72 is the
least common supertype of 71 and 72, known as the join (which,
even in Java’s simple type system, is subtle to define properly [6]).

Like Java bytecode, our inference algorithm uses a forward
dataflow analysis, but unlike Java bytecode, it supports quantifica-
tion over type variables. Such type variables allow us to check indi-
vidual assembly language instructions for method invocation, array
accesses, casts, and other operations (in contrast to Java bytecode,
which treats each of these operations as single, high-level bytecode
instructions). Consider a class Point with three fields and a virtual
method Color that takes an instance of class RGB and returns void.
The following code invokes incorrectly the Color method on p1:

class Point { int x; int y; RGB c;
virtual void Color(RGB c); }

void Unsafe(Point pl, Point p2) {
vt = pl.vtable; // fetch pl’s vtable
m = vt.Color; // fetch pl’s Color method
m(p2, pl.c); // call with p2 as "this"

class Point3D : Point { int z; }

This code above unsafely passes the wrong “this” pointer to pl’s
Color method: if pl is an instance of the subclass Point3D, Color
may refer to fields defined in Point3D, which p2 does not neces-
sarily contain, since p2 may not be an instance of Point3D. Most
type systems for object-oriented typed assembly languages use type
variables to distinguish between safe method invocations and un-
safe code [3, 4, 10]. LIL¢ [3], for example, describes p1’s type and
p2’s type by existentially quantifying over a class variable «: both
pl and p2 have type Ja<Point. «, which says that p1 and p2 are
each instances of some class that is a subclass of Point. The vir-
tual methods of the existentially quantified dynamic class o of pl
require the “this” pointer to be an instance of «. The type system
conservatively assumes that the « for pl may differ from the o for
P2, ensuring that only p1 can be passed to p1’s methods, and only
p2 can be passed to p2’s methods.

The rest of this section builds ideas from LILc into a small
class-based object-oriented typed assembly language iTal (inferable
Tal), which supports type inference with existential types: type in-
ference can infer all the types inside each function of any typeable
iTal program without needing any annotations within the function
bodies. It requires no type annotations on basic blocks, no annota-
tions on instructions, and no type coercion instructions.

We have proved that iTal is sound and that type inference is
decidable and complete. The proofs and complete formalization of
the semantics of a slight variation of iTal and its join algorithm can
be found in our technical report [21].

The purpose of iTal is to shed some light on the more realis-
tic iTalX described in the next section. Both systems use the same
mechanisms for subtyping, joining, and inferring existential types,
and both systems follow similar restrictions to keep inference de-
cidable.

To make the key ideas stand out, iTal focuses on only core
object-oriented features such as classes, single inheritance, object
layout, field fetch, and virtual method invocation. iTalX, however,
applies to more expressive languages with arrays, casts, interfaces,
stacks, by-reference parameters, and structs. The first three features
require more significant changes to the type system. Others are
mostly straightforward. The extensions are discussed in Section 3.

2.1 Syntax

iTal borrows ideas from LILc, a low-level object-oriented typed
intermediate language [3]. LILc preserves classes, objects, and
subclassing, instead of compiling them away as in most previous
object encodings. iTal is even lower level than LIL¢ in that iTal is
at assembly language level.

iTal uses the type Ins(C) to represent only instances of the
“exact” class C, not C’s subclasses, unlike most source languages.
An existential type Ja<C. Ins(a) represents instances of C' and
C’s subclasses where class variable « indicates the dynamic classes
of the instances. The subclassing bound C' on o means that the
dynamic class « is a subclass of the static class C'.

The source language type C'is translated to the above existential
type. An instance of a subclass of C can be “packed” to have
type JakC. Ins(a). A value with type Ja<C. Ins(c) can be
“unpacked” to have type Ins(3), where 3 is a fresh class variable
(distinct from any existing class variables) indicating the dynamic
class of the instance, and the constraint 5 < C' records the fact that
the instance’s dynamic class inherits C'.

The separation between static and dynamic classes guarantees
the soundness of dynamic dispatch (Section 2.3 explains a virtual
method invocation example). A type system without such separa-
tion cannot detect the error in the previous unsafe example.

Class variables in iTal have subclassing bounds and are instan-
tiated with only class names. The bounds cannot be arbitrary types.
This simplifies both type inference and type checking in iTal.

The syntax of iTal is shown below.

classtype w = «a|C

regtype Treg ::= Int | Code(® — @) | Ins(w) | Vtable(w)
termtype T = Tre | 3a<KC. Ins(a)

value v u=n|l

operand o = v |r|[r+n]

instr ¢t == bopr,o| movr,o| mov[ri+n]rs | callo

binary op bop ::= add | sub | mul | div

instrs LS jmp € | je o, €y, Ly | ret | ¢;es
fi i Tifie

unc prec D {ri:r }/ 1

= (& — @) {€:s}

A class type w is either a class variable (ranged over by «, [,
and ~y) or a class name (ranged over by B and C). A special class
named Object is a superclass of any other class type.

iTal supports primitive type Int and code pointer type Code(® —
®') where ® — @’ describes function signatures with precondition
® and postcondition ®’. The other types are object-oriented: type
Ins(w) describes instances of “exact” w; type Vtable(w) represents
the virtual-method table of class w. All these types can be used to
type registers in basic block preconditions, and are called register
types. Type Ja<C. Ins(a) represents objects of C' and C’s sub-
classes. The existential type can be used to type fields in objects
and registers in function signatures, but not registers in basic block
preconditions. Both register types and the above existential types
are called term types.

Values in iTal include integers n and heap labels ¢. Operands
include values, registers 7, and memory words [r + n] (the value at
memory address r 4 n). All values are word-sized.

Instructions in iTal are standard. Instruction bop 7, 0 computes
“r bop 0” and assigns the result to r. Instruction mov r, 0 moves
the value of o to register r. Instruction mov [r1 + n], 72 stores the
value in 72 into the memory word at address r1 + n. Instruction
call o calls a function o.

Instruction sequences s consist of a sequence of instructions
ended with a control transfer instruction. Instruction jmp £ jumps to
a block labeled /. Instruction je o, ¢;, £ branches to ¢; if o equals
0 and to ¢ otherwise. Instruction ret returns to the caller.

A function (& — ') {£—>LS} specifies its signature ® — &’

and a sequence of basic blocks, each of which has a label £ and a
body ¢s. The notation @ means a sequence of items in a.

function f

2.2 Subclassing and Subtyping

We describe selected static semantics of iTal. The static semantics
uses the following environments:

C:B{7,d— '}

class decl cdecl =

class decls (C] n= e | 0O, cdecl
constr env A = e | Aaxk (C
reg bank type T° m= o | D7 TReg
state type % = dJAT

—
Class declaration C' : B{7,® — &'} introduces a class C' with
superclass B, fields with types 7, and methods with signatures

® — @', It specifies all fields and methods of C, including those
from superclasses. Method bodies are translated to functions in the
heap. Therefore, only method signatures are included in class dec-
larations, not method bodies. © is a sequence of class declarations,
which the compiler preserves to iTal.

The constraint environment A is a sequence of type variables
and their bounds. Each type variable has a superclass bound. The
register bank type I is a partial map from registers to register types.

iTal uses state types X2, another form of existential types, to rep-
resent machine states, including preconditions of basic blocks. A

state type JA.T" specifies a constraint environment A and a regis-
ter bank type I'. iTal automatically “unpacks” a register when it is
assigned a value with an existential type Ja<<C. Ins(a): the exis-
tentially quantified class variable is lifted to the constraint environ-
ment of the state type corresponding to the current machine state,
and the register is given an instance type. In a state type JA.T,
A records the type variables for the “unpacked” registers so far,
and I" never maps a register to an existential type Ja<<C. Ins(a).
This convention eliminates the explicit “unpack” and makes type
inference and type checking easier. Rules corresponding to the tra-
ditional “pack” operation will be explained later in the section.

Subclassing. 1iTal preserves source-level subclassing between
class names. Judgment ©; A F w; < w2 means that under the
class declarations © and the constraint environment A, class type
w1 is a subclass of ws. A class C is a subclass of B if C declares
so in its declaration (rule sc-class). A class variable « is a subclass
of a class name C if C' is «’s bound (rule sc-var). Additionally,
subclassing is reflexive and transitive.

e(C)=C: B{..}
OAFC<B s gAT.<C]

Subtyping between State Types. Subtyping between two state
types is used to check control transfer. It is the key to type inference
in iTal, allowing subtyping between two state types without first
unpacking one type and then packing to the second type. No type
coercion is necessary. The judgment © + ¥; < ¥, means that
under class declarations O, state type X1 is a subtype of 3.

