PRISM: Platform for Remote Sensing using Smartphones

Tathagata Das
Microsoft Research India
Bangalore 560080, India

tathadas@microsoft.com

Ramachandran Ramjee
Microsoft Research India
Bangalore 560080, India

ramjee@microsoft.com

ABSTRACT

To realize the potential of opportunistic and participatory sensing
using mobile smartphones, a key challenge is ensuring the ease
of developing and deploying such applications, without the need
for the application writer to reinvent the wheel each time. To this
end, we present a Platform for Remote Sensing using Smartphones
(PRISM) that balances the interconnected goals of generality, secu-
rity, and scalability. PRISM allows application writers to package
their applications as executable binaries, which offers efficiency
and also the flexibility of reusing existing code modules. PRISM
then pushes the application out automatically to an appropriate set
of phones based on a specified set of predicates. This push model
enables timely and scalable application deployment while still en-
suring a good degree of privacy. To safely execute untrusted appli-
cations on the smartphones, while allowing them controlled access
to sensitive sensor data, we augment standard software sandboxing
with several PRISM-specific elements like resource metering and
forced amnesia.

We present three applications built on our implementation of
PRISM on Windows Mobile: citizen journalist, party thermome-
ter, and road bump monitor. These applications vary in the set of
sensors they use and in their mode of operation (depending on hu-
man input vs. automatic). We report on our experience from a
small-scale deployment of these applications. We also present a
large-scale simulation-based analysis of the scalability of PRISM’s
push model.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Client/server, Distributed applications
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1. INTRODUCTION

Mobile phones are proliferating with more than 4 billion phones
in use worldwide [1]. Programmable smartphones constitute a sig-
nificant and growing fraction of these phones. For instance, 172
million of the 1.2 billion phones sold worldwide in 2009 were
smartphones [2]. While smartphones today are used largely in iso-
lation, operating as individual units serving their respective users
(e.g., enabling users to check their email), there is a nascent inter-
est in community applications, which leverage the resources of a
potentially large and distributed set of mobile smartphones.

One such class of community applications that has received much
research attention recently is community sensing [26, 25, 37, 4,
7]. Community sensing using mobile smartphones is motivated
by the observation that such phones include not only computing
and communication capabilities but also a range of sensing capa-
bilities, such as provided by the microphone, camera, GPS, and
accelerometer, among other sensors. The idea, then, is to orches-
trate the computing, communication, and sensing capabilities of a
population of mobile phones, which happen to be at the right place
at the right time, to enable large-scale sensing purely through soft-
ware running on this existing hardware base. A community sensing
application could either be participatory, involving explicit user ac-
tion (e.g., taking photographs), or opportunistic, operating without
user involvement (e.g., recording a GPS trace) [8, 27].

A key challenge in realizing the potential of community sensing
is ensuring the ease of developing and deploying such applications,
so that the application writer does not have to reinvent the wheel
each time. To this end, we present PRISM, a Platform for Remote
Sensing using Smartphones, which addresses a number of common
challenges that such applications face. PRISM tries to balance three
interconnected goals:

1. Generality: support a wide range of applications with flexi-
bility to reuse existing code.

2. Security: ensure that the participating phones, belonging to
individual users, remain secure and that applications do not
misuse sensitive sensor information.



3. Scalability: allow the system to scale to a large number of
nodes (say hundreds of thousands) without placing an undue
burden on the PRISM infrastructure.

Generality demands the ability to run arbitrary code on the mo-
bile smartphones. However, doing so exposes the phone to security
attacks, including the possibility of the phone being compromised.
To provide generality, PRISM supports the execution of applica-
tions in binary form. This allows applications to reuse existing
code modules such as libraries. However, to ensure security, the
(untrusted) application code is run in a software sandbox, which
intercepts and mediates system calls.

The mobile sensing context, however, raises unique challenges
that go beyond standard software sandboxing. On the one hand, the
applications of interest, by their very nature, require access to sen-
sor data. On the other hand, such sensor data (e.g., audio, images)
could be sensitive from the viewpoint of the user. Furthermore, ac-
cess to the sensors and the processing performed by the application
could drain precious battery energy. To address these concerns, we
augment the sandbox with several PRISM-specific features: (i) re-
source metering to measure and limit the amount of battery energy
that the application can consume and also to prevent the applica-
tions from leaking out sensitive sensor data that it may have access
to, (ii) forced amnesia to disallow the sensing application running
on the phone from retaining long-term state, and (iii) sensor taint
tracking and access control to allow the participating users to set
simple policies on the kinds of applications that they are willing to
run on their phones. These mechanisms help PRISM mitigate the
risks associated with allowing access to sensor data. Avoiding all
risk would require fully blocking access to sensors, which would
curtail functionality.

The key question with regard to scalability is how tasks are dis-
tributed. There is an interplay between the number of tasks, the
specificity of their requirements, and the number of participating
nodes. On one hand, one could employ a pull approach (as in
AnonySense [13]), wherein sensing tasks are posted on a server
and the participating nodes download all of the published tasks, be-
fore deciding locally which tasks to actually run. This approach has
the advantage that the nodes do not reveal anything about their con-
text (e.g., their location), but it imposes a high overhead since many
or even all of the tasks downloaded by a node might not match the
node’s local context. In PRISM, we employ the alternative push ap-
proach, wherein the participating nodes register with the server and
the server only pushes matching tasks out to the individual nodes.
This approach avoids the scalability bottleneck of the pull approach
and allows tasks to be distributed in a timely manner. The down-
side, however, is that the server can track the mobile node. We limit
the extent of such tracking in PRISM by expiring registrations, and
requiring fresh registrations, from time-to-time.

We have implemented PRISM on Windows Mobile, with the in-
frastructural component running on Windows 7. We report on our
experience and findings from building and deploying, on a small
scale, three different community sensing applications. The inten-
tion is not to present novel applications but rather to showcase the
generality of the PRISM platform.

The first one is a citizen journalist application, which is inspired
by Micro-Blogs [22] and involves participatory sensing, wherein
PRISM provides location-based triggers to alert human users to
take pictures or provide other information from the scene of inter-
est. The second application is a party thermometer, which allows
a user to query others who are at bars about how “hot” the party
is. In addition to the locations of the bars, this application uses
the microphone to sense music and thereby only target users who
are in a party. In doing so, the application uses an off-the-shelf Fast

Fourier Transform (FFT) library and operates within the constraints
of PRISM’s resource metering and forced amnesia policies. The
third application is a road bump monitor, which is inspired by Pot-
hole Patrol [18] and Nericell [31], and involves opportunistic sens-
ing, wherein phones equipped with GPS and accelerometer sensors
are used to detect and locate road bumps automatically. We show
that this application running on PRISM (within constraints such as
forced amnesia) is as effective in detecting bumps accurately as a
native application such as Nericell [31] without such constraints.
To summarize, we make the following contributions:

e The design and implementation of the PRISM platform for
supporting community sensing applications, which balances
the goals of generality, security, and scalability.

e A demonstration of the generality of PRISM through the de-
velopment and deployment, on a small scale, of three partic-
ipatory or opportunistic sensing applications.

e An evaluation of PRISM’s push model of task distribution
through large-scale simulation.

2. RELATED WORK

The authors in [3] introduce a new term called Mobiscope to
characterize an infrastructure composed of federation of distributed
mobile sensors/phones that can execute sensing tasks to build these
applications. PRISM is targeted as a framework that simplifies the
task of building applications using Mobiscope. A wide range of
Mobiscope applications have been built and deployed on generic
or custom-enhanced mobile phones. The goals have been varied:
monitoring air pollution [25], evaluating soot emission levels [37],

assessing environmental impact of individuals [32], noise mapping [7],

matching passengers to cars for dynamic ride sharing [36], urban
gaming [12], sensing enhanced social networking [30], and rich
monitoring of road and traffic conditions [31]. PRISM is designed
to enable developers of such applications to easily harness the ap-
propriate set of phones with the required sensing resources, without
having to be concerned with distributed operation, resource man-
agement, security, or privacy.