0 : dom(A") = (dom(A) U dom(©))
Vr € dom(T").T(r) = T'(r)[0]
Vo< CeA. . 0;AFIa) < C
6F 3AT) < (3A'T)

A state type JA.T is a subtype of JA’.T" if a substitution 6
maps each class variable in A’ to either a class variable in A or a
constant class name in ©, such that I (r) after substitution is the
same as I'(r) for all registers r in I'". The substitution needs to
preserve subclassing in A’: for each constraint « < C'in A’, 6(«)
must be a subclass of C' under A. The substitution is computed
during type inference and made ready to use by the type checker.

We can derive the following from st-sub, one case of the tra-
ditional “pack” rule for existential types, using a substitution that
maps o to C":

OF 3A.(T,r:Ins(C)) < F(A,a < C).(T',r : Ins(cr))

Subtyping between state types is reflexive and transitive, as implied
by the st-sub rule. Reflexivity can be proved by using the identity
substitution. Transitivity can be proved by composing substitutions.

No Subtyping between Term Types. Although iTal includes sub-
typing between state types X, it omits subtyping between term
types 7, instead using a weaker notion of assignability. Omitting
the subtyping relation 7 < 7’ avoids issues of covariant and con-
travariant subtyping within code pointer types, which makes it eas-
ier to join types. Our larger language iTalX allows subtyping, and
restricts function arguments to be contravariant to guarantee sound-
ness and nearly invariant to guarantee decidability of inference.

st-sub

Assignability. Assignability decides if the value in a register can
be assigned to a memory location or a formal of a method, both of
which can have existential types. Assignability allows a value of
type 7 to be assigned to a location of type 7. More importantly, it
handles “packing” subclass instances to superclass instances (with
existential types) by allowing a value of type Ins(w) to be assigned
to a location of type Ja<kw’. Ins(a) whenever w < w’ can be

inferred from the constraint environment. iTal uses assignability to
avoid confusion with subtyping between state types.

2.3 Type Inference and Type Checking

Type inference computes the precondition for each basic block in a
function from the function signature. The precondition of the entry
block is the function signature with all registers unpacked.

Type inference then uses a forward dataflow analysis, starting
from the entry block. For each basic block, if type inference finds
a precondition, it then type checks the instruction sequence in the
block, until it reaches the control transfer instruction. If the control
transfer instruction is “ret”, the block is done. Otherwise (‘“jmp”
or “je”), type inference propagates the current state type to the
target(s). If a target has no precondition, the current state type will
be the new precondition for the target. Otherwise, type inference
computes the join of the current state type and the precondition
of the target, and uses the result as the new precondition for the
target. If the precondition of the target changes, type inference goes
through the target again to propagate the changes further.

Type inference continues until it finds a fixed point. When
joining two state types, the result is a supertype of both state types.
The type system does not have infinite supertype chains for any
given state type, which guarantees termination of type inference.

We use the following code segment to explain type inference
and type checking. The example is contrived to show various as-
pects of type inference. Most compilers would generate better op-
timized assembly code.

The function f takes an instance of the previous class Point
(in rl), an instance of Point3D (12), and an integer (r3). Block LO
branches to L1 if r3=0 and L2 otherwise. L1 and L2 merge at L3,
which calls the Color method (at offset 4 of the vtable) on either
the instance of Point or the instance of Point3D, depending on the
value of the integer. Instructions 3), 4), and 7) are added for the
purpose of showing joining of types.

//void f(rl: Point, r2: Point3D, r3: int)

LO: 1) je r3, L1, L2 // condition branch on r3

Li: 2) mov r4, ril // true branch
3) mov r5, ril
4) mov r6, r2
5) jmp L3

L2: 6) mov r4, r2
7) mov r5, r2
8) jmp L3

L3: 9) mov r6, [r4+12] // get the RGB field
10) mov r7, [r4+0] // get vtable from r4
11) mov r7, [r7+4] // get the Color method
12) call r7 // call the Color method

// false branch

The signature of f is represented in iTal as “®; — {}” where
®; = {rl : Ja<kPoint. Ins(a),r2 : Ja<Point3D. Ins(x), 3 :
Int}. The precondition of block LO, X, is then a1 < Point,
az < Point3D.{rl : Ins(a1),72 : Ins(az),r3 : Int}, by un-
packing r1 and r2 in ®; and lifting the two fresh (and distinct)
class variables a1 and a2 to the constraint environment.

Block LO has precondition ¥o. It has only one control transfer
instruction 1). Type inference checks that r3 has type Int and
propagates the state type > to L1 and L2 since instruction 1) does
not change the machine state.

Block L1 now has precondition . Checking instruction 2)
adds mapping 74 : Ins(a1) to the current state type because r4
now contains a value of type Ins(c), and checking 3) and 4)
is similar. Now we reach instruction 5) with state type ¥j =
Ja; < Point, ap < Point3D.{r1 : Ins(ay),r2 : Ins(ae), r3 :
Int, 74 : Ins(c1),75 : Ins(ar), 76 : Ins(c2) }, which becomes the
precondition of the successor L3.

Similarly, checking block L2 produces post condition ¥4 =
Ja; < Point,az < Point3D.{rl : Ins(ai),72 : Ins(az),
r3 : Int,r4 : Ins(az2),75 : Ins(az)}. The successor L3 has its
precondition already, so we need to compute the join of ¥} and
¥5. The result will be the new precondition of L3.

Join. Computing the join (least upper bound) of two state types
is the most important task during type inference. We use ¥ U 3o
to represent the join of 31 and X2, and & to represent variables cre-
ated by the joining process (called generalization variables). Gen-
eralization variables are not different from other class variables. We
use the special notation to ease the presentation.

The join operation is performed in two steps. The first step
generalizes the two register bank types in ¥; and ¥> to a common
register bank supertype. To generalize I'; and I'2, for each register
r that appears in both I'y and I'2, it generalizes I'1(r) and I'2(7)
to a common supertype and maps 7 to the supertype in the result
register bank type. The generalization omits registers that appear in
I'1 or I's but not both.

Generalization recursively goes through the structure of types.
Generalizing Int and Int returns Int. Generalizing Ins(C') and
Ins(C) returns Ins(C'). Otherwise, generalizing Ins(w1) and Ins(wsz)
returns Ins(&), where & is a fresh class variable (generalization
variable). Generalization also records two mappings & +— wi and
& — wy to track where the new variable is from. The mappings
will be used to construct substitutions for the subtyping rule st-sub.
The bound of & will be computed in the second step of join.

Generalizing Ja<w;. Ins(a) and IF<ws. Ins(B) returns
Iy<é. Ins(y), where & +— wi and & +— ws. Generalizing
Vtable(ws) and Vtable(ws) returns Vtable(&) with similar maps.

Code pointer types Code(®1 — ®7) and Code(P2 — Ph) are
generalized to Code(® — ®') if ®; and P, are generalized to
and ®) and ®5 to ®’. Our treatment of arguments is sound because
iTal does not have subtyping on term types, as explained earlier.

Two types with different structures, such as a code pointer type
and a vtable type, cannot be generalized. If a register has differently
structured types in the two register bank types to join, the join result
will not contain the register.

For our example, 74 has type Ins(c1) in 37 and type Ins(az)
in X%. Generalization creates a fresh variable & and two mappings
&+ a1 and & — a for 337 and X respectively. For r5, it creates
another fresh variable 3, different from &, and mappings 8 —
ap and S — 2. Generalization also creates new generalization
variables for 1 and r2, but for simplicity of presentation, we keep
the types of 71 and 72 unchanged after generalization, since 3} and
¥, agree on their types and a1 (ci2) means the same dynamic type
of 1 (r2) in both £} and X%. The result of generalization is tpen
{rl : Ins(a1),72 : Ins(a2), 73 : Int,74 : Ins(&), r5 : Ins(B)}.
Register r6 is omitted because it does not exist in 35.

The second step of the join operation is factorization. The goal
is to compute the constraint environment of the result state type,
using the least number of generalization variables. This step is done
by unifying equivalent generalization variables.

We define an equivalence relation on generalization variables:
two variables are equivalent iff they are results of generalizing
the same two types. For example, in our example, & and B are
equivalent because both come from generalizing o1 and .

Factorization then creates the final join result IA.T', where A
collects arbitrarily chosen representatives of equivalence classes
for generalization variables, and I" is the result register bank type
of the generalization, with each generalization variable replaced
with the representative of its equivalence class. The bound of a
representative & in A is the least common superclass name for w;
and w» if wi and w2 generalize to &.

For our example, the join of ¥} and 5 is ¥3 = Jag <
Point, iy < Point3D, & < Point.{r1 : Ins(a), r2 : Ins(az), 73 :
Int, 74 : Ins(&), r5 : Ins(&)}. & is chosen for the equivalence class
{&, B} and given bound Point because Point is the least common
superclass name for Point («1’s bound) and Point3D («2’s bound).

Y3 is a supertype of ¥} and X5, using the st-sub rule. The
joining process generates two maps, & — « and & — «». Using
the former map as the substitution in st-sub, we get ¥} < 33. The
latter map evidences that 5 < X3 holds. We have proved that the
join process computes the least upper bound.

Continuing our example, we now check block L3 with the new
precondition ¥3. Instruction 9) loads into r6 a field of r4 (an
instance of &), using the object layout information provided by
the compiler. This is one of the few places where type inference
needs hints (metadata here) generated by the compiler. The layout
information maps a field offset to the field type. The class variable
& is not a concrete class, and thus its layout is statically unknown.
From the fact that & is a subclass of Point, the checker knows that
an instance of & has at least those fields declared in Point, and
at the same offsets as in Point. It looks up the offset 12 (for the
field c) in the layout information of Point and finds an existential
type 37 <RGB. Ins(v'). When a register is assigned a field with
an existential type, it is unpacked automatically. 76 is given type
Ins(7y), where -y is fresh and v < RGB is added to the constraints.

Instruction 10) loads into 7 the first word—the vtable—of r4.
The type system gives type Vtable(&) to r7, indicating that 7
points to the vtable of r4’s dynamic type.

Instruction 11) loads into 7 the method pointer for Color. the
checker uses the layout information of Point to find the code pointer
type Code({r4 : Ins(&),76 : In<RGB. Ins(n)} — {}). The
first parameter is the “this” pointer, whose type is the same as
the dynamic type of the object from which the method pointer is
fetched. The second parameter is an instance of RGB. The two
parameters are consumed by the method, returning nothing.

Instruction 12) calls the method in 7. The checker checks if the
precondition of the callee is satisfied by the current machine state.
Register 74 has the required type. Register 76 has type Ins(v")
in the current state, and the callee requires an existential type
In<RGB. Ins(n). We use assignability rules: register 6 can be
assigned to the parameter because 76 has type Ins(y) and v <
RGB can be inferred from the constraint environment, so 76 can be
packed to the existential type. After the call, the state type contains
the remaining registers and type inference continues.

This example illustrates how the various features of iTal work
together to produce an inferable typed assembly language capable
of verifying a simplistic object-oriented language. Many of the
strategies we used in iTal can be extended to more expressive type
systems. The use of existential quantification of class variables,
the separation of assignability and subtyping, and the creation of
generalization variables with mappings in order to join types are
all more broadly applicable, as we demonstrate in the next section.

3. The iTalX Type System

This section describes how our more realistic type system iTalX
expresses common language features, such as interior pointers, co-
variant arrays, type cast, interfaces, and the stack. iTalX is robust
with respect to the common optimizations most compilers have,
meaning these optimizations can be applied to any typeable pro-
gram and the resulting program will still be typeable.

iTalX uses the same substitution-based subtyping rules for exis-
tentially quantified state types as iTal. It extends the type inference
algorithm of iTal. iTalX introduces singleton integer types and in-
teger variables with constraints to address array bounds checking.
iTalX treats integer variables with constraints the same way as class

variables with constraints with respect to subtyping and joining,
which demonstrates the flexibility of our type system (Section 3.3).

iTalX uses the same existentially quantified state types for pre-
conditions of basic blocks as iTal does. In fact, this is the only
form of existential quantification in iTalX. iTalX uses a type
SublInsPtr(C) to represent the corresponding iTal type Ja <
C.Ins(). iTalX disallows existential quantification in term types—
those used to type registers, stack locations, fields in objects, etc.
Such quantification in term types is not needed in iTalX. We re-
moved nested existential quantification from iTalX because hav-
ing two layers of quantification causes complications with the
join process. These complications do not arise in iTal because
Ja <« C.Ins(a) never actually occurs within a state type in iTal,
only in the context describing the class layouts.

Many of the extensions in iTalX require complex constraints
for class variables, whereas iTal needs only one simple subclass-
ing constraint (an upper bound) for each class variable. Covariant
arrays may need bounds that are arrays themselves. Type casting
needs class variables with lower bounds and with other class vari-
ables as bounds. Interfaces have multiple inheritance, which means
that class variables may have multiple bounds. iTalX separates
class variables from their bounds to allow complex constraints on
class variables. One environment collects all class variables (with-
out constraints), and another collects constraints on class variables.
iTal uses a single environment A for both purposes because a class
variable is constrained only by a single upper bound. We use con-
straints and bounds interchangeably in this section.

3.1 Requirements for Inference

It is challenging to make a type system as expressive as iTalX
inferable. For example, if class variables can be bound by other
variables, the join of the tuples (ArrayList,IList,IList) and
(Hashtable, Hashtable, IDictionary) is Ja<S<Ky.{(«, 3,7)
(where ArrayList implements IList and Hashtable imple-
ments IDictionary). Even though both types being joined use
only two classes each, three variables are required to describe the
join. The join also has to recognize the left-to-right inheritance hi-
erarchy. Furthermore, as illustrated in Section 3.8, adding a simple
feature such as null pointers may break the type inference.

Fortunately, iTalX uses the results of an abstract framework
based on category theory (described in our technical report [21]) to
guarantee inferability. The framework describes how to construct
joins in any existential type system that satisfies three properties,
stated informally as follows: (1) if 71 < 7o, every free class
variable in 72 occurs in 71; (2) term types have joins disregarding
existentially quantified variables; (3) bounds and substitutions have
a factorization structure [1], the metatheory behind the factorization
process used in constructing joins for iTal. By computing joins, our
type inference algorithm is made complete, meaning our inference
algorithm will always infer a typing for any typeable program.

For decidability of inference, the main requirements are as fol-
lows: (1) instruction typing is monotonic, that is, if 71 < 72, the
postcondition when checking an instruction with 7; as the precon-
dition should be a subtype of the postcondition when checking the
same instruction with 7> as the precondition; (2) subtyping is well-
founded: there is no infinite chain of strict supertypes.

We have translated both iTal and iTalX into the category-
theoretic framework, and proven that they satisfy the requirements
above. This proves that they are both inferable.

The rest of the section explains major extensions in iTalX. We
introduce the constructs of iTalX as needed.

3.2 Interior Pointers and Records

iTal uses only a simple model of memory: registers may point to
objects, which in turn may have fields pointing to other objects.

Languages like C# support a more complex memory model, for
example, a method may pass a reference to a field of an object as an
argument to another method. The compiler represents this reference
as an interior pointer into the middle of the object, and iTalX must
be able to type such pointers. Furthermore, a C# reference may
point to not just a single word in the object, but to an entire struct
of multiple fields embedded directly in the object. In addition, even
if the language does not require interior pointers, an optimizing
compiler may introduce such pointers (e.g. when iterating through
array elements).

To model this, iTalX breaks iTal’s named reference type Ins(w)
into separate pointer types and name types, and adds a distinct
record type where individual field types are made explicit:

name = INS(w) | VTABLE(w) | ...

THeap := int | HeapPtr(name) | HeapPtr (name) |
SublnsPtr(w) | ...

rw s= R|RW

recslot = o | (rw: THeap)

rec = {..,recslot,..}

TReg = HeapRecPtr(name : rec +n) |
RecPtr(rec+n) | ...

Name types include INS(w) to name a class type and VTABLE(w)
to name a class’s vtable type.

The HeapPtr(name) and HeapPtr,(name) represent pointers
to objects on the heap. The subscript v denotes that the pointer
may be null. For example, the iTalX type HeapPtr, (INS(w))
corresponds to the iTal type Ins(w). There is also SubInsPtr(a),
which is equivalent to 38 < «.HeapPtr,(INS(53)), but it has
more restrictive subtypings than general existential quantifica-
tion. Intuitively, SubInsPtr(ca) should be a subtype of SublnsPtr(3)
whenever « inherits 3; however, this breaks the rule that all vari-
ables in a supertype are present in the subtype. We can still allow
HeapPtr, (INS(c)) to be a subtype of SublnsPtr(c), though.