PRISM draws inspiration from the rich body of prior work on
frameworks for building sensing applications over a distributed but
dedicated set of sensor nodes. Motelab [41] and Kansei [19] pro-
vide a generic framework for web-based scheduling of tasks on
dedicated sensor platforms. CitySense [33] provides a testbed for
city-wide sensing applications. However, the fact that the sensors
are dedicated means that, unlike in PRISM, user security and pri-
vacy are not an issue nor is mobility (except for mobility under the
control of the programmer, as with the robotic nodes in Kansei).

There has also been recent work, more closely related to PRISM,
on frameworks for mobile phone based community sensing. Some
of this work has been in the context of the Metrosense project [10]
on people-centric sensing. Specifically, Bubble Sensing [29] allows
sensing tasks to be posted at specific physical locations of interest.
The tasks are broadcast over a local-area radio by an anchor node
that is at the location of interest. When other mobile nodes pass
by and hear the broadcasts, they can help fulfill the sensing tasks.
Unlike PRISM, bubble sensing avoids the need for phones to re-
port their location to a server in the infrastructure. However, this
also means that the ability to satisfy sensing tasks depends on the
simultaneous availability of a local anchor and sensing nodes at the
location of interest. Furthermore, the tasks in bubble sensing are
participatory (i.e., human) actions, such as “take a photo”, and not
executable code as in PRISM.



Micro-blogs [22] is another system for participatory sensing, where

users upload “blogs” annotated with sensed information (e.g., pho-
tos) to a micro-blog server. The users’ mobile devices also upload
their locations to the server periodically; privacy concerns are side-
stepped by assuming that users trust the micro-blog service. When
another user posts a location-specific query, it is answered either
based on information that has already been uploaded or by direct-
ing the query to one or more users who are in the desired location.

AnonySense [13] is an alternative framework for sensor tasking
and reporting that goes beyond participatory sensing to also encom-
pass opportunistic sensing, wherein the application accomplishes
its sensing task by pushing code onto the mobile nodes. How-
ever, to ensure safety, the code must be written in a constrained,
special-purpose language called AnonyTL, which is in contrast to
PRISM, where an application can execute a generic binary on the
mobile phone. Each of these approaches has its advantages. Hav-
ing a special-purpose, interpreted language would ensure safety and
often also reduce the size of the application code. On the other
hand, executable binaries allow generality, including the flexibilty
to reuse existing code modules. For instance, to build the party
thermometer application presented in Section 7.2, we were able to
reuse an existing Fast Fourier Transform (FFT) module.

AnonySense also lays strong emphasis on privacy. To this end,
AnonySense adopts a polling model for task distribution, where
each mobile node periodically polls and downloads all tasks from
the infrastructure (no filtering is done, say based on location, to
avoid any privacy leak). While such a task “pull” approach does
not reveal the mobile node’s location to the infrastructure, it can
be burdensome and wasteful when the number of tasks or clients
is large (see Section 8). In contrast, PRISM employs a “push” ap-
proach, which allows limited tracking of a mobile node.

Both AnonySense and PRISM suffer from privacy risks arising
from the access that applications have to sensor data (e.g., audio).
PRISM includes sandbox mechanisms to mitigate these risks.

Sandboxing [35] is a well-known mechanism for securely exe-
cuting untrusted applications and can be supported using a variety
of techniques such as system call interposition [6], virtual machine
monitors [42], or capability-based systems [38]. While the PRISM
sandbox employs system call interposition, it goes beyond standard
software sandboxing by providing mechanisms motivated by the
sensing context, specifically to track and control an application’s
access to sensor data. Given the potential risk to security posed by
sensor data, we believe that such mechanisms for control would be
needed even if the untrusted application were run within a pocket
hypervisor [14].

Another mechanism that the PRISM sandbox includes is energy
metering. A fair amount of work has focused on energy monitor-
ing of applications with the goal of allowing them to adapt bet-
ter to energy usage [20, 28]. There is also work on measuring
energy usage in a fine-grained manner on sensor platforms, ei-
ther using hardware support [40] or by monitoring hardware power
states in low-level software (e.g., modified device drivers) [17, 21].
PRISM could leverage such accurate energy monitoring if it were
to become available widely on mobile phones. However, our cur-
rent design focuses on coarser-grained monitoring of energy, which
is accurate enough for our purposes (enforcing energy limits on
untrusted applications) yet generic enough to run on any mobile
smartphone, with some calibration but without requiring low-level
support in hardware or software.

There has also been work on programming models that include
support for building resource-aware (including energy-aware) ap-
plications. Examples include Eon [39] and Pixie [28]. We view this
body of work as being orthogonal to our current focus in PRISM,

System Generality | Security | Scalability | Privacy
Bubble-Sensing | No Yes Yes Yes
AnonySense OK Yes No Yes
Micro-Blog No Yes Yes No
PRISM Yes Yes Yes OK

Table 1: PRISM compared to prior work

which is on monitoring energy usage and enforcing limits. A future
version of PRISM could leverage such advances in energy-aware
programming models.

Finally, providing incentive mechanisms for participation is a
challenge shared by many community-based sensing applications.
Designing appropriate incentive mechanisms is an active area of re-
search [9, 11, 15] and is orthogonal to the research issues addressed
by PRISM.

2.1 Placing PRISM in Context

As discussed above, PRISM builds on a large body of prior work
in sensing systems but yet differs from it in various ways. These
differences arise from PRISM’s goal of providing a flexible plat-
form for participatory as well as opportunistic sensing applications
on a substrate of mobile phones that are not dedicated to sensing.
A qualitative comparison of PRISM to other community sensing
systems is shown in Table 1. Specifically, PRISM:

e Supports generality by enabling the execution of untrusted
application binaries on mobile phones. This is in contrast
to systems that only support participatory (i.e., human) sens-
ing tasks or only allow applications written in a restricted,
special-purpose language.

e Ensures security by running untrusted applications in a soft-
ware sandbox that supports novel features such as forced am-
nesia, sensor taint tracking and access control, and energy
metering based on coarse-grain monitoring.

e Employs a push-based model for task dissemination that achi-
eves scalability by sacrificing some privacy (specifically, ano-
nymous users could be tracked over a short interval), relative
to a pull-based model [13].

3. PRISM DESIGN

The scenario we envision for PRISM is as follows. Users who
would like to participate in and contribute to community sensing
install the PRISM runtime on their mobile smartphones and regis-
ter with the PRISM infrastructure. These phones are then available
to run community sensing applications. Note that the PRISM run-
time is a middleware that runs on top of an existing mobile phone
operating system (OS). We now discuss our assumptions and then
outline the design of PRISM.

3.1 Assumptions

We assume that PRISM is trusted in that users are willing to
install and run the PRISM runtime on their phones. However, we
require that the PRISM infrastructure not be in a position to identify
users. Since a user’s location itself could compromise their identity
in private areas such as homes, we assume that the PRISM runtime
on the phones is disabled in all but designated “public” areas.

We assume that entities that submit applications to be run on
PRISM have identities certified by a trusted authority. This helps
ensure that we are in a position to exercise control over the num-
ber of applications submitted to PRISM by any entity. However,
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we do not require the applications themselves to be certified since
certifying application binaries is a hard problem and furthermore
expensive, especially in a community sensing context.' Protecting
the mobile phones that host such untrusted applications is a key
task for the PRISM runtime.

We assume that the participating nodes are trusted, which means
that the OS running on these phones is trusted and that we can
count on standard OS mechanisms such as memory and file system
protections to work as intended.

Finally, we assume that each participating phone has wide-area
network connectivity (say over a wireless WAN), which allows it to
communicate directly with nodes in the infrastructure (see below).
In other words, there is no direct peer-to-peer communication be-
tween the phones.

3.2 Architecture

The PRISM architecture is shown in Figure 1 and consists of the
following three components:

e Application server (supplied by third parties): submits
jobs to PRISM servers, for deployment onto a desired set
of mobile phones

e PRISM server: accepts jobs from the application servers
and deploys them onto an appropriate set of mobile phones

e PRISM client and sandbox on mobile: registers with PRISM
servers and supports the execution of the jobs in a specially-
designed sandbox

Push-based Model: Applications can be deployed on mobile phones
in two ways: a pull-based approach [13] where all mobile clients
independently pull/download jobs from a server or a push-based
approach where a server pushes jobs to only a desired set of mo-
bile phones. Since PRISM is targeted towards city-scale sensing
applications, scalability and efficiency of operation is critical, ne-
cessitating our choice of a push-based framework for the PRISM
platform.

'Apple’s iPhone application certification simply ensures that the
developer can be identified; all liabilities arising from the applica-
tion are passed onto the developer.

A push-based model requires some amount of tracking of mobile
phones in order to able to “push” applications onto phones. Hav-
ing a common framework — PRISM — track phone resources on
behalf of all applications, has the following benefits:

e Fast Response: Tracking phone resources allows PRISM to
deploy applications immediately, as and when the desired set
of phones are available.

e Efficiency: Since phones are potential candidate hosts for
multiple applications, PRISM eliminates the need for each
application to track phone resources independently.

e Scalability: The amount of tracking can be modulated to
the load of application arrivals and the density of available
phones.

In order to support a push-based model, two key challenges must
be addressed by PRISM. First, a generic and flexible application
programmer interface (API), exposed by PRISM to applications,
needs to be designed so that applications can be effectively pushed
to a desired set of mobile phones. Second, an efficient mechanism
to continuously track a large number of mobile phones without im-
pacting energy usage on the mobile phones is essential. To address
the first challenge, we design a new API with two-level predicates
and a choice of two deployment modes. To address the second chal-
lenge, we design an adaptive and predictive registration and update
mechanism.

Next, we describe the registration mechanism that allows track-
ing of phone resources (Section 3.3), followed by the API that
enables applications to be pushed onto the tracked phones (Sec-
tion 3.4) and finally our optimizations for making the tracking pro-
cess efficient (Section 3.5).

3.3 Registration

The registration process enables a phone to inform PRISM server
of its presence and its availability to run PRISM applications. Reg-
istrations are maintained as soft-state and automatically expire after
the registration period. We set the registration period to one hour to
balance the overhead of the registration process with privacy risks
where tracking phones long enough could reveal the identify of the
user [23, 24].

The registration includes both static and dynamic resource infor-

mation. Static information comprises the hardware resources, such
as sensors and radios, on the phone available to PRISM. Dynamic
information comprises information that is time-varying, specifi-
cally the location of the phone and the battery energy remaining.
The dynamic information is kept updated at the PRISM server through
update messages.
Privacy: Note that tracking of phones can be accomplished with-
out significantly weakening privacy, though, PRISM does trade-off
some privacy for scalability compared to a pull-based approach like
AnonySense [13]. First, PRISM server’s ability to track mobile
phones is limited to a short registration interval. After the expiry
of registration period, phones wait for a random amount of time,
picked from an exponential distribution, before registering again.
Further, PRISM servers are prevented from tracking phones across
registration periods by employing an independent anonymization
service [16] (see Figure 1), thus avoiding any tracking through
client IP addresses. Finally, privacy can be further strengthened
by adopting cloaking techniques presented in [23, 24] such that
registrations from any given region are sent to PRISM servers only
when the number of registering phones exceeds a given threshold.
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The API between the application server and PRISM server is de-
signed to enable the application server to accurately and quickly
identify the set of mobile phones that can run the application. Ac-
curate identification is enabled by a two-level predicate mecha-
nism while quick deployment is enabled by a choice of deployment
modes. We describe these next.

3.4.1 Two-level predicate

The identification of phones is achieved through a two-level predicate-

based APIL: the top-level predicate is coarse-grained and used to
identify phones where the jobs are deployed but not activated while
the second low-level predicate is fine-grained and decides when the
jobs on the phones begin execution.

The top-level predicate specifies the capabilities desired of the
phones in terms of sensors, the number of phones needed, and
their coarse-grain locations. The number of phones and their lo-
cations could be specified in one of two ways: (a) as a list of
specific locations and radii, with the desired number of phones
at each (e.g., 3 phones in the vicinity of the clock tower and 2
phones near the palace), or (b) as a region, with the desired (uni-
form) density of phones. Since the mobile component is a binary
executable, the application server can either supply binaries for a
range of mobile hardware/OS platforms and/or include the desired
mobile hardware/OS platform as part of the predicate specification.
The low-level predicate is more fine-grained in nature and can con-
sist of locations, specified at finer granularity, or be based on de-
rived attributes, such as speed (e.g., deploy only if phone is mov-
ing at pedestrian speed to minimize distraction for human-related
queries). The low-level predicate also includes a time-out param-
eter which determines how long the PRISM client monitors for a
match of the fine-grain predicate before cancellation.

Based on early deployment experience of one of our applica-
tions, we decided to split predicates into two levels for the fol-
lowing reasons. First, maintaining the PRISM server updated with
fine-grain attributes such as precise location or speed can result in
prohibitive amount of updates generated from the phone. Second,
the two-level mechanism allows applications to be deployed onto
phones with ample time ahead of actual execution, side-stepping
issues with spotty network connectivity. Thus, application servers
can use the top-level predicate with a coarse-grain specification al-
lowing the application to be deployed on potential candidate phones
and be ready for execution whenever the precise predicate is matched
at a later time. Given that community sensing applications have lit-
tle control over the sensors’ (phone) mobility, a two-level predicate
mechanism ensures that any limited sensing window of opportu-
nity is not missed. Third, by having the PRISM client track pred-
icates on behalf of all the pushed applications and allowing their
execution only when their respective fine-grained low-level pred-
icates are matched, application developers can reduce the risk of
spam, especially in cases where the final sensor is the person. Thus,
the two-level predicate mechanism decouples deployment coverage
from desired execution coverage.

Finally, one useful clause as part of the top-level predicate is
whether the desired phones are static or mobile. Thus, in the citizen
journalist application, the top-level predicate can ensure deploy-
ment to only those phones that are recently mobile (maximizing
chances of fine-grain predicate being matched), while for the party
thermometer application, deployment occurs to only those phones
that are deemed static (ensuring that phones just passing-by near
the party location are not involved unnecessarily).

3.4.2 Deployment mode

A choice of two deployment modes is available to the applica-
tion server. These two modes can be used for quick deployment of
applications, with different trade-offs.

One option is to use a deploy-or-cancel mode. In this mode,
the PRISM server deploys the application immediately only if the
top-level predicate is matched. An alternative is the trigger mode,
wherein the application server sets a trigger with the PRISM server
for the desired predicate. The triggers are reevaluated continuously
as updates are received from the phones, ensuring deployment as
soon as the top-level predicate is satisfied.