Records. Record types rec are used to represent object layouts.
A record type contains zero or more record slots, each with a THeap
type. Each record slot is either read-write or read-only.

The separation of name types and record types avoids the diffi-
culty of recursive types, such as when a class C has a field with type
C. Slots of record types in iTalX do not contain other records or
pointers to other record types — they only contain pointers to name
types. When the program assigns a pointer-to-name type into a reg-
ister or stack slot, iTalX automatically opens the name into a record
type describing the corresponding layout. For example, when the
type HeapPtr(name) is assigned into a register, it is converted into
the type HeapRecPtr(name : rec 4+ 0), where rec is the record
type describing the layout of name. HeapRecPtr(name : rec+n)
represents an interior pointer, offset by n, to a record, with layout
rec, that is in the heap. A HeapRecPtr (INS(«) : rec + 0) can be
assigned to a SubInsPtr(3) field of a record provided « inherits 3.
Note that this is not subtyping, but simply type-checking an assign-
ment, so it does not break our framework. This reuses the concept
of assignability that we used in iTal.

Whereas a HeapRecPtr points to records in the heap, a RecPtr
can also refer to the stack of the caller. A HeapRecPtr, can for-
get its heap structure and become a RecPtr. Subtyping for record
pointers is primarily inherited from prefix subtyping of their
records, but it can be more flexible to also incorporate offsets.
HeapRecPtr(name : rec + n) and RecPtr(rec + n) represent
interior pointers when the offset n is positive.

When opening a name to a record, we may not statically know
the layout of the entire record, such as when the name refers to the
dynamic type of an object. Opening a name INS(«) (representing
an instance of «) where « is a subclass of C results in a record

that contains C’s fields. The vtable field has name VTABLE(a) to
guarantee soundness of dynamic dispatch.

3.3 Arrays

Adding support for arrays goes as follows. First, we introduce class
types for array classes and adjust how to join existential types ac-
cordingly. Second, we add existential quantification of integers and
simple arithmetic expressions in order to do array-bounds check-
ing. Third, we add ordering constraints on integers. Fourth, we in-
troduce extended records to encode records (array headers) with a
subrecord which repeats an unknown number of times (array ele-
ments). Lastly, we allow names to open to existentially quantified
(extended) records.

Array Classes. In iTal, a class type is either a class variable or a
class constant. Now we add a constructor Array:

wu=... | Array(w)

Array(w) always extends the Array class, per C#’s array classes.

When constructing the join we have to infer when to use array
types. For this, we again use the two maps constructed during
generalization of iTal’s join algorithm (we refer to them as R, and
Ry). If Ry maps a generalization variable & to Array(w1) and Ra
maps & to Array(w2), we introduce a fresh generalization variable
3 mapping to w; and ws and substitute & with Array(3). If 3 also
maps to two array types, we repeat this process recursively.

Existentially Quantifying Integers. To verify array accesses, we
add existentially quantified integer variables. By integers, we mean
mathematical integers, not 32-bit integers. Existential quantifica-
tion may introduce integer variables ¢ with simple arithmetic ex-
pressions of the form I = i % a + b as constraints, where a and b
are (mathematical) integer constants. The type Int(7) is a singleton
integer type representing the single integer value I:

TReg = ... | Int(])

Joining existentially quantified simple arithmetic expressions poses
an interesting challenge. The join of the states {r : Int(4)} and
{r : Int(10)} is Ji.{r : Int(i x 6 + 4)} or equivalently Fi.{r :
Int(i * 6 + 10)}. The join of the states:

o Fi{r:Int(i*4+4),r" :Int(i x 8)}

o Jj{r:Int(j x6+2),r" : Int(j * 12 — 4)}
is 3k.{r : Int(k*2+4), 7" : Int(kx4)}, with substitutions k + %2
and k — j * 3 — 1. More broadly, the join generalizes integer
types by introducing variables to represent them, similar to iTal’s
generalization of class types: Int(1) and Int(I2) are generalized to
Int(z) where Int(z) is a fresh generalization variable and ¢ — I
and i — I.

As with iTal’s join in section 2.3, the join for integer types de-
fines an equivalence relation on generalization variables. Consider,
for simplicity, equivalences for types of the form I = ¢ * a where
a > 1. Then the equivalence 7 = 7 holds if:

. R1(%) = ki *xa; and Rl(j') =ky x by
° RQ(’Z) =]{:2 * ag and Rz(j) = kg * b2

b
. Z—; = é (so that

= b
ged(by,b2)

aj
ged(ar,az2)
The join then designates a fresh variable k for each equivalence
class of generalization variables, then substitutes each generaliza-
tion variable with an appropriate expression in terms of k. Sup-
pose we have a generalization variable 7 with Ry (1) = ki1 * a1,
Ra (5) = ko % az, and k is the fresh variable designated for 7’s
equivalence class, then the join substitutes ¢ with & * ged(a1, az)
where gcd is the greatest common divisor. The mappings k —

ki1 * m and k — Kk * m serve as evidence that
this construction forms a common supertype of the two types be-
ing joined. The use of gcd is necessary since a coefficient for &k
smaller than ged(a1, a2) would fail to yield the best common su-
pertype, while a coefficient larger than gcd(a1, az) would fail to
yield a common supertype at all.

The generalization of the join beyond I = ¢ * a to all forms of
1 is straightforward (see Granger [7] for a thorough discussion of
joining integer equalities).

Ordering Integer Expressions. To check array bounds, our exis-
tential quantifications also need to include ordering constraints of
the form [; <324 I2 (or comparing expressions with constants).
This constraint means that, viewed as unsigned 32-bit integers, I
is strictly less than . Thus, we view the machine as capable of
manipulating mathematic integers, but the comparisons are limited
to a 32-bit perspective on these mathematic integers. Dereferenc-
ing also has a 32-bit perspective, so we can rely on 32-bit ordering
constraints to verify arrays accesses. The reasons for this unusual
perspective are contained within our abstract framework. In short,
complications arise because ¢ * 4 is not an injective operation on
32-bit integers.

iTalX restricts which ordering constraints can be present in an
existential type. In particular, iTalX permits the ordering constraint
I <324 I to be present in an existential type if both I; and I oc-
cur in the body of the existential type. iTalX also allows the above
ordering constraint if I; is a constant and I2 occurs in the body. A
constraint is not permitted if it does not satisfy either of these con-
ditions. This restriction bounds the number of constraints present in
iTalX’s existential types, essentially discarding all constraints that
are irrelevant to type checking the program. We found this bound
to be important to achieving an efficient implementation.

At present iTalX does not use any arithmetic inference rules in
its subtype rules, only that <oy is transitive. This prevents any
complications with arithmetic overflow, but also prevents iTalX
from handling array-bounds-check elimination. The above restric-
tion on constraints, however, would allow us to extend iTalX with
arithmetic inference rules that are sound even in the presence
of arithmetic overflow, while still keeping the type system well-
founded as required by our inference algorithm. Such an extension
is considered future work.

Extended Records. An extended record type is used to represent
array layouts. It consists of a record type (array header), a fixed-
length name, and an integer expression (the number of elements):
rec o namey. Although in general a name can actually describe
an extended record, a fixed-length name must describe a record of
a predetermined length. This allows us to identify which index of
an array and which field within that index that an interior pointer is
referencing.

Arrays have statically indeterminable lengths. To refer to the
length of an array, we allow names to open to existentially quan-
tified records, although any existentially quantified variables and
constraints are immediately pulled into the outer existential bound
upon opening the name. For example, the name INS(Array(«))
would open to the existentially quantified record

R: HeapPtr(VTABLE(Array(«)))
3¢, R: Int(e)
o SUBINSPTRREC(a),

where £ is an existentially quantified integer variable indicating the
length of the array, and ¢ would be pulled into the environment.
SUBINSPTRREC(«) is the fixed-length name opening to the
record {RW : SublInsPtr(«)}, representing the element type .. We
represent the fact that the second field of the header is also the
length of the array by using the variable ¢ in both positions. Thus,

iTalX type checks arrays and array accesses by combining our
earlier concepts of existential quantification, records, and names.

3.4 Type Cast and Runtime Types

Type cast requires adding class variables with lower bounds and
variables bounded by other variables.

Downward type cast tests at run time whether an object is
an instance of a class. Each class has a unique identifier, called
its runtime type. Two runtime types are equal if and only if the
corresponding classes are the same. The runtime type of a class
points to the runtime type of its immediate superclass, and such
pointers form a runtime type chain. A typical implementation of
downward type cast walks up the chain to find if a superclass
matches the class to which we want to cast.

iTalX uses the name RUNTIME (w) to represent the runtime type
of a class w:

name == ... | RUNTIME(w)

To represent the pointer to the runtime type of the superclass, we
reuse the concept of existentially quantified records that we intro-
duced for arrays. RUNTIME (w) opens to the following existentially
quantified record:

38 > w.{...,R : HeapPtr,(RUNTIME()), ...}

Note that if w were a class variable «, this would introduce a
constraint o« < [between two class variables, further justifying
the need for more complex constraints in iTalX.

When walking up the runtime type chain to cast an object of
class a to a class C, if a (possibly null) runtime type with name
RUNTIME(y) matches the (non-null) runtime type of our target
class C, the type inference concludes that v = C, and uses that to
check the instructions that follows. In particular, the quantification
used above will inform us that « inherits v, so the equality v = C'
informs us that « inherits C, indicating that the object can be safely
treated as an instance of a subclass of C.

3.5 Interfaces

To support interfaces, iTalX distinguishes class variables that will
be instantiated with classes from those instantiated with interfaces,
using a subscript “C” or “I”” on a variable respectively. For example,
iTalX uses the constraint o to indicate that the variable o can only
be instantiated with classes. Furthermore, variables can have more
than one bound because classes can inherit multiple interfaces.

To compute the join of class variables with such constraints,
we again use the two generalization maps R; and R». A variable
« will inherit all the (possibly implicit) constraints on R () and
R3(a). For example, if both R («) and R2(«) are constrained to
be classes, the result will be as well. Similarly, given two new
variables v and 3, if Ri(a) < Ri(B) and R2(a) < Ra(B)
hold, we infer the constraint o < (. We also have to infer in-
heritance constraints with respect to class and interface names such
as ArrayList and IList. For upper bounds this poses no prob-
lem since any class or interface only inherits a finite number of
classes and interfaces. For lower bounds, however, due to multi-
ple inheritance there may be an infinite number of classes and in-
terfaces which inherit both R;(«) and Rz(c). To address this is-
sue, we also allow class variables to be bounded below by a ten-
sor ® of class and interface names provided there exists a class
or interface that inherits all those in the tensor. This restriction on
valid tensors bounds their size in a given program, which keeps our
type system well-founded. Finally, if a class or interface inherits
all the tensored classes and interfaces bounding «, then that class
implicitly inherits « as well. Thus, the join of ISerializable
and IList is da : ISerializable ® IList < a.a and we
can infer that ArrayList inherits « since ArrayList implements

both ISerializable and IList. These techniques grant us an in-
ferable type system capable of casting and even interface-method
lookup in a multiple inheritance context (the latter process is de-
scribed in detail in the Appendix).

3.6 Generics

To support generics, we can reuse many of the same techniques we
used to support array classes. If generic class types C'(w1, . .., wn)
and C(wi,...,w;,) are generalized to a generalization variable
&, we introduce n fresh variables ¢; mapping to w; and w; and
substitute & with C(d1, . .., dy). If any of the &; also map to two
similar generics, we repeat this process recursively.

The challenge of generics lies in the constraints. We have to
extend our constraint environments to include constraints of the
form a0 <« C(&) or C(&) < «, where & may also contain class
variables. In fact, the lower bound on an interface variable o may
need to be a tensor of generics (with their arguments supplied).
However, we never need constraints of the form C(J) < D(&').
Because of how inheritance can be specified in C#, constraints of
this form can always be simplified. Even with these more complex
constraints, type inference is still decidable.

3.7 Using the Stack

iTal has no concept of a stack, an obvious shortcoming since the
stack plays such an important role at the assembly level. Here we
make simple extensions to iTalX to let it use the stack intraproce-
durally and interprocedurally. We model the stack essentially as a
partial map from non-negative integers, marking stack slots in the
current stack frame, to register types. We use StackPtr(n) to ac-
cess and manipulate the stack. By using only non-negative integers
in the stack, we prevent a callee from changing the caller’s stack.
These simple extensions allow iTalX to use the stack intraprocedu-
rally, but we will need to redefine function pointers in order to use
the stack interprocedurally.

Function Pointers. A function pointer in iTalX is specified sim-
ply as a required input state and a produced output state. These
states are a stack and a register bank; however, they cannot refer to
TRreg (defined in Section 3.2, along with heap types THeap). The out-
put state can only refer to heap types Taeap and stack pointers. The
input state can only refer to heap types, minus function pointers,
and stack pointers along with two additional types. The first type,
ReturnAddress, tells the caller where the return address should be
stored. ReturnAddress is also a Treg, used to type check the ret in-
struction. The second type is ParamPtr(name), a new pointer type
which can be used only as an input type. Unlike the other types
HeapPtr and SublnsPtr, ParamPtr need not refer to the heap. In the
callee, a ParamPtr(name) will be translated into a RecPtr of the
record that name opens to; thus, the caller can pass any pointer
as a ParamPtr whose referred space will look like the appropriate
record for the duration of the call. This allows the caller to pass even
a stack pointer, provided that portion of the stack is appropriately
typed at the time of the call and does not overlap with the callee’s
stack frame. ParamPtrs allow us to pass references to local vari-
ables, fields, and array indices per the pass-by-reference semantics
of C#’s ref keyword.

Callee-Save Registers A common calling convention requires the
callee to ensure that the values of certain registers upon entering the
function are the same upon exiting the function. This convention
is known as callee-save registers. We incorporate this into iTalX
by having each function pointer declare the set of registers whose
values will be preserved. Subtyping of function pointers is extended
to allow this set to be smaller in supertypes. We type check callee-
save registers in the usual manner: each callee-save register is given

its own type variable at the beginning of the function body and must
have that same type variable upon returning from the function.

3.8 Null Pointers

The extensions above capture a large subset of features in C# ex-
cept one seemingly unremarkable feature: null pointers. Although
we have nullable heap pointers, we do not have an explicit null
type. We do this for a very good reason: null pointers break joins
in the presence of existential quantification, breaking the inference
process. Our framework even suggests this, since the « in the sim-
ple rule null < HeapPtr(INS(«)) is not used in the subtype null.
Without changing null to already refer to «, there is no way to
resolve this problem. Fortunately, we can illustrate the problem
concretely and concisely using some shorthand. Take the two ex-
istentially quantified triples 7o := Ja.(null, @,null) and 75 =
38, 8.(B,null, §’). The join of 7, and 75 cannot contain null.
The two existentially quantified triples 7, := 3, ~'.{~,~, ') and
75 == 36,0’.(3, 8, &) are both supertypes of both 7, and 7. Their
only common subtype without null is 7, := Jp.{p, p, p), but 7, is
not a supertype of 73. Thus, 7, and 73 have no join. This example
illustrates how some of the most intuitive types can break an infer-
ence algorithm. Although C# has null, it always occurs where the
class that it is a null pointer of can be easily discerned. In the lower-
ing stage, when we replace null with 0, we include an annotation
indicating that that occurrence of 0 has type NullPtr(w), where w is
the class or interface associated with that use of null. NullPtr(w)
is a subtype of both HeapPtr (Ins(w)) and Int(0).

3.9 Theorems
We have proven the following properties for inference of iTalX:

Decidability. The inference algorithm described in section 2.3
extended to iTalX halts.

Completeness. If an iTalX function is typeable, the inference
algorithm described in section 2.3 extended to iTalX infers a valid
typing of that function.

These theorems result primarily from our categorical framework
for existential types described in our technical report [21]. The
proof strategy extends the strategies used for iTal. The proofs for
a slight variant of iTal can also be found in our technical report.

4. Implementation

‘We demonstrate our prototype implementation of a type inference
engine for iTalX on the output of a large-scale object-oriented opti-
mizing C# compiler called Bartok. We show that: (1) it is practical
to infer types for an expressive TAL such as iTalX; (2) type infer-
ence needs much less effort from the compiler and much fewer type
annotations, compared with traditional certifying compilation.