The deploy-or-cancel mode can be used when a quick deploy-
ment is necessary. For example, by specifying a “large” area as
part of the top-level predicate, quick deployment can be ensured for
critical queries in the citizen journalist application (Section 7.1), al-
beit at the cost of deployment to a large number of phones. On the
other hand, the trigger mode can be used for applications that are
targeting regions with low density of PRISM clients. For example,
a latency-insensitive query in the citizen journalist application that
requires deployment to, say, a low-density rural region, can avail of
the trigger mode.

3.5 Update optimization

As mentioned earlier, the mobile client sends update messages
to the PRISM server to keep the dynamic information updated. By
default, the update messages are sent periodically. Given that these
update messages are an overhead, we now discuss two techniques
for cutting down on the number of update messages.

Adaptive updates: In this approach, the update frequency is adapted
based on the density of phones and the arrival rate of sensing appli-
cations. The PRISM server notifies each client with a parameter p
at the time of registration, computed as

p=min(l,p*xn/N)

where p is the job arrival rate, n is the average number of phones
requested by a job and N is the total number of phones registered,
for each geographic region. The clients then send periodic updates
with probability p. The intuition behind the above equation is sim-
ple: the update frequency (probability) can be reduced in a given re-
gion if either a large number of phones (V) are available to PRISM
or there is little application demand (p * n) for phones.
Prediction-based Suppression: In this approach, the mobile node
and the PRISM servers run identical predictors for each dynamic
resource of interest. At the mobile end, since the ground truth on
the dynamic resource is also known (e.g., the current location or
battery energy level), updates are sent to the servers if and only
if there is a significant deviation between the ground truth and its
local prediction. While such predictors could be very sophisticated
in general, we only consider two simple predictors:

1. Constant Predictor: This predictor predicts that the new value
is the same or “close” to the previous value. We use this pre-
dictor for the location resource and evaluate its efficacy in
Section 8. For instance, if a phone remains close to user’s
office for several hours (e.g., during a workday), the constant
predictor would suppress all location update messages dur-
ing this period.

2. Affine predictor: This predictor predicts the new value as an
affine function of a quantity (e.g., time) that is shared by both
the mobile node and the PRISM server, with the previous
value being the constant term in the affine function. In other
words, newV alue = axtime+ previousValue, assuming
that time is the domain of the function. An affine predictor
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would be suitable for the battery energy resource, where ex-
act tracking is not essential.

4. SOFTWARE SANDBOX

We now turn to the mobile phone end of PRISM. The key goal
here is to enable the safe execution of untrusted application binaries
on a mobile phone. Our basic approach is to run the untrusted appli-
cation inside a software sandbox. To realize the software sandbox,
we use the standard technique of system call interposition [6]. For
simplicity, all system calls pertaining to sensor device, file system,
and network operations are blocked rather than being modulated
inside of the OS kernel. In the place of the blocked system calls,
applications use a set of library APIs that interface with a user-
level PRISMd daemon, which mediates all accesses to the sensor
devices, file system, and network. Figure 2 shows the architecture
of the software sandbox.

While the software sandbox addresses basic security concerns,
there are a number of additional issues that arise from the sens-
ing context. These pertain to security and privacy concerns arising
from access to sensitive sensor data and the risk of resource de-
pletion, specifically with regard to battery energy. We focus our
discussion here on these novel aspects of the software sandbox.

4.1 Mitigating Privacy Risks

In general, any access to sensor data could pose a threat to user
privacy. For instance, access to the microphone would allow record-
ing of private conversations. Access to a seemingly less sensitive
sensor such as GPS could also compromise privacy by allowing
the (anonymous) user to be tracked and eventually identified [24].
Even access to a seemingly less sensitive sensor such as the WiFi
could compromise privacy because of manufacturing artifacts that
may allow the device to be fingerprinted.

We argue that such privacy risks are inherent to community sens-
ing applications. If we want to ensure perfect privacy, all access to
sensors would have to be blocked. Given this, our goal in PRISM
is to mitigate the risks while retaining useful sensing functionality.

One approach to mitigating the risk is “dumbing down” the sen-
sor data that is passed on to the application, say by quantizing it to
a coarse-grained level. However, since application needs cannot be
anticipated, it is hard to do such dumbing down without impacting
generality.

The mechanisms included in PRISM’s sandbox are aimed at mit-
igating privacy risks while still allowing useful sensing functional-
ity. As the first line of defence, sensor access control (Section 4.2.1)
gives the user broad control over which sensors, if any, applications
may access. When the user permits access to a sensor, PRISM mit-
igates the risks by constraining the computing and communication
that the application may perform, using the resource metering (Sec-
tion 4.3) and forced amnesia (Section 4.4) mechanisms. These con-
trols are designed to match the requirements of typical community
sensing applications, where sensor data is processed and signifi-
cantly reduced on the mobile node before being transmitted (e.g.,
noise mapping [7] or pollution monitoring [25]). Where significant
amounts of raw data is transmitted, it typically happens with human
involvement (e.g., taking a picture or recording an audio clip and
then uploading the raw data). Thus, we believe that the combina-
tion of tight controls by default and human-controlled overriding,
offers the flexibility needed for a range of community sensing ap-
plications.

4.2 Regulating Access to Sensors

In PRISM, we use two complementary approaches to regulate
access to sensors.

4.2.1 Sensor Access Control

The most direct way of addressing user concerns pertaining to
privacy is via sensor access control, i.e., blocking access to sensi-
tive sensors (e.g., the microphone). While the sensor access control
policies could, in general, be complex, we restrict ourselves here to
three simple yet natural policies:

1. No sensors: Direct access to all sensors is blocked. While
this severely restricts functionality, there are sensing appli-
cations that would fit this mould, since sensor information
could still be used indirectly as part of the predicate. For
example, an application could prompt users at a particular
location and have the human users do the sensing (e.g., re-
port back on the food at a restaurant). Note that, while the
untrusted application does not have direct access to the lo-
cation sensor, the PRISM runtime would still have access to
location information, thereby allowing the application to tar-
get phones in the desired location.

2. Location only: Only access to location information (e.g.,
from GPS) is allowed. This would, for instance, enable a
traffic flow monitoring application that requires knowledge
of location and derived quantities such as speed.

3. All sensors: Access to all sensors (including multimedia sen-
sors such as camera and microphone) is allowed, which pro-
vides the maximum flexibility.

An alternative to these coarse-grained access control policies
would be to prompt the user and seek authorization for each ap-
plication that wishes to access a sensor. While offering greater
control, this alternative runs the risk of overloading the user.

4.2.2 Sensor Taint Tracking

An alternative to sensor access control is to place severe resource
limits on PRISM applications that access sensitive sensors, instead
of blocking such accesses entirely. By diminishing an application’s
ability to process or transmit sensed data, we could significantly
diminish privacy risks while providing greater flexibility compared
to blocking access to sensors.

Sensor taint tracking is a mechanism to enable the above. Since
PRISMd mediates accesses made by a PRISM application to all



sensitive resources, it is in a position to track which sensors the
application has been rainted with. For example, if the application
has accessed the microphone, then it is tainted with microphone
data; otherwise, it is not. Such taint tracking is coupled with policy
information to drive resource metering decisions, as discussed next.

4.3 Resource Metering

Besides the privacy risks of granting untrusted applications ac-
cess to sensor data, PRISM also has to contend with the security
risk of resource depletion by the untrusted applications. A particu-
larly constrained resource is battery energy. It would be unaccept-
able for the user’s voluntary participation in community sensing to
cut down the battery life of the user’s phone significantly. Resource
metering is designed to address the problem of resource depletion
and, as our discussion below makes clear, it also helps mitigate pri-
vacy risks.