Our base compiler Bartok compiles Microsoft .NET bytecode
programs to standalone x86 executables. It is not a just-in-time
compiler. The compiler has about 200,000 lines of code, mostly
written in C#, and is fully self-hosting. Performance of Bartok’s
generated code is comparable to performance under the Microsoft
Common Language Runtime (CLR). According to the benchmarks
tested, programs compiled by Bartok are 0.94 to 4.13 times faster
than the CLR versions, with a geometric mean of 1.66. Throughout
this evaluation we compare against our previous work [4] in which
we built a traditional certifying compiler, also based on Bartok, by
making every compilation phase preserve types.

For our benchmarks, about 98% of methods are inferable. As far
as we know, no other systems are able to infer types for real-world
x86 benchmarks at a similar scale.

We changed about 2.5% of the compiler code, about 5,000 lines
of code out of 200,000 lines. Among the 5,000 lines, about 4,500

lines are for adding new code to define iTalX types and to write
metadata such as the class hierarchy, record layouts, and func-
tion signatures into the object files in terms of iTalX’s type sys-
tem. The compiler transformations and optimizations are mostly
untouched. Our previous traditional certifying compiler changed
about 10% (19,000 lines) of the compiler code. It required every
transformation and optimization to preserve types, and therefore
modified many more compilation phases. Although their experi-
ence showed that most optimizations can be made to preserve types
easily, changing 19,000 lines of code is still a large burden on the
compiler writers, especially figuring out where changes are needed
and what types in the complex TAL type system to use. Compiler
writers who build certifying compilers from scratch also have to
think about maintaining the right type information in every opti-
mization, if they follow the traditional type-preserving approach.

Our type inference engine mainly consists of the iTalX defini-
tion (5,000 lines of C# code), an x86 disassembler (4,700 lines),
and the type inference (about 4,100 lines). The main differences
between our type inference engine and our previous traditional cer-
tifying compiler’s type checker are the definitions of state types and
the computation of joins, which add up to about 1,300 lines of code.
We chose to increase the trusted computing base slightly to relieve
the compiler from full-blown certifying compilation. In order to re-
duce the trusted computing base, we could separate type inference
and type checking into two phases so that only the type checking
phase would be trusted.

Type annotation needed by our type inference implementation
is about 60% less than that required by our previous traditional
certifying compiler. Size of type annotations required by inference
is only about 17% of the size of pure code and data in object
files, compared with 36% for the previous certifying compiler. It
indicates that type annotation size is no longer a big obstacle for
adopting certifying compilation.

Our implementation supports allocating C# structs on the stack,
without annotations specifying the struct type during allocation.
Type inference supports initializing a struct field by field and then
using a pointer to the first field as a pointer to the whole struct. It
even supports passing structs as parameters on the stack. We are
unaware of any other systems with similarly flexible stack support.

The implementation also supports jump tables (a more efficient
way to compile switch statements) by disassembling the data sec-
tion where the jump tables are stored to figure out the jump tar-
gets. The compiler only needs to annotate the jump instruction with
the length of the jump table. We also extend our permitted integer
constraints to include expressions bounded above by constants less
than or equal to the length of the largest jump table in the function.
This way we can ensure the assembly code is accessing the jump
table correctly, while still keeping our type system inferable.

The implementation extends iTalX slightly to address features
such as type arguments for polymorphic methods. For polymorphic
method calls, we infer the type arguments instead of relying on type
annotations. Type inference for type arguments of polymorphic
functions is in general undecidable [19], but currently we support
only polymorphic methods for type casts and memory allocation,
where inferring type arguments is simple in these special cases.

Our implementation does not support exceptions or delegates.
Those are considered future work. Our framework can handle
generics, but our prototype does not include it because Bartok fully
instantiates generics before code generation. We have not yet added
type annotations for null literals, as discussed in Section 3.8. This
would only cause our type inference to report null-related type er-
rors when it should not. We expect that the missing annotations
would have little impact on type annotation size.

Measurement. We describe measurement of type annotation size
and type inference time on our benchmarks. We chose the seven

Name Description Obj. Size (B)
ahcbench Adaptive Huffman Compression. 54,922
asmlc A compiler for ASML. 21,276,036
bartok An older version of Bartok itself. 10,051,871
Icscbench The front end of a C# compiler. 9,623,384
mandelform Mandelbrot set computation. 78,544
sat_solver a SAT solver written in C#. 369,797
zinger A model checker for the zing model. 1,167,567
Table 1. Benchmarks.
Benchmarks Succ. Total | Succ./Total (%)
ahcbench 67 67 100.0
asmlc 15,820 | 16,462 96.1
bartok 7,037 7,222 97.4
Icscbench 5,718 5,860 97.6
mandelform 12 12 100.0
sat_solver 274 274 100.0
zinger 1,125 1,189 94.6
Geomean 97.9

Table 2. Number of Successfully Inferred Methods

Benchmarks Infer. TAL | Infer./TAL (%)
ahcbench 3,320 5,936 55.9
asmlc 644,937 | 2,745,130 23.5
bartok 334,590 | 1,448,867 23.1
Icscbench 256,116 911,308 28.1
mandelform 3,732 4,716 79.1
sat_solver 13,560 22,828 594
zinger 45411 114,084 39.8

Geomean 39.8

Table 3. Type Annotation Size (in bytes)

large benchmarks used in our previous work, which range from
54KB to 21MB in object file size (not including libraries, see Ta-
ble 1). We compile the benchmarks separately from the libraries,
to focus on the user programs. The object files include type anno-
tations for type inference. We compile with all of Bartok’s stan-
dard optimizations (more than 40 of them) turned on, except for
three optimizations that our inference cannot yet handle: array
bounds check elimination, redundant type test elimination, and in-
lined memory allocation.

About 98% of methods in the benchmarks are inferable (Ta-
ble 2). All methods in the small benchmarks such as ahcbench,
sat_solver, and mandelform are inferable. For large benchmarks
(asmlc, bartok, lcscbench, and zinger), the type inference fails on
a small number of methods because the methods use unsupported
language features such as delegates, or interact with unsafe code
such as using PInvoke.

Table 3 compares the type annotation sizes: type inference
needs about 23%-79% of the type annotations required by the pre-
vious certifying compiler, with a geometric mean of 40%, about
60% reduction on the type annotation size. We see more size re-
duction on large benchmarks than on small ones, because small
benchmarks do not have many annotations to begin with and types
for static data and function signatures are more dominating than
those in large benchmarks.

Benchmarks || Infer. | Comp. | Infer./Comp. (%)
ahcbench 0.1 4.8 1.9
asmlc 21.6 135.2 16.0
bartok 24.2 69.6 34.7
Icscbench 8.5 61.3 13.9
mandelform 0.1 10.5 1.3
sat_solver 0.6 6.7 9.3
zinger 2.1 15.2 13.7

Geomean 8.2

Table 4. Type Inference Time vs. Compilation Time (in seconds)

Table 4 shows the type inference time compared with TAL
compilation time. The numbers were measured on a PC running
Windows Vista with a 3GHz quad core CPU and 4GB of memory.
Type inference in our current implementation is slower than type
checking in the previous certifying compiler: type inference takes
about 1%-35% of compilation time, with a geometric mean of 8%,
whereas type checking in the previous certifying compiler takes
less than 3% of the compilation time.

The difference is mainly because type inference is more sensi-
tive to the control flow structures of methods. Straight-line code is
easy to infer; type inference scans code only once and thus can be as
efficient as type checking. For methods with complex loops, type
inference sometimes takes much longer to reach a fixed point for
preconditions of basic blocks without the guidance of type anno-
tations. The type checker with full annotations needs to scan code
only once no matter how complex the code structure is, because a
basic block at each control merge point is annotated with its precon-
dition. The Bartok benchmark is an outlier for type inference time.
It has more than 7,000 methods. The largest 23 methods (with more
complex control flow graphs) in the benchmark take about half of
the type inference time.

One approach to getting more efficient type inference even with
complex control flow structures is to ask for slightly more type
annotation from the compiler, such as loop invariants, so that the
type inference engine can reach the fixed point faster. We consider
this approach future work.

One lesson we learned from our implementation experience
is that memoizing large types does not pay off when we do not
compare those types for equality often. State types in iTalX are
large and complicated because they model machine states. Our first
implementation memoized state types, which required substitutions
(because state types are quantified types) and structural equality,
and the type inference time took about 3%-323% of the compilation
time (with a geometric mean of 36%). With no memoization of
state types and a few other fine-tunings, our current implementation
is much more efficient.

5. Related Work

Hindley-Milner type inference [13] is used by the ML and Haskell
languages. The algorithm for Hindley-Milner inference discovers
omitted types by using unification to solve systems of equations be-
tween types. For a simple enough type system, this algorithm can
infer all types in a program without relying on any programmer-
supplied type annotations (unlike our forward dataflow analysis, it
does not require a method type signature as a starting point). Un-
fortunately, this remarkable result does not extend to all type sys-
tems. In particular, first-class quantified types are known to make
type inference undecidable [23]. Extensions to the Hindley-Milner
approach supporting first-class quantified types require some type
annotations [9, 11] or pack/unpack annotations [8]. Alternatives to

the Hindley-Milner approach, such as local type inference [20],
also require some type annotations. Although these extended and
alternative algorithms [8, 9, 11, 20] were developed for functional
languages, they could be applied to a typed assembly language like
iTalX by treating each basic block as a (recursive) function. Unfor-
tunately, this would force a compiler to provide type annotations on
some of the basic blocks, which our approach avoids.

Much of the difficulty in inferring first-class quantified types
stems from the broad range of types that type variables can repre-
sent. In the type Ja. «, many type systems allow « to represent
any type in the type system, including quantified types like Ja. «
itself. In order to accomplish type inference, iTalX restricts what
quantified variables may represent. In this respect, our work is most
similar to the Pizza language’s internal type system [18], whose
existential types quantify over named classes rather than over all
types. Like iTalX, Pizza’s internal type system defines a join opera-
tion over existential types. However, to the best of our understand-
ing, the operation computes the join of Jo.IList () with itself
as a type of the form da < C.r, where C is a set of classes not
containing . Regardless of the contents of C, this type cannot be
equivalent to Ja.IList(«), and therefore cannot be the join. This
complication is simply a demonstration of how challenging infer-
ence of existential types can be.

Speciall [5] is a certifying compiler for Java that uses a proof
generator to create proofs of safety for assembly language. How-
ever, Speciall’s proof generation relies on compiler-generated loop
invariants, whereas iTalX infers loop invariants automatically.

With respect to inference in assembly language, our work is
most similar to Coolaid [2], which performs a forward dataflow
analysis to infer values and types of registers for code compiled
from a Java-like language. Coolaid’s inference introduces “sym-
bolic values” to represent unknown values, corresponding to ex-
istentially quantified variables in iTalX’s state types. Coolaid is
more specialized towards a particular source language and a par-
ticular compilation strategy than most typed assembly languages
are, whereas iTalX encodes objects and classes using more stan-
dard, general-purpose types (namely existential quantification).
This makes us optimistic that our framework will more easily
grow to incorporate more advanced programming language fea-
tures, such as generics with bounded quantification. Chang et al. [2]
state that “We might hope to recover some generality, yet maintain
some simplicity, by moving towards an ‘object-oriented” TAL”. We
envision iTalX as exactly such an object-oriented TAL.

6. Conclusions

We have formalized and implemented type inference for iTalX, a
typed assembly language capable of supporting optimized com-
piled code from object-oriented languages like C# and Java. Cur-
rently, the implementation completely infers the types for about
98% of functions in our benchmark suite. Inferring most of the re-
maining 2% appears to be a matter of engineering the inference im-
plementation to recognize idioms such as the Bartok implementa-
tion of delegates. It may also require modifications to the compiler,
such as propagating types of null-pointer literals, but such mod-
ifications are minor compared to the effort of implementing type
preservation throughout a large compiler. Based on this, it appears
feasible to use inference as the primary mechanism for generating
TAL types from a large optimizing compiler, only rarely disabling
optimizations or falling back to a smaller type-preserving compiler.

Although our type system is not yet able to support all optimiza-
tions (e.g. array-bounds check elimination), it supports the com-
mon optimizations essential to generating good code from object-
oriented languages. Only 3 out of more than 40 optimizations in
Bartok are not supported. Based on the abstract framework under-

lying our type system, we believe that inference can readily be ad-
justed to accommodate new language features. We are currently
investigating adding null-dereference checking and more powerful
array-bounds checking directly to our type system by expanding
the capabilities of our existential bounds. As languages like Java
and C# evolve, so will our inferable typed assembly language.

Acknowledgements. We would like to thank Francesco Logozzo
for discussions about numerical abstract domains. We also thank
our anonymous reviewers for their insightful feedback.

References

[1] J. Addamek, H. Herrlich, and G. E. Strecker. Abstract and Concrete
Categories. Wiley-Interscience, New York, NY, USA, 1990.

[2] B. E. Chang, A. Chlipala, G. C. Necula, and R. R. Schneck. Type-
based verification of assembly language for compiler debugging. In
TLDI, pages 91-102, 2005.

[3] J. Chen and D. Tarditi. A simple typed intermediate language for
object-oriented languages. In POPL, pages 3849, 2005.

[4] J. Chen, C. Hawblitzel, F. Perry, M. Emmi, J. Condit, D. Coetzee, and
P. Pratikaki. Type-preserving compilation for large-scale optimizing
object-oriented compilers. In PLDI, pages 183-192, 2008.

[5] C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline, and M. Plesko. A
certifying compiler for Java. In PLDI, pages 95-107, 2000.

[6] A.Goldberg. A specification of java loading and bytecode verification.
In CCS, pages 49-58, 1998.

[7]1 P. Granger. Static analysis of linear congruence equalities among
variables of a program. In TAPSOFT, volume 1, pages 169-192, 1991.

[8] M. P. Jones. First-class polymorphism with type inference. In POPL,
pages 483—-496, 1997.

[9] D. Le Botlan and D. Rémy. MLF: Raising ML to the power of System
F. In ICFP, pages 27-38, 2003.

[10] C. League, Z. Shao, and V. Trifonov. Type-preserving compilation of
Featherweight Java. TOPLAS, 24(2):112-152, 2002.

[11] D. Leijen. HMF: Simple type inference for first-class polymorphism.
In ICFP, pages 283-294, 2008.

[12] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Sun Microsystems, 2nd edition, 1999.

[13] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348-375, 1978.

[14] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith,
D. Walker, S. Weirich, and S. Zdancewic. TALx86: A realistic typed
assembly language. In ACM Workshop on Compiler Support for
System Software, pages 25-35, 1999.

[15] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. TOPLAS, 21(3):527-568, 1999.

[16] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-based typed
assembly language. JFP, 13(5):957-959, 2003.

[17] G. C. Necula and P. Lee. Safe kernel extensions without run-time
checking. In OSDI, pages 229-243, 1996.

[18] M. Odersky and P. Wadler. Pizza into java: translating theory into
practice. In POPL, pages 146-159, 1997.

[19] F. Pfenning. On the undecidability of partial polymorphic type recon-
struction. Fundamenta Informaticae, 19(1,2):185-199, 1993.

[20] B. C. Pierce and D. N. Turner. Local type inference. In POPL, pages
252-265, 1998.

[21] R. Tate, J. Chen, and C. Hawblitzel. A framework for
type inference with existential quantification. Technical report,
http://research.microsoft.com/pubs/78684/tr.pdf, 2008.

[22] S. Wehr and P. Thiemann. On the decidability of subtyping with
bounded existential types. In APLAS, pages 111-127, 2009.

[23] J. B. Wells. Typability and type checking in System F are equivalent

and undecidable. Annals of Pure and Applied Logic, 98:111-156,
1999.

Appendix. Interface-Method Lookup in Detail

Here we describe in detail how we type check the common but
surprisingly challenging process of looking up an interface method
implementation. Suppose we have an instance of some class o
implementing the interface IList, and we want to invoke the
method getCount declared in IList. A typical implementation
first loads the vtable for a from the instance. Then the program
must load a’s interface table from the vtable. This table is an array
of all the interfaces implemented by «. Each entry in the interface
table corresponds to an interface implemented by « and consists of
two pieces of information about that interface: the runtime type as
well as the offset of the appropriate interface-method table from
the beginning of a’s vtable. So, the program has to go through
each index of a’s interface table until it finds an interface matching
IList. We then add the offset at that index to the vtable to get
«’s interface-method table for IList. From that we finally retrieve
a’s implementation of getCount. This is all accomplished by
the assembly code in Figure 1 (for simplicity we assume that the
important fields for this example are always at offset 0).