PRISMd tracks and enforces limits on the resource usage of
PRISM applications. For resources such as network, sensors, and
files, which it mediates access to, PRISMd is in a position to di-
rectly track resource usage and enforce controls, e.g., by not re-
turning the sensed data. For other resources, in particular, CPU and
memory, PRISMd does not mediate access. Instead, it monitors
the usage of these resources by the PRISM application using the
appropriate system calls and, if any limits have been exceeded, it
terminates the application.

From the viewpoint of the user (i.e., the owner of a PRISM
node), it is the overall energy consumed by PRISM applications
that matters. However, PRISM also imposes per-application limits,
both to ensure that a single application does not hog the resources
and also to mitigate privacy risks, as we discuss in Section 4.3.2
below.

4.3.1 Energy Metering

Enforcing limits on the use of the individual network and sensor
devices is likely to be cumbersome. Instead, we translate the usage
of each resource, such as the CPU, network, and sensor, into en-
ergy. To accomplish this translation, we use a simple model where
the energy consumed is estimated as a linear function [28] of (a) the
amount of time that a particular device is active, and (b) the amount
of data read and/or written.

The per unit time and per byte energy costs can either be mea-
sured empirically, through controlled benchmarking, or estimated
in normal course, using linear regression [5]. For simplicity, our
current prototype uses active measurements and we defer automatic
estimation based on passive measurements to future work.

We emphasize that our goal here is to prevent runaway applica-
tions from depleting battery energy rather than building an accurate
software-only energy measurement tool. As such, we use conser-
vative estimates, where appropriate. For example, CPU frequency
scaling would impact the energy consumed in a given amount of
CPU time. To be conservative, however, we use the energy cost
corresponding to the highest clock frequency, although if one could
infer the time spent in the various CPU states [28], the estimate
would likely be more accurate.

4.3.2  Bandwidth Metering

While network communication is also factored in to the energy
computation, we also meter network bandwidth separately for two
reasons. First, network communication can incur a monetary cost,
in addition to an energy cost, because of service provider tariffs.
Second, and more importantly, network access has implications
for privacy. For example, an application that is fainted with mi-
crophone data and also allocated a generous slice of the network

Item Infrastructure | Mobile | Common
PRISM 1901 1436 1197
Sandbox - 3129 -
CitizenApp 328 330 347
PartyApp 88 200 -
(Off-the-Shelf FFT) - 356 -
BumpApp 88 448 -

Table 2: Lines of code for various components

bandwidth could simply record a user’s private conversations and
ship these out, which would clearly be unacceptable from a privacy
viewpoint. On the other hand, if the application’s access to network
bandwidth were severely limited (say to just a few bits per second),
then the application could still perform a useful sensing function
(e.g., honk detection [31]), while not posing a similar threat to pri-
vacy.

4.4 Forced Amnesia

In the example noted above, severely limiting the bandwidth us-
age of an application would preclude a direct attempt to stream out
sensitive information. However, a malicious application could still
accumulate some sensitive data (e.g., a 10-second long recording
of a user’s private conversation) and then dribble it out over the
network over an extended period of time (say an hour).

To prevent this and other such “resource accumulation™ attacks,
PRISMd employs a forced amnesia mechanism to wipe out a PRISM
application’s state periodically, say every minute. This mecha-
nism is inspired by the observation that generally a sensing ap-
plication running on a mobile phone should not need to perform
long-running computations. Rather, the typical application would
sense data, possibly perform some local processing aimed at data
reduction, and then ship condensed information back to the appli-
cation server.

In practice, wiping out the application’s state can be achieved ef-
fectively, even if not very elegantly, by terminating the application
and then restarting it within a fresh sandbox environment. Since
all of a PRISM application’s network communication is routed via
PRISMd, such an application restart will not disrupt WAN connec-
tions to the application server.

5. IMPLEMENTATION

We now discuss our implementation of PRISM. We focus pri-
marily on the various quirks we encountered and on shortcomings
of our implementation. Also, we focus on the PRISM platform
itself here, deferring discussion of three applications we have pro-
totyped on PRISM to Section 7.

5.1 Computing Platform

We use Microsoft Windows Mobile 5.0 (WM 5.0) and 6.1 (WM
6.1) as the OS platforms for our mobile phone implementation. The
infrastructure components run on a Windows 7 PC.

Our testbed comprises 15 smartphones: 4 HP iPAQ hw6965 run-
ning WM 5.0 and 8 Samsung SGH-i780, 2 HTC Advantage 7501,
and 1 HTC Advantage 7510, each running WM 6.1. Each of these
phones includes the microphone, camera, and GPS sensors. Each
of the 3 HTC Advantages also has an external accelerometer sensor
attached to it.

Each of the 15 phones has Bluetooth, 802.11b, and GPRS/ EDGE/
3G radios. However, we used the GPRS/ EDGE/ 3G radio on each
phone for all network communication, with network access being
split across three service providers.

All of our implementation is in C#, except for some of the sandbox-
related components, which are written in C++ and the FFT code



which is written in C. Table 2 shows the lines of code for the dif-
ferent components.

5.2 PRISM: Infrastructural Component

We have prototyped the PRISM server application. The PRISM
server supports the two-level predicate-based API and the deploy-
or-cancel and trigger modes (Section 3.4). The top-level predicate
also allows application to specify whether the desired set of phones
are static or mobile; a phone is determined to be static if it does not
have a GPS lock (e.g., indoors) or if it has not updated the server
with a new GPS location (due to update suppression, Section 3.5)
for an application-specified time interval.

5.3 PRISM: Mobile Phone Component

The mobile phone component comprises the software sandbox,
which includes implementations of PRISMd and the system call
interposition layer (shim layer).

When a process makes a system call, the shim layer checks to
see if the process is a PRISM application, a determination that is
made based on the parent process ID check. If it is, then system call
interposition is applied to block the following calls, except where
noted otherwise:

e Network communication: all calls are blocked except for sends
to and receive from the localhost : 9500 UDP port, which
corresponds to PRI SMd.

e Device access: e.g., ioctl

e File system: for efficiency reasons, we only shim and block
calls that refurn a handle (e.g., CreateFile () ). Blocking
calls that merely use a handle (e.g., FileRead ()) is un-
necessary since the sandboxed process would not be able to
obtain a valid handle in the first place.

e Registry access

e Process calls: e.g., spawning off child processes is disal-
lowed, to avoid complicating the task of monitoring the re-
source usage of an application.

The implementation of PRISMd has to contend with several is-
sues pertaining to resource monitoring. First, once a process termi-
nates, information on its CPU usage is no longer available. Hence
PRISMd samples the CPU usage of a PRISM application process
periodically (once every 2 seconds, by default) and, when the pro-
cess terminates, it makes a conservative choice by adding the inter-
sample interval (e.g., 2 seconds) to the CPU usage of the terminated
process.

Second, Windows Mobile does not provide a way to directly de-
termine the memory usage of a process. In our current implemen-
tation, PRISMd traverses the page tables periodically to add up
the total memory usage of a process. A more efficient alternative
would be to shim the memory allocation and deallocation system
calls, and include hooks to keep track of the total memory usage of
a process. In our current implementation, however, we have chosen
to keep the in-kernel shimming layer very simple, hence it does not
include support for such accounting.

Third, when PRI SMd receives a resource access request from a
process over its UDP socket, it would need to know the ID of the
requesting process in order to perform access control and resource
accounting on a per-application basis. To facilitate this, the system
call shim layer includes the ID of the requesting process with the
message while intercepting inter-process communication over UDP
between a PRISM application and PRI SMd.
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Figure 3: Energy metering

6. EVALUATION: MICRO-BENCHMARKS

We start our experimental evaluation of PRISM by presenting
results from micro-benchmarks run in the lab.

6.1 Energy Metering

First, we evaluate the efficacy of energy metering performed by
the PRISM sandbox. Recall from Section 4.3 that energy consump-
tion is estimated by tracking the extent to which each resource (e.g.,
sensor) is used and feeding this into a simple linear model.

In our experiment, we emulate two applications. One application
cycles through using the camera sensor, performing WiFi scans,
and remaining idle, in turn. Each phase lasts for a randomly chosen
length of time. The other application operates similarly except that
it uses the GPS sensor and performs Bluetooth scans instead of the
camera and WiFi operations. We run these applications on an HP
iPAQ hw6965 phone, to emulate two concurrently running PRISM
applications.

PRISM separately estimates the energy consumption of each of
these two applications using the linear model, based on the time
(measured by PRI SMd) that each sensor is accessed by each appli-
cation and the empirically-measured unit energy cost of each sen-
sor. The sum of the estimated energy consumption of the two ap-
plications yields an estimate of the total energy consumption. We
also record the ground truth for the total energy consumption, us-
ing the GetSystemPowerStatusEx2() API in Windows Mobile to
measure the voltage and the average current drawn. (Note that the
system does not provide us a way to establish the ground truth on a
per-application basis.)

Figure 3 shows the estimated (i.e., metered) energy costs of each
of the two applications, the estimated total, and also the ground
truth for the total. Each sample point is obtained over a 5-minute
bucket. We see that the total metered value tracks the ground truth
closely for the most part. However, the metered value undershoots
at times because of the cost of non-PRISM related activity on the
phone, which PRISM’s metering mechanism does not account for.

We conclude that PRISM’s simple approach to energy estima-
tion is adequate for the purposes of enforcing limits on the energy
consumption of PRISM applications.

6.2 Overhead of prrsmd Mediation

Next, we turn to quantifying the overhead of having PRI SMd
mediate all accesses to sensors. Such mediation imposes overhead



Direct Via PRISMd | Overhead
GPS | 804.3 mW 821.2 mW 2.10%
Mic | 312.6 mW 315.0 mW 0.76%

Table 3: Average power drawn with direct access to sensors
versus access that is mediated by PRI SMd

in terms of context switching between the PRISM application pro-
cess and PRISMd, and data copies involved in UDP-based inter-
process communication between the two processes.

To quantify the overhead, we perform micro-benchmarks to com-
pare the energy consumed when an application accesses sensor data
via PRI SMd versus when it accesses it through a direct system call.
We perform these measurements for two sensors: GPS and micro-
phone. In the case of GPS, the application alternates between look-
ing up the GPS lat/long information and sleeping for 1 second; each
location report is 20 bytes in size. In the case of the microphone,
the application alternates between obtaining a 1-second long 8-bit
PCM audio sample and sleeping for 1 second; each audio sample
is 22 KB in size.

We use a hardware energy meter connected to an HP iPAQ hw6965
phone, to accurately measure the average power drawn by the phone
during each experiment. The results are summarized in Table 3. We
find that the overhead of mediation by PRISMd is low. This lends
support to PRISM’s choice of encapsulating sensor access control
and tracking in a separate user-level daemon rather than the more
efficient but also more complex alternative of stuffing this function-
ality into the in-kernel system call interposition layer.

7. EVALUATION: APPLICATIONS BUILT
ON PRISM

We have prototyped three simple applications on the PRISM
platform. Our goal is to demonstrate the flexibility of the platform
rather than present novel applications. Our deployment thus far has
been on a very small scale, limited to the 15 phones in our testbed
and a handful of volunteers.

7.1 Citizen Journalist

This application is inspired by Micro-Blogs [22] and involves
participatory sensing, wherein PRISM provides location-based trig-
gers to alert human users, who are in the vicinity of a location of in-
terest, to respond to the application. Responses could take the form
of answering simple queries, taking pictures of interesting events,
etc.

Such an application could be used, for example, by small news
organizations to collect information for particular events of inter-
est. In this context, two types of application requirements exist: 1)
critical queries where fast response to application queries is neces-
sary (e.g., someone reports an accident and the news organization
requires a citizen to take a photograph of the scene); 2) queries that
are not latency sensitive but may need answers from areas that are
sparsely populated (e.g., someone writing an article about the con-
dition of school buildings in remote villages and requires a recent
photograph of the same).

The application requests PRISM to deliver the sensing task to a
certain number of camera-equipped phones in the vicinity of the
desired location. The location is specified by (lat, long) and in-
cludes a coarse radius for deployment and a fine radius for actual
execution. If matching phones are not readily available, PRISM’s
trigger mechanism is used to deploy at the location as and when
PRISM clients register/send updates from the desired location.

Figure 4 shows the pseudocode for the distributed aspects of
the application. The simplicity of the pseudocode is striking. In-

// set up the first level coarse-grained predicate
Llpred = new FirstLevelPredicate();
Llpred.location = <desired location>;
Llpred.radius = <desired coarse radius>;
Llpred.stationary = false;

Llpred.cameraPresent = true;

Llpred.numOfPhones = <desired number of phones>;

// set up the second level fine-grained predicate
L2pred = new SecondLevelPredicate();
L2pred.location = <desired location>;
L2pred.radius = <desired fine radius>;

// set up the application with the predicates
PRSIMapp = new PRISMApplication();
PRSIMapp.Init () ;
PRISMapp.SetPredicates (Llpred, L2pred);
PRISMapp.SetBinary (<path to ’‘phoneapp.exe’>);
PRISMapp.TriggerMode = true;
PRISMapp.DistributeToPhones () ;

// read and process data sent by phones
while (appData = PRISMapp.GetData()) {
<process the received data>;

Figure 4: Pseudocode for Citizen Journalist Application

deed, we believe that the PRISM infrastructure relieves the pro-
grammer of the details of distributing their application, thereby let-
ting them focus on the core application tasks — local processing on
the phones (e.g., image capture, GUI) and centralized processing
on the application server (e.g., collating all of the queries/pictures
received).

Coarse-grain Radius — 30m 75m 125m
Network — 2G | 3G | 2G [ 3G | 2G | 3G
User Speed |
Walking (4kmph) 5/5 | 55 | 55| 5/5
Driving (30kmph)

Driving (40kmph)
Driving (50kmph)

Table 4: Micro-benchmark results: success rate of application
launch with 30m fine-grain radius against varying coarse radii,
user speed and network type. Number x/y indicates x success-
ful launches out of y trials. Cells colored black indicates no
success, gray indicates partial success and white indicates com-
plete success.

Micro-benchmark: Recall that when a PRISM phone with the
appropriate sensors is within the identified coarse-grain radius of
an application predicate, the application is deployed onto the phone
and only when the phone enters the fine-grain radius, the applica-
tion is launched for execution. ~We first conduct experiments to
quantify the impact of the choice of coarse-grain radius on suc-
cessful deployment and launch of PRISM applications for different
user mobility speeds and network types (2G vs 3G). We use the
citizen journalist application (the size of the executable was about
35KB) for these experiments and set the fine-grain radius to 30m
around a chosen center of interest.