Now we wish to type check this assembly code. First, we start
at the beginning of the block. There is an instance at stack offset
-4, corresponding to the first stack slot, so we give that slot the
type HeapPtr(INS(«x)), where « is an existentially quantified class
variable. We use the variable o to refer to the exact class of this
instance. We know « is a class, so we have the constraint ac.
Furthermore, we know the instance implements IList, so we also
have the constraint o« < IList. Since we have a HeapPtr in a stack
slot, we automatically open the name INS(«) to the record {R :
HeapPtr(VTABLE(«v)), . .. } (using the metainformation provided
by the compiler). Thus, the first stack slot is given the following
type:

HeapRecPtr(INS(«) : {R : HeapPtr(VTABLE(c)), ... } + 0)

This way we may both use it as an object in the heap and have
access to the fields of its record. Next, instruction 1) simply copies
this type into register EAX.

Instruction 2) replaces the type in EAX with the type of the first
field of the instance’s record: HeapPtr(VTABLE(«)). Once again,
we automatically open the name type to the following record:

{R : HeapPtr(ITABLE()), ... }

ITABLE(«) is the name for a’s interface table. Instruction 3) copies
the type in EAX to the third slot on the stack, saving it for later.

Instruction 4) replaces the type in EAX with the type of the
first field of «a’s vtable: HeapPtr(ITABLE(«)). Once again, we
automatically open the name type ITABLE(«) to a record. Because
ITABLE(«) represents an array, this actually opens to the following
existentially quantified extended record:

3¢.{R : Int(¢)} o ITABLEENTRY(cx)¢

The existentially quantified variable ¢ (the length of the array) is
automatically pulled into the environment. ITABLEENTRY («) is
a fixed-length name representing the length-2 record comprising
each entry of the interface table, which we will examine in more
detail later. Instruction 5) loads the first field of «’s interface table.
This field is the singleton integer type representing the length of the
array. Comparing with this value will enable us to ensure that the
assembly code is accessing the array with a valid index. Instruction
6) is an optimization which adds 4 to EAX so that EAX points to
the first element of the interface table’s array. We can handle this
optimization since our HeapRecPtr and RecPtr types have an offset.
Specifically, EAX will have the following type:

HeapRecPtr(ITABLE(«) : {R : Int(£)} o ITABLEENTRY (ct)¢ +4)

Note the offset 44, and that £ is now in the environment.

HeapRecPtr(ITABLE(«) : {R : Int(£)} o ITABLEENTRY («x)[last : 4 — 5] + 4)

HeapRecPtr(RUNTIME(f) : ... 4 0)

INS(c) : {R : HeapPtr(VTABLE(c)), ...} + 0)
RUNTIME(IList) : ...+ 0)
HeapRecPtr(VTABLE(«) : {R : HeapPtr(ITABLE(c)), ... } 4+ 0)

o EAX +—
Variables Constraints .gn EBX — In(¢)
p & ECX +— Int(¢)
EDX
« /8 /Bl st
ER . a < IList 2| o= HeapRecPtr(
i,0 a< B 8| 2 +— HeapRecPtr(
n d
1 <324 V4 3" =
Q
Q

HeapRecPtr(RUNTIME(IList) : {...} 4+ 0) with HeapRecPtr(RUNTIME() : {...} + 0)

Figure 2. An existentially quantified state type inferred during interface-method lookup

// stack offset -4 contains an instance of IList
// stack offset -8 contains runtime type of IList

1) mov EAX, [ESP-4] // load instance into reg
2) mov EAX, [EAX] // load vtable
3) mov [ESP-12], EAX // store vtable on stack
4) mov EAX, [EAX] // load interface table
5) mov EBX, [EAX] // load table’s length
6) addi EAX, #4 // move to head of array
7) movi ECX, #0 // start at index O
L0:8) cmp EBX, ECX // compare length and index
9) jbe L1 // break if length <= index
10) mov EDX, [EAX+ECX*8] // retrieve runtime type
11) cmp EDX, [ESP-8] // compare with IList
12) je L2 // break from loop if equal
13) addi ECX, #1 // increment index
14) ja LO // continue looping
L1:15) throw exception // not an instance of IList
L2:16) mov EDX, [EAX+ECX*8+4]// load offset from table
17) add EDX, [ESP-12] // add offset to vtable
18) mov EAX, [EDX] // load getCount

// stack offset -4 contains instance of IList
// EAX contains getCount for that instance

Figure 1. The assembly code for looking up an interface method

Instruction 7) loads the constant O into register ECX (which
tracks the index into the interface table), so that ECX has the sin-
gleton integer type Int(0). The block starting at LO iterates over
each interface-table entry until it finds the one (if any) correspond-
ing to IList. Notice that instruction 14) jumps back to LO for the
next iteration. Normally, we would proceed to type the instructions
with ECX having type Int(0) until we get to instruction 14), at which
point we would join that type with the current type and repeat the
whole process. In the interest of saving time, we will simply replace
the type of ECX with Int(%), where i is a fresh existentially quanti-
fied integer variable representing the index of the current iteration.

Instruction 8) compares EBX, which has type Int(¢), with ECX,
which has type Int(z). The state type is augmented to note that the
condition code results from comparing Int(¢) with Int(¢). Instruc-
tion 9) jumps to instruction 15) to throw a runtime exception if
f <324 1 since there is no IList entry. Next, we know we can
only proceed to instruction 10) if ¢ <324 ¢ holds, so we add this
constraint to the environment when type checking instruction 10).

Instruction 10) accesses the interface array. Since 4 was added
to the address of the interface table earlier, EAX already points to
the first element of the array. Instruction 10) accesses this array at
offset ECX * 8. Since ECX has type Int(¢), we know the value of this
offset is ¢ * 8. Since the name ITABLEENTRY («) always refers to
a record with 2 fields, amounting to 8 bytes of data total, we can
deduce that offset 7 8 is accessing the first field of the i™ index of
the array. The constraint ¢ <3o £ is in the environment due to the
earlier comparison, so we can ensure that this is a safe access into

the array. In order to load the first field of the 7" index, we must
open the name ITABLEENTRY (x), which results in the following
existentially quantified record:

R: HeapPtr(RUNTIME())
R: IMTableOffset(c,)

[represents the interface corresponding to that index, and the vari-
able is pulled out into the environment. The constraint (; indicates
that 3 is an interface, and the constraint o < [indicates that
implements 3. The first field has type HeapPtr(RUNTIME(f)), in-
dicating it is the runtime type for (3. Instruction 10) copies this type
into EDX and opens the name RUNTIME() into a record as usual.
Furthermore, we augment the extended record for the interface ta-
ble with the annotation [last : ¢ — 3], indicating that the list index
accessed was ¢ and [is the interface corresponding to this index.
This is a feature of iTalX (not mentioned earlier) used specifically
for any extended records whose fixed-length name opens to an exis-
tentially quantified record, the above case being the most important
example. The purpose of this feature will be demonstrated later.

Instruction 11) compares the runtime type of IList with the
runtime type in EDX corresponding to interface (5. The state type is
augmented to note that the condition code results from comparing
these two types. Figure 2 shows the entire existentially quantified
state type after instruction 11). Instruction 12) breaks from the
loop if these two values are the same. Otherwise, we proceed to
instruction 13). No information is gained from knowing that these
two values differ, since iTalX does not track disequalities, so the
type stays the same except that the condition code is forgotten.
Instruction 13) adds 1 to ECX, so ECX is given the type Int(i +
1). Instruction 14) jumps back to instruction 8), so we simply
check that whether the current type is a subtype of the type before
instruction 8), which is the case due to our earlier shortcut.

Instruction 12) could also break from the loop and proceed
to instruction 16). This can only happen if the runtime type
of IList matches the runtime type of (3. From this iTalX in-
fers that these two types are equal and merges them, essentially
substituting all uses of 3 in the state type with IList. In par-
ticular, the annotation we added earlier to interface table’s ex-
tended record becomes [last : ¢ +— IList], so that we know
index ¢ corresponds to IList. Thus, when instruction 16) loads
the second field of index 7 into EDX, the type of that field is
IMTableOffset(a, IList). This type represents the integer offset
which, when added to HeapRecPtr(ITABLE(«) : {...} + n), re-
sults in HeapRecPtr(IMTABLE(«, IList) : {...} + n), which
is precisely the effect of instruction 17). IMTABLE(«, IList) is
the name of the record containing «’s implementations of IList’s
methods, all of which expect an instance of a subclass of « as the
“this” pointer. Instruction 18) fetches the first field from this record,
which our metainformation informs us corresponds to getCount.
Thus, after all this effort, iTalX is finally able to type check a call
to getCount using the original instance as the “this” pointer.

3B : B, <<ﬂ.{