Table 4 summarizes the results of our experiments. From the re-
sults, we make the following observations. First, at walking speeds,
the application was successfully launched within the fine-grain ra-
dius for all choices of coarse-grain radius (30m, 75m, and 125m)
and networks (2G, 3G). However, we would like the launch to oc-



Item Count
Deployed 417
Launched 274

Total Responses 235
Response Time in seconds (avg., max) 46, 149
Photo Responses 141

Total Cancelled 38
Cancelled (TooFarAway) 9
Normalized Deployed Distance (avg., max ) | 71%, 443%
Normalized Launched Distance (avg., max ) 83%, 100%

Table 5: Statistics from the pilot deployment

cur when the user is approaching, rather than receding from the
point of interest, to notify the user of a sensing opportunity suffi-
ciently in advance. For 2G networks with 30m coarse-grain radius,
we found that most of the application launches occurred beyond
the center point of interest. This indicates that for pedestrian users
on 2G cellular networks, a larger coarse-grain radius (e.g., 75m) is
required. Second, as expected, for a given coarse-grain radius and
user speed, the success rate in 3G networks is higher than in 2G
networks. This is because the lower latency and higher bandwidth
of 3G networks allow for a faster deployment of the application
than on 2G networks. Third, as the user speed increases, a larger
coarse-grain radius becomes necessary for achieving successful ap-
plication launches. These experiments validate the benefits of two-
level predicates for successful application launches while catering
to a range of user speeds and network types.

Small-scale pilot deployment: The citizen journalist application
was deployed on a small-scale using ten volunteers, including three
authors of the paper. The volunteers were given windows mo-
bile phones with GPRS (2G) data subscription and they carried the
phones whenever they left work (e.g., to go home or for walks).

A total of 30 locations of interest was identified in an area of
few square kilometer in the vicinity of the Microsoft Research In-
dia lab in Bangalore. Custom tasks seeking responses from users
at these locations, were generated periodically by the application
server and sent to the PRISM server for deployment. For example,
a task would ask the user how heavy the traffic is at an intersec-
tion and also ask them to optionally take a picture. Given that the
speed limit in the area of interest was 30kmph and many volunteers
used the system at walking speeds, a fine-grain radius of 30m and
a coarse-grain radius of 75m were chosen for vast majority of the
tasks. These choices ensure a high application launch success rate
with ample notification time based on the micro-benchmark results
reported earlier.

When the application launches based on the coarse-grained and
fine-grained predicates, the user is notified of the launch by gener-
ating a ringtone on the phone. If the user chooses to ignore it, then
the application will get cancelled automatically based on a time-
out period. Otherwise, the user has the option of responding and
performing the requested task, or manually cancelling the applica-
tion. In the latter case, the user can optionally provide a reason for
cancellation (e.g., too busy or location too far away).

Key takeaways from the pilot: Table 5 presents several statis-
tics from the pilot. A total of over 400 application instances were
deployed out of which 274 were launched and 235 responses, ma-
jority of which included a photo attachment, were received dur-
ing the trial. The average response time for applications where
phones matching the top-level predicate were immediately avail-
able was 46 seconds (including 10 seconds of deployment delay
over GPRS), demonstrating the value of a push-based framework
such as PRISM.

1. Value of two-level predicates: As mentioned earlier, for most
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Figure 5: Responses to applications indexed by locations

regions of interest, we set the fine-grain radius to 30m and coarse-
grain radius to 75m. For a few regions of interest that spanned a
large area, the fine-grain radius was set to S0m and the coarse-grain
radius to 100m.

Table 5 shows the average and maximum value of the normalized
distance at which the applications were deployed and launched (rel-
ative to the specified radii). The average normalized deployed dis-
tance is only 71% of the coarse radius. This is due to the lack of pre-
cise GPS information at the server and the time taken to download
the application through GPRS. Thus, the application is deployed
well inside the coarse radius. Instead of using two-level predicates,
if we had restricted ourselves to a single-level predicate that specif-
ically targets the small precise region of interest, the deployments
would often have been too late to be of value, as discussed in the
micro-benchmark results.

The maximum normalized deployment distance is over 4 times
the coarse-grain radius. The reason for this discrepancy is because
of the lag between the location that has been registered at the server
and the precise current location of the mobile phone. However,
since the applications are launched only after the fine-grain pred-
icate check, these deployments do not impose any cognitive load
on the user. In contrast to the deployment, the launch distance
is more tightly controlled, the average and maximum normalized
launch distance being 83% and 100% of the specified fine radius.
This again demonstrates the value of the two-level predicates be-
cause the actual launch is initiated locally on the phone with full
and precise knowledge of the location by the PRISM client.

2. Need for tight integration with maps: Out of the 38 instances
of application launches that were cancelled, users had indicated that
9 of the requests were too far away and thus, these launches could
be interpret as spam. However, from the launch distance statistic
in Table 5, we see that the application never launched outside the
fine-grained predicate. Upon further investigation, users revealed
that they were either on an adjacent street behind the point of inter-
est or they were moving away from the point of interest when the
application launched. This clearly indicates that tight integration
with maps (streets, direction of traffic, etc.) and heading informa-
tion would help reduce such unintended spam possibilities.

3. Trigger mode Figure 5 depicts the total user responses to ap-
plications indexed by locations over the duration of the pilot which
lasted approximately one week. From the graph, it is clear that
jobs posted to a few locations received a large number of responses
(popular locations visited by many volunteers) while a few loca-



(a) Ground truth

(b) Bumps detected without forced amnesia  (c) Bumps detected with forced amnesia

Figure 6: Pushpins marking road bumps detected on a 2.5 km long drive.

tions received hardly any responses. The latter locations are prime
candidates for the trigger mode of application deployment.

Finally, we relate an interesting anecdote. One of the volunteers
was quite pleased with the way the system worked and requested
us to post a query task at a new location on her behalf. The query
was to determine if a certain product was available at a store. She
was surprised to find her query answered the following day (by
another volunteer who was unaware of this recently created task).
This anecdote points to the value of a community sensing system
in general; we believe the flexibility and scalability of PRISM will
make the deployment of such community sensing systems practi-
cal.

7.2 Party Thermometer

The second application is also a human-query application, where
queries are directed to users who are at parties. For example, a
query could be how hot a particular party is. Like in the citizen
journalist application, location is a key part of the predicate used
to target the queries. However, unlike in the citizen journalist ap-
plication, location alone is not enough for targeting because there
is a significant difference between a person who is actually in a
party and a person who is just outside, possibly having nothing to
do with the party. Thus, in addition to location, we employ (party)
music detection using the microphone sensor to establish the user’s
context more precisely.

The location predicates used in the party thermometer applica-
tion must be more precise than, say, in the citizen journalist ap-
plication since the application has to perform an energy intensive
activity (detecting music through microphone sensing) before even
determining whether to involve the user. Avoiding such unneces-
sary sensing would be essential for efficiency. To enable a precise
fine-grain predicate, we choose the location of the party down to
a building as the top-level predicate and further require that the
phone be stationary (e.g., within the building) before deploying ap-
plications to the phone. The latter check helps avoid deploying to
phones of users that are simply passing by.

Once the application is deployed, the second level predicate re-
quires music to be heard for the application to launch, thus ensur-
ing that the user is prompted only when he is present in the party.
To detect music, one simple heuristic is to perform a Fast Fourier
Transform (FFT) of the audio samples and examine the spikes in
the frequency domain for harmonics. Since we require this oper-
ation to be done efficiently, we use an off-the-shelf efficient FFT
code written in C to build a dynamic linked library that is down-
loaded with the party application. This demonstrates the generality
and flexibility of the PRISM platform; applications deployed on

platforms that only supports a scripting language such as Anony-
Sense [13] will be forced to wait for the scripting language to sup-
port such functionality.

We built and tested this application. We verified that the applica-
tion was deployed only to users’ phones inside the predefined party
location and not to phones with users that are merely passing by
the location. In our limited testing, while the above music detec-
tion heuristic worked reliably, despite the constraint of the forced
amnesia interval of one minute, we did not do extensive testing of
this aspect since this is an application specific feature and is orthog-
onal to the capabilities of PRISM.

7.3 Road Bump Monitoring

The final application is inspired by Pothole Patrol [18] and Neri-
cell [31] and involves opportunistic sensing, wherein phones equip-
ped with GPS and accelerometer sensors are used to detect and lo-
cate road bumps automatically without any user involvement. Com-
pared to the citizen journalist application, the region of interest here
is large (e.g., a section of a city or even an entire city), so the appli-
cation server uses the deploy-or-cancel mode rather than the trigger
mode. Also, the sensed (accelerometer) data is processed locally on
the phones to extract the desired information (the location of road-
bumps), before it is shipped back to the server.

We use this application to quantify the potential drawback, if any,
of the forced amnesia feature of PRISM for sensing applications.
To evaluate this application, we conducted an experiment where the
3 accelerometer-equipped phones at our disposal were taken on a
2.5 km long drive through a neighbourhood. We established the
ground truth by manually recording the actual locations of the road
bumps. We then opportunistically deployed the road bump moni-
toring application on the phones and compared the bumps detected
by the application with the ground truth. Figure 6 shows the results.
We find that of the 9 bumps detected by the application, 6 match
bumps in the ground truth set within 12m (Figures 6(a) and (b)).

We also turned on forced amnesia on one of the phones, which
meant that the application was terminated every 60 seconds and
then restarted immediately, a process that took about 5 seconds. As
a result, the application running on this phone found fewer bumps
— 6 bumps out of which 4 matched the ground truth (Figures 6(a)
and (c)). However, even with forced amnesia, the missed sensing
opportunities on any one phone are likely to be masked by the ag-
gregate sensing performed by a large population of phones for this
application.
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8. EVALUATION AT SCALE USING SIMU-
LATION

Finally, we turn to simulation to evaluate PRISM at scales far
larger than is permitted by our limited deployment. Specifically,
we focus on evaluating the efficiency of PRISM’s update strategies
(Section 3.5). The key metric to be optimized is the number of
dynamic resource updates generated by the participating phones.
Frequent updates ensure that the information at the PRISM server
is current, resulting in better success of matching incoming jobs to
phones. However, each update also adds to the overhead in terms
of energy and bandwidth usage on the phones, and processing at
the server.

The PRISM server is responsible for balancing between effi-
ciency in resource updates and success in satisfying the needs of
various applications. We use two metrics to quantify this trade-off:
(1) total number of resource updates and (2) normalized job suc-
cess rate, i.e., the percentage of arriving jobs that find matching
phones right away, normalized to the case where PRISM server has
perfect knowledge. In this evaluation, we focus on location as the
dynamic resource of interest. In addition, we present a compari-
son of push-based PRISM with a pull-based architecture such as
AnonySense. For this evaluation, we use a third metric: number of
Jjobs downloaded per phone.

In order to evaluate the performance of the update optimizations
in a wide-area setting, we use a custom simulator that is driven by
large-scale mobility traces from [34]. The trace represents about
260,000 vehicles on real roads in an area of around 250 km X 260
km in the canton of Zurich, Switzerland. We assume that each
vehicle carries one smartphone, which is PRISM-enabled with a
probability that we vary in the range 1-100%. The mobility trace is
24 hours in duration and contains over 27 million mobility events.
We use the first few hours of the trace to warm up the simulator and
then evaluate our metrics on about 14 hours of the trace, spanning
the hours from 7AM to 9PM.

Motivated by the citizen journalist application, we model sensing
jobs as seeking between 1 and 10 phones, uniformly distributed
within a radius of 1 km of the target location. The target location
is chosen randomly from the 250 km X 260 km mobility region,
weighted based on the density of phones. The job arrival process is

assumed to be Poisson and each job is set to expire one hour after
its arrival.

Before we evaluate the adaptive and predictive suppression al-
gorithms (Section 3.5), let us first consider the simple periodic up-
date policy. Figures 7(a) and (b) show the impact of the periodic
update interval on the normalized job success rate and total num-
ber of updates, respectively. The individual curves in each figure
correspond to different percentages (1-100%) of all phones being
PRISM-enabled.

From these figures, we make the following observations. As ex-
pected, the smaller the update interval, the more current the infor-
mation at the server and hence the greater the success rate in match-
ing incoming jobs to phones (update interval of zero corresponds
to perfect knowledge). On the other hand, a smaller update interval
means a larger volume of updates. The success rate with an update
interval of 100 seconds is within 2% of the optimal. However, the
volume of updates is quite high, an issue we consider next.

With the update interval set to 100 seconds, we evaluate the ef-
fectiveness of the adaptive and predictive optimizations described
in Section 3.5 in cutting down the volume of updates. Recall that
the adaptive optimization means that the higher the density of phones
in a region, the less frequent the updates from those phones. On the
other hand, the predictive optimization suppresses updates if the
resource of interest has not deviated too far from the prediction.
Specifically, for the location resource, we use the constant predic-
tor and a threshold of 500m for “too far”.

Figures 8(a) and (b) show the impact of the adaptive and pre-
dictive optimizations on the normalized job success rate and to-
tal number of updates, respectively. The figures show the baseline
(periodic updates with a 100-second interval) plus 3 other cases:
adaptive only, predictive suppression only, and both the adaptive
and predictive suppression optimizations. From Figure 8(a), we
see that the success rate is not significantly impacted, with reduc-
tions of at most 2% due to the optimizations. However, Figure 8(b)
shows that the impact of the optimizations on the volume of updates
is dramatic. Predictive suppression alone cuts down the number of
updates by an order of magnitude. The adaptive optimization also
offers similar gains when the phone density is high enough. Fi-
nally, when both adaptive and predictive optimizations are applied,
the volume of updates is cut down by a factor of up to 40.

Finally, we compare a pull-based approach to distributing jobs
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(as in AnonySense [13]) with a push-based approach (as in PRISM).
In the case of AnonySense, we assume that clients pull all un-
expired jobs once every hour, assuming that jobs can tolerate an
average latency of half-an-hour. In the case of PRISM, we use
the adaptive and predictive optimizations for updates and push jobs
immediately, if possible, to the phones that match the desired pred-
icates of the application. Figure 8(c) presents, on a log scale, the
number of jobs or updates per phone for AnonySense and PRISM
for the case where the average job arrival rate is 100 jobs per hour.
First, it is clear that the number of jobs pushed in PRISM is sev-
eral orders of magnitude lower than the number of jobs pulled in
AnonySense. This comes at the expense of increased updates per
phone in PRISM. Second, as the number of available phones in-
crease, PRISM results in significantly fewer jobs or updates per
phone but the reduction in number of jobs downloaded per phone is
marginal with AnonySense. This is a potential scalability issue for
the infrastructure. To place these results in context, AnonySense
was designed primarily with a focus on providing strong privacy
properties rather than on scaling. However, we argue that, by trad-
ing off a little privacy (i.e., allowing phones to be tracked within a
registration interval), the push-based architecture of PRISM is able
to achieve significant improvements in scalability.

9. CONCLUSION

In this paper, we have presented PRISM, a platform for support-
ing the growing class of mobile smartphone based participatory and
opportunistic sensing applications. The key focus of PRISM is on
flexibility in terms of supporting a large class of applications, eas-
ing both their development and their deployment. The flexibility
that PRISM seeks to provide raises a number of challenges, specif-
ically with regard to security, scalability, and resource exhaustion
concerns on what remain phones belonging to individual users.

PRISM is designed to address the challenges noted above. It in-
cludes both an infrastructural component to effect distributed or-
chestration of phones, and a mobile phone component that pro-
vides a software sandbox, with several novel features, for execut-
ing untrusted sensing applications in binary form. Our evaluation
of PRISM is based on three applications that we have prototyped
and deployed on a small scale as well as laboratory experiments
and simulations.
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